summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/dosincos.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/dosincos.c')
-rw-r--r--sysdeps/ieee754/dbl-64/dosincos.c181
1 files changed, 181 insertions, 0 deletions
diff --git a/sysdeps/ieee754/dbl-64/dosincos.c b/sysdeps/ieee754/dbl-64/dosincos.c
new file mode 100644
index 0000000000..2a5f8fcc34
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/dosincos.c
@@ -0,0 +1,181 @@
+
+/*
+ * IBM Accurate Mathematical Library
+ * Copyright (c) International Business Machines Corp., 2001
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or 
+ * (at your option) any later version.
+ * 
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  
+ */
+/********************************************************************/
+/*                                                                  */ 
+/* MODULE_NAME: dosincos.c                                          */
+/*                                                                  */
+/*                                                                  */
+/* FUNCTIONS:   dubsin                                              */
+/*              dubcos                                              */
+/*              docos                                               */
+/* FILES NEEDED: endian.h mydefs.h dla.h dosincos.h                 */
+/*               sincos.tbl                                         */
+/*                                                                  */
+/* Routines compute sin() and cos() as Double-Length numbers         */
+/********************************************************************/
+
+
+
+#include "endian.h"
+#include "mydefs.h" 
+#include "sincos.tbl"
+#include "dla.h"
+#include "dosincos.h"
+/***********************************************************************/
+/* Routine receive Double-Length number (x+dx) and computing sin(x+dx) */
+/* as Double-Length number and store it at array v .It computes it by  */
+/* arithmetic action on Double-Length numbers                          */
+/*(x+dx) between 0 and PI/4                                            */      
+/***********************************************************************/
+
+void dubsin(double x, double dx, double v[]) {
+  double xx,y,yy,z,zz,r,s,p,hx,tx,hy,ty,q,c,cc,d,dd,d2,dd2,e,ee,
+    sn,ssn,cs,ccs,ds,dss,dc,dcc;
+  mynumber u;
+  int4 k;
+  
+  u.x=x+big.x;
+  k = u.i[LOW_HALF]<<2;
+  x=x-(u.x-big.x);
+  d=x+dx;
+  dd=(x-d)+dx;
+         /* sin(x+dx)=sin(Xi+t)=sin(Xi)*cos(t) + cos(Xi)sin(t) where t ->0 */
+  MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);
+  sn=sincos.x[k];     /*                                  */
+  ssn=sincos.x[k+1];  /*      sin(Xi) and cos(Xi)         */
+  cs=sincos.x[k+2];   /*                                  */
+  ccs=sincos.x[k+3];  /*                                  */
+  MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);  /* Taylor    */
+  ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s); 
+  MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);      /* series    */
+  ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s); 
+  MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);      /* for sin   */
+  MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(ds,dss,d,dd,ds,dss,r,s);                         /* ds=sin(t) */
+  
+  MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc); ;/* Taylor    */
+  ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s); 
+  MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);      /* series    */
+  ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s); 
+  MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);      /* for cos   */
+  ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s); 
+  MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);      /* dc=cos(t) */
+  
+  MUL2(cs,ccs,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
+  MUL2(dc,dcc,sn,ssn,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  SUB2(e,ee,dc,dcc,e,ee,r,s); 
+  ADD2(e,ee,sn,ssn,e,ee,r,s);                    /* e+ee=sin(x+dx) */
+  
+  v[0]=e;
+  v[1]=ee;
+}
+/**********************************************************************/
+/* Routine receive Double-Length number (x+dx) and computes cos(x+dx) */
+/* as Double-Length number and store it in array v .It computes it by */
+/* arithmetic action on Double-Length numbers                         */
+/*(x+dx) between 0 and PI/4                                           */
+/**********************************************************************/
+
+void dubcos(double x, double dx, double v[]) {
+  double xx,y,yy,z,zz,r,s,p,hx,tx,hy,ty,q,c,cc,d,dd,d2,dd2,e,ee,
+    sn,ssn,cs,ccs,ds,dss,dc,dcc;
+  mynumber u;
+  int4 k; 
+  u.x=x+big.x; 
+  k = u.i[LOW_HALF]<<2;
+  x=x-(u.x-big.x);
+  d=x+dx; 
+  dd=(x-d)+dx;  /* cos(x+dx)=cos(Xi+t)=cos(Xi)cos(t) - sin(Xi)sin(t) */
+  MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);  
+  sn=sincos.x[k];     /*                                  */
+  ssn=sincos.x[k+1];  /*      sin(Xi) and cos(Xi)         */
+  cs=sincos.x[k+2];   /*                                  */
+  ccs=sincos.x[k+3];  /*                                  */
+  MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s); 
+  MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s); 
+  MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
+  MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(ds,dss,d,dd,ds,dss,r,s); 
+  
+  MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s); 
+  MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s); 
+  MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s); 
+  MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  
+  MUL2(cs,ccs,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
+  MUL2(dc,dcc,sn,ssn,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+
+  MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
+  MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s); 
+  MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
+  MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc); 
+  ADD2(ds,dss,d,dd,ds,dss,r,s); 
+  MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
+  MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
+  MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
+  MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  MUL2(sn,ssn,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
+  MUL2(dc,dcc,cs,ccs,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
+  ADD2(e,ee,dc,dcc,e,ee,r,s); 
+  SUB2(cs,ccs,e,ee,e,ee,r,s); 
+ 
+  v[0]=e;
+  v[1]=ee;
+}
+/**********************************************************************/
+/* Routine receive Double-Length number (x+dx) and computes cos(x+dx) */
+/* as Double-Length number and store it in array v                    */
+/**********************************************************************/
+void docos(double x, double dx, double v[]) {
+  double y,yy,p,w[2];
+  if (x>0) {y=x; yy=dx;}
+     else {y=-x; yy=-dx;}
+  if (y<0.5*hp0.x)                                 /*  y< PI/4    */
+           {dubcos(y,yy,w); v[0]=w[0]; v[1]=w[1];}
+     else if (y<1.5*hp0.x) {                       /* y< 3/4 * PI */
+       p=hp0.x-y;  /* p = PI/2 - y */
+       yy=hp1.x-yy;
+       y=p+yy;
+       yy=(p-y)+yy;
+       if (y>0) {dubsin(y,yy,w); v[0]=w[0]; v[1]=w[1];}  
+                                       /* cos(x) = sin ( 90 -  x ) */
+         else {dubsin(-y,-yy,w); v[0]=-w[0]; v[1]=-w[1]; 
+	 }
+     }
+  else { /* y>= 3/4 * PI */
+    p=2.0*hp0.x-y;    /* p = PI- y */
+    yy=2.0*hp1.x-yy;   
+    y=p+yy;
+    yy=(p-y)+yy;
+    dubcos(y,yy,w);
+    v[0]=-w[0];
+    v[1]=-w[1];
+  }
+}