diff options
Diffstat (limited to 'sysdeps/ia64/fpu/w_tgamma.S')
-rw-r--r-- | sysdeps/ia64/fpu/w_tgamma.S | 1836 |
1 files changed, 0 insertions, 1836 deletions
diff --git a/sysdeps/ia64/fpu/w_tgamma.S b/sysdeps/ia64/fpu/w_tgamma.S deleted file mode 100644 index 24f3d11840..0000000000 --- a/sysdeps/ia64/fpu/w_tgamma.S +++ /dev/null @@ -1,1836 +0,0 @@ -.file "tgamma.s" - - -// Copyright (c) 2001 - 2005, Intel Corporation -// All rights reserved. -// -// Contributed 2001 by the Intel Numerics Group, Intel Corporation -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// -// * The name of Intel Corporation may not be used to endorse or promote -// products derived from this software without specific prior written -// permission. - -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT -// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS -// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL, -// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR -// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY -// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING -// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// Intel Corporation is the author of this code,and requests that all -// problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. -// -//********************************************************************* -// -// History: -// 10/12/01 Initial version -// 05/20/02 Cleaned up namespace and sf0 syntax -// 02/10/03 Reordered header: .section, .global, .proc, .align -// 04/04/03 Changed error codes for overflow and negative integers -// 04/10/03 Changed code for overflow near zero handling -// 03/31/05 Reformatted delimiters between data tables -// -//********************************************************************* -// -//********************************************************************* -// -// Function: tgamma(x) computes the principle value of the GAMMA -// function of x. -// -//********************************************************************* -// -// Resources Used: -// -// Floating-Point Registers: f8-f15 -// f33-f87 -// -// General Purpose Registers: -// r8-r11 -// r14-r28 -// r32-r36 -// r37-r40 (Used to pass arguments to error handling routine) -// -// Predicate Registers: p6-p15 -// -//********************************************************************* -// -// IEEE Special Conditions: -// -// tgamma(+inf) = +inf -// tgamma(-inf) = QNaN -// tgamma(+/-0) = +/-inf -// tgamma(x<0, x - integer) = QNaN -// tgamma(SNaN) = QNaN -// tgamma(QNaN) = QNaN -// -//********************************************************************* -// -// Overview -// -// The method consists of three cases. -// -// If 2 <= x < OVERFLOW_BOUNDARY use case tgamma_regular; -// else if 0 < x < 2 use case tgamma_from_0_to_2; -// else if -(i+1) < x < -i, i = 0...184 use case tgamma_negatives; -// -// Case 2 <= x < OVERFLOW_BOUNDARY -// ------------------------------- -// Here we use algorithm based on the recursive formula -// GAMMA(x+1) = x*GAMMA(x). For that we subdivide interval -// [2; OVERFLOW_BOUNDARY] into intervals [16*n; 16*(n+1)] and -// approximate GAMMA(x) by polynomial of 22th degree on each -// [16*n; 16*n+1], recursive formula is used to expand GAMMA(x) -// to [16*n; 16*n+1]. In other words we need to find n, i and r -// such that x = 16 * n + i + r where n and i are integer numbers -// and r is fractional part of x. So GAMMA(x) = GAMMA(16*n+i+r) = -// = (x-1)*(x-2)*...*(x-i)*GAMMA(x-i) = -// = (x-1)*(x-2)*...*(x-i)*GAMMA(16*n+r) ~ -// ~ (x-1)*(x-2)*...*(x-i)*P22n(r). -// -// Step 1: Reduction -// ----------------- -// N = [x] with truncate -// r = x - N, note 0 <= r < 1 -// -// n = N & ~0xF - index of table that contains coefficient of -// polynomial approximation -// i = N & 0xF - is used in recursive formula -// -// -// Step 2: Approximation -// --------------------- -// We use factorized minimax approximation polynomials -// P22n(r) = A22*(r^2+C01(n)*R+C00(n))* -// *(r^2+C11(n)*R+C10(n))*...*(r^2+CA1(n)*R+CA0(n)) -// -// Step 3: Recursion -// ----------------- -// In case when i > 0 we need to multiply P22n(r) by product -// R(i)=(x-1)*(x-2)*...*(x-i). To reduce number of fp-instructions -// we can calculate R as follow: -// R(i) = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-1))*(x-i)) if i is -// even or R = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-2))*(x-(i-1)))* -// *(i-1) if i is odd. In both cases we need to calculate -// R2(i) = (x^2-3*x+2)*(x^2-7*x+12)*...*(x^2+x+2*j*(2*j-1)) = -// = (x^2-3*x+2)*(x^2-7*x+12)*...*((x^2+x)+2*j*(2*(j-1)+(1-2*x))) = -// = (RA+2*(2-RB))*(RA+4*(4-RB))*...*(RA+2*j*(2*(j-1)+RB)) -// where j = 1..[i/2], RA = x^2+x, RB = 1-2*x. -// -// Step 4: Reconstruction -// ---------------------- -// Reconstruction is just simple multiplication i.e. -// GAMMA(x) = P22n(r)*R(i) -// -// Case 0 < x < 2 -// -------------- -// To calculate GAMMA(x) on this interval we do following -// if 1 <= x < 1.25 than GAMMA(x) = P15(x-1) -// if 1.25 <= x < 1.5 than GAMMA(x) = P15(x-x_min) where -// x_min is point of local minimum on [1; 2] interval. -// if 1.5 <= x < 2.0 than GAMMA(x) = P15(x-1.5) -// and -// if 0 < x < 1 than GAMMA(x) = GAMMA(x+1)/x -// -// Case -(i+1) < x < -i, i = 0...184 -// ---------------------------------- -// Here we use the fact that GAMMA(-x) = PI/(x*GAMMA(x)*sin(PI*x)) and -// so we need to calculate GAMMA(x), sin(PI*x)/PI. Calculation of -// GAMMA(x) is described above. -// -// Step 1: Reduction -// ----------------- -// Note that period of sin(PI*x) is 2 and range reduction for -// sin(PI*x) is like to range reduction for GAMMA(x) -// i.e r = x - [x] with exception of cases -// when r > 0.5 (in such cases r = 1 - (x - [x])). -// -// Step 2: Approximation -// --------------------- -// To approximate sin(PI*x)/PI = sin(PI*(2*n+r))/PI = -// = (-1)^n*sin(PI*r)/PI Taylor series is used. -// sin(PI*r)/PI ~ S21(r). -// -// Step 3: Division -// ---------------- -// To calculate 1/(x*GAMMA(x)*S21(r)) we use frcpa instruction -// with following Newton-Raphson interations. -// -// -//********************************************************************* - -GR_Sig = r8 -GR_TAG = r8 -GR_ad_Data = r9 -GR_SigRqLin = r10 -GR_iSig = r11 -GR_ExpOf1 = r11 -GR_ExpOf8 = r11 - - -GR_Sig2 = r14 -GR_Addr_Mask1 = r15 -GR_Sign_Exp = r16 -GR_Tbl_Offs = r17 -GR_Addr_Mask2 = r18 -GR_ad_Co = r19 -GR_Bit2 = r19 -GR_ad_Ce = r20 -GR_ad_Co7 = r21 -GR_NzOvfBound = r21 -GR_ad_Ce7 = r22 -GR_Tbl_Ind = r23 -GR_Tbl_16xInd = r24 -GR_ExpOf025 = r24 -GR_ExpOf05 = r25 -GR_0x30033 = r26 -GR_10 = r26 -GR_12 = r27 -GR_185 = r27 -GR_14 = r28 -GR_2 = r28 -GR_fpsr = r28 - -GR_SAVE_B0 = r33 -GR_SAVE_PFS = r34 -GR_SAVE_GP = r35 -GR_SAVE_SP = r36 - -GR_Parameter_X = r37 -GR_Parameter_Y = r38 -GR_Parameter_RESULT = r39 -GR_Parameter_TAG = r40 - - - -FR_X = f10 -FR_Y = f1 // tgamma is single argument function -FR_RESULT = f8 - -FR_AbsX = f9 -FR_NormX = f9 -FR_r02 = f11 -FR_AbsXp1 = f12 -FR_X2pX = f13 -FR_1m2X = f14 -FR_Rq1 = f14 -FR_Xt = f15 - -FR_r = f33 -FR_OvfBound = f34 -FR_Xmin = f35 -FR_2 = f36 -FR_Rcp1 = f36 -FR_Rcp3 = f36 -FR_4 = f37 -FR_5 = f38 -FR_6 = f39 -FR_8 = f40 -FR_10 = f41 -FR_12 = f42 -FR_14 = f43 -FR_GAMMA = f43 -FR_05 = f44 - -FR_Rq2 = f45 -FR_Rq3 = f46 -FR_Rq4 = f47 -FR_Rq5 = f48 -FR_Rq6 = f49 -FR_Rq7 = f50 -FR_RqLin = f51 - -FR_InvAn = f52 - -FR_C01 = f53 -FR_A15 = f53 -FR_C11 = f54 -FR_A14 = f54 -FR_C21 = f55 -FR_A13 = f55 -FR_C31 = f56 -FR_A12 = f56 -FR_C41 = f57 -FR_A11 = f57 -FR_C51 = f58 -FR_A10 = f58 -FR_C61 = f59 -FR_A9 = f59 -FR_C71 = f60 -FR_A8 = f60 -FR_C81 = f61 -FR_A7 = f61 -FR_C91 = f62 -FR_A6 = f62 -FR_CA1 = f63 -FR_A5 = f63 -FR_C00 = f64 -FR_A4 = f64 -FR_rs2 = f64 -FR_C10 = f65 -FR_A3 = f65 -FR_rs3 = f65 -FR_C20 = f66 -FR_A2 = f66 -FR_rs4 = f66 -FR_C30 = f67 -FR_A1 = f67 -FR_rs7 = f67 -FR_C40 = f68 -FR_A0 = f68 -FR_rs8 = f68 -FR_C50 = f69 -FR_r2 = f69 -FR_C60 = f70 -FR_r3 = f70 -FR_C70 = f71 -FR_r4 = f71 -FR_C80 = f72 -FR_r7 = f72 -FR_C90 = f73 -FR_r8 = f73 -FR_CA0 = f74 -FR_An = f75 - -FR_S21 = f76 -FR_S19 = f77 -FR_Rcp0 = f77 -FR_Rcp2 = f77 -FR_S17 = f78 -FR_S15 = f79 -FR_S13 = f80 -FR_S11 = f81 -FR_S9 = f82 -FR_S7 = f83 -FR_S5 = f84 -FR_S3 = f85 - -FR_iXt = f86 -FR_rs = f87 - - -// Data tables -//============================================================== -RODATA -.align 16 - -LOCAL_OBJECT_START(tgamma_data) -data8 0x406573FAE561F648 // overflow boundary (171.624376956302739927196) -data8 0x3FDD8B618D5AF8FE // point of local minium (0.461632144968362356785) -// -//[2; 3] -data8 0xEF0E85C9AE40ABE2,0x00004000 // C01 -data8 0xCA2049DDB4096DD8,0x00004000 // C11 -data8 0x99A203B4DC2D1A8C,0x00004000 // C21 -data8 0xBF5D9D9C0C295570,0x00003FFF // C31 -data8 0xE8DD037DEB833BAB,0x00003FFD // C41 -data8 0xB6AE39A2A36AA03A,0x0000BFFE // C51 -data8 0x804960DC2850277B,0x0000C000 // C61 -data8 0xD9F3973841C09F80,0x0000C000 // C71 -data8 0x9C198A676F8A2239,0x0000C001 // C81 -data8 0xC98B7DAE02BE3226,0x0000C001 // C91 -data8 0xE9CAF31AC69301BA,0x0000C001 // CA1 -data8 0xFBBDD58608A0D172,0x00004000 // C00 -data8 0xFDD0316D1E078301,0x00004000 // C10 -data8 0x8630B760468C15E4,0x00004001 // C20 -data8 0x93EDE20E47D9152E,0x00004001 // C30 -data8 0xA86F3A38C77D6B19,0x00004001 // C40 -//[16; 17] -data8 0xF87F757F365EE813,0x00004000 // C01 -data8 0xECA84FBA92759DA4,0x00004000 // C11 -data8 0xD4E0A55E07A8E913,0x00004000 // C21 -data8 0xB0EB45E94C8A5F7B,0x00004000 // C31 -data8 0x8050D6B4F7C8617D,0x00004000 // C41 -data8 0x8471B111AA691E5A,0x00003FFF // C51 -data8 0xADAF462AF96585C9,0x0000BFFC // C61 -data8 0xD327C7A587A8C32B,0x0000BFFF // C71 -data8 0xDEF5192B4CF5E0F1,0x0000C000 // C81 -data8 0xBADD64BB205AEF02,0x0000C001 // C91 -data8 0x9330A24AA67D6860,0x0000C002 // CA1 -data8 0xF57EEAF36D8C47BE,0x00004000 // C00 -data8 0x807092E12A251B38,0x00004001 // C10 -data8 0x8C458F80DEE7ED1C,0x00004001 // C20 -data8 0x9F30C731DC77F1A6,0x00004001 // C30 -data8 0xBAC4E7E099C3A373,0x00004001 // C40 -//[32; 33] -data8 0xC3059A415F142DEF,0x00004000 // C01 -data8 0xB9C1DAC24664587A,0x00004000 // C11 -data8 0xA7101D910992FFB2,0x00004000 // C21 -data8 0x8A9522B8E4AA0AB4,0x00004000 // C31 -data8 0xC76A271E4BA95DCC,0x00003FFF // C41 -data8 0xC5D6DE2A38DB7FF2,0x00003FFE // C51 -data8 0xDBA42086997818B2,0x0000BFFC // C61 -data8 0xB8EDDB1424C1C996,0x0000BFFF // C71 -data8 0xBF7372FB45524B5D,0x0000C000 // C81 -data8 0xA03DDE759131580A,0x0000C001 // C91 -data8 0xFDA6FC4022C1FFE3,0x0000C001 // CA1 -data8 0x9759ABF797B2533D,0x00004000 // C00 -data8 0x9FA160C6CF18CEC5,0x00004000 // C10 -data8 0xB0EFF1E3530E0FCD,0x00004000 // C20 -data8 0xCCD60D5C470165D1,0x00004000 // C30 -data8 0xF5E53F6307B0B1C1,0x00004000 // C40 -//[48; 49] -data8 0xAABE577FBCE37F5E,0x00004000 // C01 -data8 0xA274CAEEB5DF7172,0x00004000 // C11 -data8 0x91B90B6646C1B924,0x00004000 // C21 -data8 0xF06718519CA256D9,0x00003FFF // C31 -data8 0xAA9EE181C0E30263,0x00003FFF // C41 -data8 0xA07BDB5325CB28D2,0x00003FFE // C51 -data8 0x86C8B873204F9219,0x0000BFFD // C61 -data8 0xB0192C5D3E4787D6,0x0000BFFF // C71 -data8 0xB1E0A6263D4C19EF,0x0000C000 // C81 -data8 0x93BA32A118EAC9AE,0x0000C001 // C91 -data8 0xE942A39CD9BEE887,0x0000C001 // CA1 -data8 0xE838B0957B0D3D0D,0x00003FFF // C00 -data8 0xF60E0F00074FCF34,0x00003FFF // C10 -data8 0x89869936AE00C2A5,0x00004000 // C20 -data8 0xA0FE4E8AA611207F,0x00004000 // C30 -data8 0xC3B1229CFF1DDAFE,0x00004000 // C40 -//[64; 65] -data8 0x9C00DDF75CDC6183,0x00004000 // C01 -data8 0x9446AE9C0F6A833E,0x00004000 // C11 -data8 0x84ABC5083310B774,0x00004000 // C21 -data8 0xD9BA3A0977B1ED83,0x00003FFF // C31 -data8 0x989B18C99411D300,0x00003FFF // C41 -data8 0x886E66402318CE6F,0x00003FFE // C51 -data8 0x99028C2468F18F38,0x0000BFFD // C61 -data8 0xAB72D17DCD40CCE1,0x0000BFFF // C71 -data8 0xA9D9AC9BE42C2EF9,0x0000C000 // C81 -data8 0x8C11D983AA177AD2,0x0000C001 // C91 -data8 0xDC779E981C1F0F06,0x0000C001 // CA1 -data8 0xC1FD4AC85965E8D6,0x00003FFF // C00 -data8 0xCE3D2D909D389EC2,0x00003FFF // C10 -data8 0xE7F79980AD06F5D8,0x00003FFF // C20 -data8 0x88DD9F73C8680B5D,0x00004000 // C30 -data8 0xA7D6CB2CB2D46F9D,0x00004000 // C40 -//[80; 81] -data8 0x91C7FF4E993430D0,0x00004000 // C01 -data8 0x8A6E7AB83E45A7E9,0x00004000 // C11 -data8 0xF72D6382E427BEA9,0x00003FFF // C21 -data8 0xC9E2E4F9B3B23ED6,0x00003FFF // C31 -data8 0x8BEFEF56AE05D775,0x00003FFF // C41 -data8 0xEE9666AB6A185560,0x00003FFD // C51 -data8 0xA6AFAF5CEFAEE04D,0x0000BFFD // C61 -data8 0xA877EAFEF1F9C880,0x0000BFFF // C71 -data8 0xA45BD433048ECA15,0x0000C000 // C81 -data8 0x86BD1636B774CC2E,0x0000C001 // C91 -data8 0xD3721BE006E10823,0x0000C001 // CA1 -data8 0xA97EFABA91854208,0x00003FFF // C00 -data8 0xB4AF0AEBB3F97737,0x00003FFF // C10 -data8 0xCC38241936851B0B,0x00003FFF // C20 -data8 0xF282A6261006EA84,0x00003FFF // C30 -data8 0x95B8E9DB1BD45BAF,0x00004000 // C40 -//[96; 97] -data8 0x8A1FA3171B35A106,0x00004000 // C01 -data8 0x830D5B8843890F21,0x00004000 // C11 -data8 0xE98B0F1616677A23,0x00003FFF // C21 -data8 0xBDF8347F5F67D4EC,0x00003FFF // C31 -data8 0x825F15DE34EC055D,0x00003FFF // C41 -data8 0xD4846186B8AAC7BE,0x00003FFD // C51 -data8 0xB161093AB14919B1,0x0000BFFD // C61 -data8 0xA65758EEA4800EF4,0x0000BFFF // C71 -data8 0xA046B67536FA329C,0x0000C000 // C81 -data8 0x82BBEC1BCB9E9068,0x0000C001 // C91 -data8 0xCC9DE2B23BA91B0B,0x0000C001 // CA1 -data8 0x983B16148AF77F94,0x00003FFF // C00 -data8 0xA2A4D8EE90FEE5DD,0x00003FFF // C10 -data8 0xB89446FA37FF481C,0x00003FFF // C20 -data8 0xDC5572648485FB01,0x00003FFF // C30 -data8 0x88CD5D7DB976129A,0x00004000 // C40 -//[112; 113] -data8 0x8417098FD62AC5E3,0x00004000 // C01 -data8 0xFA7896486B779CBB,0x00003FFF // C11 -data8 0xDEC98B14AF5EEBD1,0x00003FFF // C21 -data8 0xB48E153C6BF0B5A3,0x00003FFF // C31 -data8 0xF597B038BC957582,0x00003FFE // C41 -data8 0xBFC6F0884A415694,0x00003FFD // C51 -data8 0xBA075A1392BDB5E5,0x0000BFFD // C61 -data8 0xA4B79E01B44C7DB4,0x0000BFFF // C71 -data8 0x9D12FA7711BFAB0F,0x0000C000 // C81 -data8 0xFF24C47C8E108AB4,0x0000C000 // C91 -data8 0xC7325EC86562606A,0x0000C001 // CA1 -data8 0x8B47DCD9E1610938,0x00003FFF // C00 -data8 0x9518B111B70F88B8,0x00003FFF // C10 -data8 0xA9CC197206F68682,0x00003FFF // C20 -data8 0xCB98294CC0D7A6A6,0x00003FFF // C30 -data8 0xFE09493EA9165181,0x00003FFF // C40 -//[128; 129] -data8 0xFE53D03442270D90,0x00003FFF // C01 -data8 0xF0F857BAEC1993E4,0x00003FFF // C11 -data8 0xD5FF6D70DBBC2FD3,0x00003FFF // C21 -data8 0xACDAA5F4988B1074,0x00003FFF // C31 -data8 0xE92E069F8AD75B54,0x00003FFE // C41 -data8 0xAEBB64645BD94234,0x00003FFD // C51 -data8 0xC13746249F39B43C,0x0000BFFD // C61 -data8 0xA36B74F5B6297A1F,0x0000BFFF // C71 -data8 0x9A77860DF180F6E5,0x0000C000 // C81 -data8 0xF9F8457D84410A0C,0x0000C000 // C91 -data8 0xC2BF44C649EB8597,0x0000C001 // CA1 -data8 0x81225E7489BCDC0E,0x00003FFF // C00 -data8 0x8A788A09CE0EED11,0x00003FFF // C10 -data8 0x9E2E6F86D1B1D89C,0x00003FFF // C20 -data8 0xBE6866B21CF6CCB5,0x00003FFF // C30 -data8 0xEE94426EC1486AAE,0x00003FFF // C40 -//[144; 145] -data8 0xF6113E09732A6497,0x00003FFF // C01 -data8 0xE900D45931B04FC8,0x00003FFF // C11 -data8 0xCE9FD58F745EBA5D,0x00003FFF // C21 -data8 0xA663A9636C864C86,0x00003FFF // C31 -data8 0xDEBF5315896CE629,0x00003FFE // C41 -data8 0xA05FEA415EBD7737,0x00003FFD // C51 -data8 0xC750F112BD9C4031,0x0000BFFD // C61 -data8 0xA2593A35C51C6F6C,0x0000BFFF // C71 -data8 0x9848E1DA7FB40C8C,0x0000C000 // C81 -data8 0xF59FEE87A5759A4B,0x0000C000 // C91 -data8 0xBF00203909E45A1D,0x0000C001 // CA1 -data8 0xF1D8E157200127E5,0x00003FFE // C00 -data8 0x81DD5397CB08D487,0x00003FFF // C10 -data8 0x94C1DC271A8B766F,0x00003FFF // C20 -data8 0xB3AFAF9B5D6EDDCF,0x00003FFF // C30 -data8 0xE1FB4C57CA81BE1E,0x00003FFF // C40 -//[160; 161] -data8 0xEEFFE5122AC72FFD,0x00003FFF // C01 -data8 0xE22F70BB52AD54B3,0x00003FFF // C11 -data8 0xC84FF021FE993EEA,0x00003FFF // C21 -data8 0xA0DA2208EB5B2752,0x00003FFF // C31 -data8 0xD5CDD2FCF8AD2DF5,0x00003FFE // C41 -data8 0x940BEC6DCD811A59,0x00003FFD // C51 -data8 0xCC954EF4FD4EBB81,0x0000BFFD // C61 -data8 0xA1712E29A8C04554,0x0000BFFF // C71 -data8 0x966B55DFB243521A,0x0000C000 // C81 -data8 0xF1E6A2B9CEDD0C4C,0x0000C000 // C91 -data8 0xBBC87BCC031012DB,0x0000C001 // CA1 -data8 0xE43974E6D2818583,0x00003FFE // C00 -data8 0xF5702A516B64C5B7,0x00003FFE // C10 -data8 0x8CEBCB1B32E19471,0x00003FFF // C20 -data8 0xAAC10F05BB77E0AF,0x00003FFF // C30 -data8 0xD776EFCAB205CC58,0x00003FFF // C40 -//[176; 177] -data8 0xE8DA614119811E5D,0x00003FFF // C01 -data8 0xDC415E0288B223D8,0x00003FFF // C11 -data8 0xC2D2243E44EC970E,0x00003FFF // C21 -data8 0x9C086664B5307BEA,0x00003FFF // C31 -data8 0xCE03D7A08B461156,0x00003FFE // C41 -data8 0x894BE3BAAAB66ADC,0x00003FFD // C51 -data8 0xD131EDD71A702D4D,0x0000BFFD // C61 -data8 0xA0A907CDDBE10898,0x0000BFFF // C71 -data8 0x94CC3CD9C765C808,0x0000C000 // C81 -data8 0xEEA85F237815FC0D,0x0000C000 // C91 -data8 0xB8FA04B023E43F91,0x0000C001 // CA1 -data8 0xD8B2C7D9FCBD7EF9,0x00003FFE // C00 -data8 0xE9566E93AAE7E38F,0x00003FFE // C10 -data8 0x8646E78AABEF0255,0x00003FFF // C20 -data8 0xA32AEDB62E304345,0x00003FFF // C30 -data8 0xCE83E40280EE7DF0,0x00003FFF // C40 -// -//[2; 3] -data8 0xC44FB47E90584083,0x00004001 // C50 -data8 0xE863EE77E1C45981,0x00004001 // C60 -data8 0x8AC15BE238B9D70E,0x00004002 // C70 -data8 0xA5D94B6592350EF4,0x00004002 // C80 -data8 0xC379DB3E20A148B3,0x00004002 // C90 -data8 0xDACA49B73974F6C9,0x00004002 // CA0 -data8 0x810E496A1AFEC895,0x00003FE1 // An -//[16; 17] -data8 0xE17C0357AAF3F817,0x00004001 // C50 -data8 0x8BA8804750FBFBFE,0x00004002 // C60 -data8 0xB18EAB3CB64BEBEE,0x00004002 // C70 -data8 0xE90AB7015AF1C28F,0x00004002 // C80 -data8 0xA0AB97CE9E259196,0x00004003 // C90 -data8 0xF5E0E0A000C2D720,0x00004003 // CA0 -data8 0xD97F0F87EC791954,0x00004005 // An -//[32; 33] -data8 0x980C293F3696040D,0x00004001 // C50 -data8 0xC0DBFFBB948A9A4E,0x00004001 // C60 -data8 0xFAB54625E9A588A2,0x00004001 // C70 -data8 0xA7E08176D6050FBF,0x00004002 // C80 -data8 0xEBAAEC4952270A9F,0x00004002 // C90 -data8 0xB7479CDAD20550FE,0x00004003 // CA0 -data8 0xAACD45931C3FF634,0x00004054 // An -//[48; 49] -data8 0xF5180F0000419AD5,0x00004000 // C50 -data8 0x9D507D07BFBB2273,0x00004001 // C60 -data8 0xCEB53F7A13A383E3,0x00004001 // C70 -data8 0x8BAFEF9E0A49128F,0x00004002 // C80 -data8 0xC58EF912D39E228C,0x00004002 // C90 -data8 0x9A88118422BA208E,0x00004003 // CA0 -data8 0xBD6C0E2477EC12CB,0x000040AC // An -//[64; 65] -data8 0xD410AC48BF7748DA,0x00004000 // C50 -data8 0x89399B90AFEBD931,0x00004001 // C60 -data8 0xB596DF8F77EB8560,0x00004001 // C70 -data8 0xF6D9445A047FB4A6,0x00004001 // C80 -data8 0xAF52F0DD65221357,0x00004002 // C90 -data8 0x8989B45BFC881989,0x00004003 // CA0 -data8 0xB7FCAE86E6E10D5A,0x0000410B // An -//[80; 81] -data8 0xBE759740E3B5AA84,0x00004000 // C50 -data8 0xF8037B1B07D27609,0x00004000 // C60 -data8 0xA4F6F6C7F0977D4F,0x00004001 // C70 -data8 0xE131960233BF02C4,0x00004001 // C80 -data8 0xA06DF43D3922BBE2,0x00004002 // C90 -data8 0xFC266AB27255A360,0x00004002 // CA0 -data8 0xD9F4B012EDAFEF2F,0x0000416F // An -//[96; 97] -data8 0xAEFC84CDA8E1EAA6,0x00004000 // C50 -data8 0xE5009110DB5F3C8A,0x00004000 // C60 -data8 0x98F5F48738E7B232,0x00004001 // C70 -data8 0xD17EE64E21FFDC6B,0x00004001 // C80 -data8 0x9596F7A7E36145CC,0x00004002 // C90 -data8 0xEB64DBE50E125CAF,0x00004002 // CA0 -data8 0xA090530D79E32D2E,0x000041D8 // An -//[112; 113] -data8 0xA33AEA22A16B2655,0x00004000 // C50 -data8 0xD682B93BD7D7945C,0x00004000 // C60 -data8 0x8FC854C6E6E30CC3,0x00004001 // C70 -data8 0xC5754D828AFFDC7A,0x00004001 // C80 -data8 0x8D41216B397139C2,0x00004002 // C90 -data8 0xDE78D746848116E5,0x00004002 // CA0 -data8 0xB8A297A2DC0630DB,0x00004244 // An -//[128; 129] -data8 0x99EB00F11D95E292,0x00004000 // C50 -data8 0xCB005CB911EB779A,0x00004000 // C60 -data8 0x8879AA2FDFF3A37A,0x00004001 // C70 -data8 0xBBDA538AD40CAC2C,0x00004001 // C80 -data8 0x8696D849D311B9DE,0x00004002 // C90 -data8 0xD41E1C041481199F,0x00004002 // CA0 -data8 0xEBA1A43D34EE61EE,0x000042B3 // An -//[144; 145] -data8 0x924F822578AA9F3D,0x00004000 // C50 -data8 0xC193FAF9D3B36960,0x00004000 // C60 -data8 0x827AE3A6B68ED0CA,0x00004001 // C70 -data8 0xB3F52A27EED23F0B,0x00004001 // C80 -data8 0x811A079FB3C94D79,0x00004002 // C90 -data8 0xCB94415470B6F8D2,0x00004002 // CA0 -data8 0x80A0260DCB3EC9AC,0x00004326 // An -//[160; 161] -data8 0x8BF24091E88B331D,0x00004000 // C50 -data8 0xB9ADE01187E65201,0x00004000 // C60 -data8 0xFAE4508F6E7625FE,0x00004000 // C70 -data8 0xAD516668AD6D7367,0x00004001 // C80 -data8 0xF8F5FF171154F637,0x00004001 // C90 -data8 0xC461321268990C82,0x00004002 // CA0 -data8 0xC3B693F344B0E6FE,0x0000439A // An -// -//[176; 177] -data8 0x868545EB42A258ED,0x00004000 // C50 -data8 0xB2EF04ACE8BA0E6E,0x00004000 // C60 -data8 0xF247D22C22E69230,0x00004000 // C70 -data8 0xA7A1AB93E3981A90,0x00004001 // C80 -data8 0xF10951733E2C697F,0x00004001 // C90 -data8 0xBE3359BFAD128322,0x00004002 // CA0 -data8 0x8000000000000000,0x00003fff -// -//[160; 161] for negatives -data8 0xA76DBD55B2E32D71,0x00003C63 // 1/An -// -// sin(pi*x)/pi -data8 0xBCBC4342112F52A2,0x00003FDE // S21 -data8 0xFAFCECB86536F655,0x0000BFE3 // S19 -data8 0x87E4C97F9CF09B92,0x00003FE9 // S17 -data8 0xEA124C68E704C5CB,0x0000BFED // S15 -data8 0x9BA38CFD59C8AA1D,0x00003FF2 // S13 -data8 0x99C0B552303D5B21,0x0000BFF6 // S11 -// -//[176; 177] for negatives -data8 0xBA5D5869211696FF,0x00003BEC // 1/An -// -// sin(pi*x)/pi -data8 0xD63402E79A853175,0x00003FF9 // S9 -data8 0xC354723906DB36BA,0x0000BFFC // S7 -data8 0xCFCE5A015E236291,0x00003FFE // S5 -data8 0xD28D3312983E9918,0x0000BFFF // S3 -// -// -// [1.0;1.25] -data8 0xA405530B067ECD3C,0x0000BFFC // A15 -data8 0xF5B5413F95E1C282,0x00003FFD // A14 -data8 0xC4DED71C782F76C8,0x0000BFFE // A13 -data8 0xECF7DDDFD27C9223,0x00003FFE // A12 -data8 0xFB73D31793068463,0x0000BFFE // A11 -data8 0xFF173B7E66FD1D61,0x00003FFE // A10 -data8 0xFFA5EF3959089E94,0x0000BFFE // A9 -data8 0xFF8153BD42E71A4F,0x00003FFE // A8 -data8 0xFEF9CAEE2CB5B533,0x0000BFFE // A7 -data8 0xFE3F02E5EDB6811E,0x00003FFE // A6 -data8 0xFB64074CED2658FB,0x0000BFFE // A5 -data8 0xFB52882A095B18A4,0x00003FFE // A4 -data8 0xE8508C7990A0DAC0,0x0000BFFE // A3 -data8 0xFD32C611D8A881D0,0x00003FFE // A2 -data8 0x93C467E37DB0C536,0x0000BFFE // A1 -data8 0x8000000000000000,0x00003FFF // A0 -// -// [1.25;1.5] -data8 0xD038092400619677,0x0000BFF7 // A15 -data8 0xEA6DE925E6EB8C8F,0x00003FF3 // A14 -data8 0xC53F83645D4597FC,0x0000BFF7 // A13 -data8 0xE366DB2FB27B7ECD,0x00003FF7 // A12 -data8 0xAC8FD5E11F6EEAD8,0x0000BFF8 // A11 -data8 0xFB14010FB3697785,0x00003FF8 // A10 -data8 0xB6F91CB5C371177B,0x0000BFF9 // A9 -data8 0x85A262C6F8FEEF71,0x00003FFA // A8 -data8 0xC038E6E3261568F9,0x0000BFFA // A7 -data8 0x8F4BDE8883232364,0x00003FFB // A6 -data8 0xBCFBBD5786537E9A,0x0000BFFB // A5 -data8 0xA4C08BAF0A559479,0x00003FFC // A4 -data8 0x85D74FA063E81476,0x0000BFFC // A3 -data8 0xDB629FB9BBDC1C4E,0x00003FFD // A2 -data8 0xF4F8FBC7C0C9D317,0x00003FC6 // A1 -data8 0xE2B6E4153A57746C,0x00003FFE // A0 -// -// [1.25;1.5] -data8 0x9533F9D3723B448C,0x0000BFF2 // A15 -data8 0xF1F75D3C561CBBAF,0x00003FF5 // A14 -data8 0xBA55A9A1FC883523,0x0000BFF8 // A13 -data8 0xB5D5E9E5104FA995,0x00003FFA // A12 -data8 0xFD84F35B70CD9AE2,0x0000BFFB // A11 -data8 0x87445235F4688CC5,0x00003FFD // A10 -data8 0xE7F236EBFB9F774E,0x0000BFFD // A9 -data8 0xA6605F2721F787CE,0x00003FFE // A8 -data8 0xCF579312AD7EAD72,0x0000BFFE // A7 -data8 0xE96254A2407A5EAC,0x00003FFE // A6 -data8 0xF41312A8572ED346,0x0000BFFE // A5 -data8 0xF9535027C1B1F795,0x00003FFE // A4 -data8 0xE7E82D0C613A8DE4,0x0000BFFE // A3 -data8 0xFD23CD9741B460B8,0x00003FFE // A2 -data8 0x93C30FD9781DBA88,0x0000BFFE // A1 -data8 0xFFFFF1781FDBEE84,0x00003FFE // A0 -LOCAL_OBJECT_END(tgamma_data) - - -//============================================================== -// Code -//============================================================== - -.section .text -GLOBAL_LIBM_ENTRY(tgamma) -{ .mfi - getf.exp GR_Sign_Exp = f8 - fma.s1 FR_1m2X = f8,f1,f8 // 2x - addl GR_ad_Data = @ltoff(tgamma_data), gp -} -{ .mfi - mov GR_ExpOf8 = 0x10002 // 8 - fcvt.fx.trunc.s1 FR_iXt = f8 // [x] - mov GR_ExpOf05 = 0xFFFE // 0.5 -};; -{ .mfi - getf.sig GR_Sig = f8 - fma.s1 FR_2 = f1,f1,f1 // 2 - mov GR_Addr_Mask1 = 0x780 -} -{ .mlx - setf.exp FR_8 = GR_ExpOf8 - movl GR_10 = 0x4024000000000000 -};; -{ .mfi - ld8 GR_ad_Data = [GR_ad_Data] - fcmp.lt.s1 p14,p15 = f8,f0 - tbit.z p12,p13 = GR_Sign_Exp,0x10 // p13 if x >= 2 -} -{ .mlx - and GR_Bit2 = 4,GR_Sign_Exp - movl GR_12 = 0x4028000000000000 -};; -{ .mfi - setf.d FR_10 = GR_10 - fma.s1 FR_r02 = f8,f1,f0 - extr.u GR_Tbl_Offs = GR_Sig,58,6 -} -{ .mfi -(p12) mov GR_Addr_Mask1 = r0 - fma.s1 FR_NormX = f8,f1,f0 - cmp.ne p8,p0 = GR_Bit2,r0 -};; -{ .mfi -(p8) shladd GR_Tbl_Offs = GR_Tbl_Offs,4,r0 - fclass.m p10,p0 = f8,0x1E7 // Test x for NaTVal, NaN, +/-0, +/-INF - tbit.nz p11,p0 = GR_Sign_Exp,1 -} -{ .mlx - add GR_Addr_Mask2 = GR_Addr_Mask1,GR_Addr_Mask1 - movl GR_14 = 0x402C000000000000 -};; -.pred.rel "mutex",p14,p15 -{ .mfi - setf.d FR_12 = GR_12 -(p14) fma.s1 FR_1m2X = f1,f1,FR_1m2X // RB=1-2|x| - tbit.nz p8,p9 = GR_Sign_Exp,0 -} -{ .mfi - ldfpd FR_OvfBound,FR_Xmin = [GR_ad_Data],16 -(p15) fms.s1 FR_1m2X = f1,f1,FR_1m2X // RB=1-2|x| -(p11) shladd GR_Tbl_Offs = GR_Tbl_Offs,2,r0 -};; -.pred.rel "mutex",p9,p8 -{ .mfi - setf.d FR_14 = GR_14 - fma.s1 FR_4 = FR_2,FR_2,f0 -(p8) and GR_Tbl_Offs = GR_Tbl_Offs, GR_Addr_Mask1 -} -{ .mfi - setf.exp FR_05 = GR_ExpOf05 - fma.s1 FR_6 = FR_2,FR_2,FR_2 -(p9) and GR_Tbl_Offs = GR_Tbl_Offs, GR_Addr_Mask2 -};; -.pred.rel "mutex",p9,p8 -{ .mfi -(p8) shladd GR_ad_Co = GR_Tbl_Offs,1,GR_ad_Data - fcvt.xf FR_Xt = FR_iXt // [x] -(p15) tbit.z.unc p11,p0 = GR_Sign_Exp,0x10 // p11 if 0 < x < 2 -} -{ .mfi -(p9) add GR_ad_Co = GR_ad_Data,GR_Tbl_Offs - fma.s1 FR_5 = FR_2,FR_2,f1 -(p15) cmp.lt.unc p7,p6 = GR_ExpOf05,GR_Sign_Exp // p7 if 0 < x < 1 -};; -{ .mfi - add GR_ad_Ce = 16,GR_ad_Co -(p11) frcpa.s1 FR_Rcp0,p0 = f1,f8 - sub GR_Tbl_Offs = GR_ad_Co,GR_ad_Data -} -{ .mfb - ldfe FR_C01 = [GR_ad_Co],32 -(p7) fms.s1 FR_r02 = FR_r02,f1,f1 - // jump if x is NaTVal, NaN, +/-0, +/-INF -(p10) br.cond.spnt tgamma_spec -};; -.pred.rel "mutex",p14,p15 -{ .mfi - ldfe FR_C11 = [GR_ad_Ce],32 -(p14) fms.s1 FR_X2pX = f8,f8,f8 // RA=x^2+|x| - shr GR_Tbl_Ind = GR_Tbl_Offs,8 -} -{ .mfb - ldfe FR_C21 = [GR_ad_Co],32 -(p15) fma.s1 FR_X2pX = f8,f8,f8 // RA=x^2+x - // jump if 0 < x < 2 -(p11) br.cond.spnt tgamma_from_0_to_2 -};; -{ .mfi - ldfe FR_C31 = [GR_ad_Ce],32 - fma.s1 FR_Rq2 = FR_2,f1,FR_1m2X // 2 + B - cmp.ltu p7,p0=0xB,GR_Tbl_Ind -} -{ .mfb - ldfe FR_C41 = [GR_ad_Co],32 - fma.s1 FR_Rq3 = FR_2,FR_2,FR_1m2X // 4 + B - // jump if GR_Tbl_Ind > 11, i.e |x| is more than 192 -(p7) br.cond.spnt tgamma_spec_res -};; -{ .mfi - ldfe FR_C51 = [GR_ad_Ce],32 - fma.s1 FR_Rq4 = FR_6,f1,FR_1m2X // 6 + B - shr GR_Tbl_Offs = GR_Tbl_Offs,1 -} -{ .mfi - ldfe FR_C61 = [GR_ad_Co],32 - fma.s1 FR_Rq5 = FR_4,FR_2,FR_1m2X // 8 + B - nop.i 0 -};; -{ .mfi - ldfe FR_C71 = [GR_ad_Ce],32 -(p14) fms.s1 FR_r = FR_Xt,f1,f8 // r = |x| - [|x|] - shr GR_Tbl_16xInd = GR_Tbl_Offs,3 -} -{ .mfi - ldfe FR_C81 = [GR_ad_Co],32 -(p15) fms.s1 FR_r = f8,f1,FR_Xt // r = x - [x] - add GR_ad_Data = 0xC00,GR_ad_Data -};; -{ .mfi - ldfe FR_C91 = [GR_ad_Ce],32 - fma.s1 FR_Rq6 = FR_5,FR_2,FR_1m2X // 10 + B -(p14) mov GR_0x30033 = 0x30033 -} -{ .mfi - ldfe FR_CA1 = [GR_ad_Co],32 - fma.s1 FR_Rq7 = FR_6,FR_2,FR_1m2X // 12 + B - sub GR_Tbl_Offs = GR_Tbl_Offs,GR_Tbl_16xInd -};; -{ .mfi - ldfe FR_C00 = [GR_ad_Ce],32 - fma.s1 FR_Rq1 = FR_Rq1,FR_2,FR_X2pX // (x-1)*(x-2) -(p13) cmp.eq.unc p8,p0 = r0,GR_Tbl_16xInd // index is 0 i.e. arg from [2;16) -} -{ .mfi - ldfe FR_C10 = [GR_ad_Co],32 -(p14) fms.s1 FR_AbsX = f0,f0,FR_NormX // absolute value of argument - add GR_ad_Co7 = GR_ad_Data,GR_Tbl_Offs -};; -{ .mfi - ldfe FR_C20 = [GR_ad_Ce],32 - fma.s1 FR_Rq2 = FR_Rq2,FR_4,FR_X2pX // (x-3)*(x-4) - add GR_ad_Ce7 = 16,GR_ad_Co7 -} -{ .mfi - ldfe FR_C30 = [GR_ad_Co],32 - fma.s1 FR_Rq3 = FR_Rq3,FR_6,FR_X2pX // (x-5)*(x-6) - nop.i 0 -};; -{ .mfi - ldfe FR_C40 = [GR_ad_Ce],32 - fma.s1 FR_Rq4 = FR_Rq4,FR_8,FR_X2pX // (x-7)*(x-8) -(p14) cmp.leu.unc p7,p0 = GR_0x30033,GR_Sign_Exp -} -{ .mfb - ldfe FR_C50 = [GR_ad_Co7],32 - fma.s1 FR_Rq5 = FR_Rq5,FR_10,FR_X2pX // (x-9)*(x-10) - // jump if x is less or equal to -2^52, i.e. x is big negative integer -(p7) br.cond.spnt tgamma_singularity -};; -{ .mfi - ldfe FR_C60 = [GR_ad_Ce7],32 - fma.s1 FR_C01 = FR_C01,f1,FR_r - add GR_ad_Ce = 0x560,GR_ad_Data -} -{ .mfi - ldfe FR_C70 = [GR_ad_Co7],32 - fma.s1 FR_rs = f0,f0,FR_r // reduced arg for sin(pi*x) - add GR_ad_Co = 0x550,GR_ad_Data -};; -{ .mfi - ldfe FR_C80 = [GR_ad_Ce7],32 - fma.s1 FR_C11 = FR_C11,f1,FR_r - nop.i 0 -} -{ .mfi - ldfe FR_C90 = [GR_ad_Co7],32 - fma.s1 FR_C21 = FR_C21,f1,FR_r - nop.i 0 -};; -.pred.rel "mutex",p12,p13 -{ .mfi -(p13) getf.sig GR_iSig = FR_iXt - fcmp.lt.s1 p11,p0 = FR_05,FR_r - mov GR_185 = 185 -} -{ .mfi - nop.m 0 - fma.s1 FR_Rq6 = FR_Rq6,FR_12,FR_X2pX // (x-11)*(x-12) - nop.i 0 -};; -{ .mfi - ldfe FR_CA0 = [GR_ad_Ce7],32 - fma.s1 FR_C31 = FR_C31,f1,FR_r -(p12) mov GR_iSig = 0 -} -{ .mfi - ldfe FR_An = [GR_ad_Co7],0x80 - fma.s1 FR_C41 = FR_C41,f1,FR_r - nop.i 0 -};; -{ .mfi -(p14) getf.sig GR_Sig = FR_r - fma.s1 FR_C51 = FR_C51,f1,FR_r -(p14) sub GR_iSig = r0,GR_iSig -} -{ .mfi - ldfe FR_S21 = [GR_ad_Co],32 - fma.s1 FR_C61 = FR_C61,f1,FR_r - nop.i 0 -};; -{ .mfi - ldfe FR_S19 = [GR_ad_Ce],32 - fma.s1 FR_C71 = FR_C71,f1,FR_r - and GR_SigRqLin = 0xF,GR_iSig -} -{ .mfi - ldfe FR_S17 = [GR_ad_Co],32 - fma.s1 FR_C81 = FR_C81,f1,FR_r - mov GR_2 = 2 -};; -{ .mfi -(p14) ldfe FR_InvAn = [GR_ad_Co7] - fma.s1 FR_C91 = FR_C91,f1,FR_r - // if significand of r is 0 tnan argument is negative integer -(p14) cmp.eq.unc p12,p0 = r0,GR_Sig -} -{ .mfb -(p8) sub GR_SigRqLin = GR_SigRqLin,GR_2 // subtract 2 if 2 <= x < 16 - fma.s1 FR_CA1 = FR_CA1,f1,FR_r - // jump if x is negative integer such that -2^52 < x < -185 -(p12) br.cond.spnt tgamma_singularity -};; -{ .mfi - setf.sig FR_Xt = GR_SigRqLin -(p11) fms.s1 FR_rs = f1,f1,FR_r -(p14) cmp.ltu.unc p7,p0 = GR_185,GR_iSig -} -{ .mfb - ldfe FR_S15 = [GR_ad_Ce],32 - fma.s1 FR_Rq7 = FR_Rq7,FR_14,FR_X2pX // (x-13)*(x-14) - // jump if x is noninteger such that -2^52 < x < -185 -(p7) br.cond.spnt tgamma_underflow -};; -{ .mfi - ldfe FR_S13 = [GR_ad_Co],48 - fma.s1 FR_C01 = FR_C01,FR_r,FR_C00 - and GR_Sig2 = 0xE,GR_SigRqLin -} -{ .mfi - ldfe FR_S11 = [GR_ad_Ce],48 - fma.s1 FR_C11 = FR_C11,FR_r,FR_C10 - nop.i 0 -};; -{ .mfi - ldfe FR_S9 = [GR_ad_Co],32 - fma.s1 FR_C21 = FR_C21,FR_r,FR_C20 - // should we mul by polynomial of recursion? - cmp.eq p13,p12 = r0,GR_SigRqLin -} -{ .mfi - ldfe FR_S7 = [GR_ad_Ce],32 - fma.s1 FR_C31 = FR_C31,FR_r,FR_C30 - nop.i 0 -};; -{ .mfi - ldfe FR_S5 = [GR_ad_Co],32 - fma.s1 FR_C41 = FR_C41,FR_r,FR_C40 - nop.i 0 -} -{ .mfi - ldfe FR_S3 = [GR_ad_Ce],32 - fma.s1 FR_C51 = FR_C51,FR_r,FR_C50 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_C61 = FR_C61,FR_r,FR_C60 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_C71 = FR_C71,FR_r,FR_C70 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_C81 = FR_C81,FR_r,FR_C80 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_C91 = FR_C91,FR_r,FR_C90 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_CA1 = FR_CA1,FR_r,FR_CA0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_C01 = FR_C01,FR_C11,f0 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_C21 = FR_C21,FR_C31,f0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_rs2 = FR_rs,FR_rs,f0 -(p12) cmp.lt.unc p7,p0 = 2,GR_Sig2 // should mul by FR_Rq2? -};; -{ .mfi - nop.m 0 - fma.s1 FR_C41 = FR_C41,FR_C51,f0 - nop.i 0 -} -{ .mfi - nop.m 0 -(p7) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq2,f0 -(p12) cmp.lt.unc p9,p0 = 6,GR_Sig2 // should mul by FR_Rq4? -};; -{ .mfi - nop.m 0 - fma.s1 FR_C61 = FR_C61,FR_C71,f0 -(p15) cmp.eq p11,p0 = r0,r0 -} -{ .mfi - nop.m 0 -(p9) fma.s1 FR_Rq3 = FR_Rq3,FR_Rq4,f0 -(p12) cmp.lt.unc p8,p0 = 10,GR_Sig2 // should mul by FR_Rq6? -};; -{ .mfi - nop.m 0 - fma.s1 FR_C81 = FR_C81,FR_C91,f0 - nop.i 0 -} -{ .mfi - nop.m 0 -(p8) fma.s1 FR_Rq5 = FR_Rq5,FR_Rq6,f0 -(p14) cmp.ltu p0,p11 = 0x9,GR_Tbl_Ind -};; -{ .mfi - nop.m 0 - fcvt.xf FR_RqLin = FR_Xt - nop.i 0 -} -{ .mfi - nop.m 0 -(p11) fma.s1 FR_CA1 = FR_CA1,FR_An,f0 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_S21 = FR_S21,FR_rs2,FR_S19 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_S17 = FR_S17,FR_rs2,FR_S15 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_C01 = FR_C01,FR_C21,f0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_rs4 = FR_rs2,FR_rs2,f0 -(p12) cmp.lt.unc p8,p0 = 4,GR_Sig2 // should mul by FR_Rq3? -};; -{ .mfi - nop.m 0 -(p8) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq3,f0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_S13 = FR_S13,FR_rs2,FR_S11 -(p12) cmp.lt.unc p9,p0 = 12,GR_Sig2 // should mul by FR_Rq7? -};; -{ .mfi - nop.m 0 - fma.s1 FR_C41 = FR_C41,FR_C61,f0 - nop.i 0 -} -{ .mfi - nop.m 0 -(p9) fma.s1 FR_Rq5 = FR_Rq5,FR_Rq7,f0 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_C81 = FR_C81,FR_CA1,f0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_S9 = FR_S9,FR_rs2,FR_S7 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_S5 = FR_S5,FR_rs2,FR_S3 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_rs3 = FR_rs2,FR_rs,f0 -(p12) tbit.nz.unc p6,p0 = GR_SigRqLin,0 -} -{ .mfi - nop.m 0 - fma.s1 FR_rs8 = FR_rs4,FR_rs4,f0 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_S21 = FR_S21,FR_rs4,FR_S17 - mov GR_ExpOf1 = 0x2FFFF -} -{ .mfi - nop.m 0 -(p6) fms.s1 FR_RqLin = FR_AbsX,f1,FR_RqLin -(p12) cmp.lt.unc p8,p0 = 8,GR_Sig2 // should mul by FR_Rq5? -};; -{ .mfi - nop.m 0 - fma.s1 FR_C01 = FR_C01,FR_C41,f0 - nop.i 0 -} -{ .mfi - nop.m 0 -(p8) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq5,f0 -(p14) cmp.gtu.unc p7,p0 = GR_Sign_Exp,GR_ExpOf1 -};; -{ .mfi - nop.m 0 - fma.s1 FR_S13 = FR_S13,FR_rs4,FR_S9 - nop.i 0 -} -{ .mfi - nop.m 0 -(p7) fma.s1 FR_C81 = FR_C81,FR_AbsX,f0 - nop.i 0 -};; -{ .mfi - nop.m 0 -(p14) fma.s1 FR_AbsXp1 = f1,f1,FR_AbsX // |x|+1 - nop.i 0 -} -{ .mfi - nop.m 0 -(p15) fcmp.lt.unc.s1 p0,p10 = FR_AbsX,FR_OvfBound // x >= overflow_boundary - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_rs7 = FR_rs4,FR_rs3,f0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_S5 = FR_S5,FR_rs3,FR_rs - nop.i 0 -};; -{ .mib -(p14) cmp.lt p13,p0 = r0,r0 // set p13 to 0 if x < 0 -(p12) cmp.eq.unc p8,p9 = 1,GR_SigRqLin -(p10) br.cond.spnt tgamma_spec_res -};; -{ .mfi - getf.sig GR_Sig = FR_iXt -(p6) fma.s1 FR_Rq1 = FR_Rq1,FR_RqLin,f0 - // should we mul by polynomial of recursion? -(p15) cmp.eq.unc p0,p11 = r0,GR_SigRqLin -} -{ .mfb - nop.m 0 - fma.s1 FR_GAMMA = FR_C01,FR_C81,f0 -(p11) br.cond.spnt tgamma_positives -};; -{ .mfi - nop.m 0 - fma.s1 FR_S21 = FR_S21,FR_rs8,FR_S13 - nop.i 0 -} -{ .mfb - nop.m 0 -(p13) fma.d.s0 f8 = FR_C01,FR_C81,f0 -(p13) br.ret.spnt b0 -};; -.pred.rel "mutex",p8,p9 -{ .mfi - nop.m 0 -(p9) fma.s1 FR_GAMMA = FR_GAMMA,FR_Rq1,f0 - tbit.z p6,p7 = GR_Sig,0 // p6 if sin<0, p7 if sin>0 -} -{ .mfi - nop.m 0 -(p8) fma.s1 FR_GAMMA = FR_GAMMA,FR_RqLin,f0 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_S21 = FR_S21,FR_rs7,FR_S5 - nop.i 0 -};; -.pred.rel "mutex",p6,p7 -{ .mfi - nop.m 0 -(p6) fnma.s1 FR_GAMMA = FR_GAMMA,FR_S21,f0 - nop.i 0 -} -{ .mfi - nop.m 0 -(p7) fma.s1 FR_GAMMA = FR_GAMMA,FR_S21,f0 - mov GR_Sig2 = 1 -};; -{ .mfi - nop.m 0 - frcpa.s1 FR_Rcp0,p0 = f1,FR_GAMMA - cmp.ltu p13,p0 = GR_Sign_Exp,GR_ExpOf1 -};; -// NR method: ineration #1 -{ .mfi -(p13) getf.exp GR_Sign_Exp = FR_AbsX - fnma.s1 FR_Rcp1 = FR_Rcp0,FR_GAMMA,f1 // t = 1 - r0*x -(p13) shl GR_Sig2 = GR_Sig2,63 -};; -{ .mfi -(p13) getf.sig GR_Sig = FR_AbsX - nop.f 0 -(p13) mov GR_NzOvfBound = 0xFBFF -};; -{ .mfi -(p13) cmp.ltu.unc p8,p0 = GR_Sign_Exp,GR_NzOvfBound // p8 <- overflow - nop.f 0 -(p13) cmp.eq.unc p9,p0 = GR_Sign_Exp,GR_NzOvfBound -};; -{ .mfb - nop.m 0 -(p13) fma.d.s0 FR_X = f1,f1,f8 // set deno & inexact flags -(p8) br.cond.spnt tgamma_ovf_near_0 //tgamma_neg_overflow -};; -{ .mib - nop.m 0 -(p9) cmp.eq.unc p8,p0 = GR_Sig,GR_Sig2 -(p8) br.cond.spnt tgamma_ovf_near_0_boundary //tgamma_neg_overflow -};; -{ .mfi - nop.m 0 - fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0 - nop.i 0 -};; -// NR method: ineration #2 -{ .mfi - nop.m 0 - fnma.s1 FR_Rcp2 = FR_Rcp1,FR_GAMMA,f1 // t = 1 - r1*x - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1 - nop.i 0 -};; -// NR method: ineration #3 -{ .mfi - nop.m 0 - fnma.s1 FR_Rcp3 = FR_Rcp2,FR_GAMMA,f1 // t = 1 - r2*x - nop.i 0 -} -{ .mfi - nop.m 0 -(p13) fma.s1 FR_Rcp2 = FR_Rcp2,FR_AbsXp1,f0 -(p14) cmp.ltu p10,p11 = 0x9,GR_Tbl_Ind -};; -.pred.rel "mutex",p10,p11 -{ .mfi - nop.m 0 -(p10) fma.s1 FR_GAMMA = FR_Rcp2,FR_Rcp3,FR_Rcp2 - nop.i 0 -} -{ .mfi - nop.m 0 -(p11) fma.d.s0 f8 = FR_Rcp2,FR_Rcp3,FR_Rcp2 - nop.i 0 -};; -{ .mfb - nop.m 0 -(p10) fma.d.s0 f8 = FR_GAMMA,FR_InvAn,f0 - br.ret.sptk b0 -};; - - -// here if x >= 3 -//-------------------------------------------------------------------- -.align 32 -tgamma_positives: -.pred.rel "mutex",p8,p9 -{ .mfi - nop.m 0 -(p9) fma.d.s0 f8 = FR_GAMMA,FR_Rq1,f0 - nop.i 0 -} -{ .mfb - nop.m 0 -(p8) fma.d.s0 f8 = FR_GAMMA,FR_RqLin,f0 - br.ret.sptk b0 -};; - -// here if 0 < x < 1 -//-------------------------------------------------------------------- -.align 32 -tgamma_from_0_to_2: -{ .mfi - getf.exp GR_Sign_Exp = FR_r02 - fms.s1 FR_r = FR_r02,f1,FR_Xmin - mov GR_ExpOf025 = 0xFFFD -} -{ .mfi - add GR_ad_Co = 0x1200,GR_ad_Data -(p6) fnma.s1 FR_Rcp1 = FR_Rcp0,FR_NormX,f1 // t = 1 - r0*x -(p6) mov GR_Sig2 = 1 -};; -{ .mfi -(p6) getf.sig GR_Sig = FR_NormX - nop.f 0 -(p6) shl GR_Sig2 = GR_Sig2,63 -} -{ .mfi - add GR_ad_Ce = 0x1210,GR_ad_Data - nop.f 0 -(p6) mov GR_NzOvfBound = 0xFBFF -};; -{ .mfi - cmp.eq p8,p0 = GR_Sign_Exp,GR_ExpOf05 // r02 >= 1/2 - nop.f 0 - cmp.eq p9,p10 = GR_Sign_Exp,GR_ExpOf025 // r02 >= 1/4 -} -{ .mfi -(p6) cmp.ltu.unc p11,p0 = GR_Sign_Exp,GR_NzOvfBound // p11 <- overflow - nop.f 0 -(p6) cmp.eq.unc p12,p0 = GR_Sign_Exp,GR_NzOvfBound -};; -.pred.rel "mutex",p8,p9 -{ .mfi -(p8) add GR_ad_Co = 0x200,GR_ad_Co -(p6) fma.d.s0 FR_X = f1,f1,f8 // set deno & inexact flags -(p9) add GR_ad_Co = 0x100,GR_ad_Co -} -{ .mib -(p8) add GR_ad_Ce = 0x200,GR_ad_Ce -(p9) add GR_ad_Ce = 0x100,GR_ad_Ce -(p11) br.cond.spnt tgamma_ovf_near_0 //tgamma_spec_res -};; -{ .mfi - ldfe FR_A15 = [GR_ad_Co],32 - nop.f 0 -(p12) cmp.eq.unc p13,p0 = GR_Sig,GR_Sig2 -} -{ .mfb - ldfe FR_A14 = [GR_ad_Ce],32 - nop.f 0 -(p13) br.cond.spnt tgamma_ovf_near_0_boundary //tgamma_spec_res -};; -{ .mfi - ldfe FR_A13 = [GR_ad_Co],32 - nop.f 0 - nop.i 0 -} -{ .mfi - ldfe FR_A12 = [GR_ad_Ce],32 - nop.f 0 - nop.i 0 -};; -.pred.rel "mutex",p9,p10 -{ .mfi - ldfe FR_A11 = [GR_ad_Co],32 -(p10) fma.s1 FR_r2 = FR_r02,FR_r02,f0 - nop.i 0 -} -{ .mfi - ldfe FR_A10 = [GR_ad_Ce],32 -(p9) fma.s1 FR_r2 = FR_r,FR_r,f0 - nop.i 0 -};; -{ .mfi - ldfe FR_A9 = [GR_ad_Co],32 -(p6) fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0 - nop.i 0 -} -{ .mfi - ldfe FR_A8 = [GR_ad_Ce],32 -(p10) fma.s1 FR_r = f0,f0,FR_r02 - nop.i 0 -};; -{ .mfi - ldfe FR_A7 = [GR_ad_Co],32 - nop.f 0 - nop.i 0 -} -{ .mfi - ldfe FR_A6 = [GR_ad_Ce],32 - nop.f 0 - nop.i 0 -};; -{ .mfi - ldfe FR_A5 = [GR_ad_Co],32 - nop.f 0 - nop.i 0 -} -{ .mfi - ldfe FR_A4 = [GR_ad_Ce],32 - nop.f 0 - nop.i 0 -};; -{ .mfi - ldfe FR_A3 = [GR_ad_Co],32 - nop.f 0 - nop.i 0 -} -{ .mfi - ldfe FR_A2 = [GR_ad_Ce],32 - nop.f 0 - nop.i 0 -};; -{ .mfi - ldfe FR_A1 = [GR_ad_Co],32 - fma.s1 FR_r4 = FR_r2,FR_r2,f0 - nop.i 0 -} -{ .mfi - ldfe FR_A0 = [GR_ad_Ce],32 - nop.f 0 - nop.i 0 -};; -{ .mfi - nop.m 0 -(p6) fnma.s1 FR_Rcp2 = FR_Rcp1,FR_NormX,f1 // t = 1 - r1*x - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_A15 = FR_A15,FR_r,FR_A14 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_A11 = FR_A11,FR_r,FR_A10 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_r8 = FR_r4,FR_r4,f0 - nop.i 0 -};; -{ .mfi - nop.m 0 -(p6) fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_A7 = FR_A7,FR_r,FR_A6 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_A3 = FR_A3,FR_r,FR_A2 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_A15 = FR_A15,FR_r,FR_A13 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_A11 = FR_A11,FR_r,FR_A9 - nop.i 0 -};; -{ .mfi - nop.m 0 -(p6) fnma.s1 FR_Rcp3 = FR_Rcp2,FR_NormX,f1 // t = 1 - r1*x - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_A7 = FR_A7,FR_r,FR_A5 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_A3 = FR_A3,FR_r,FR_A1 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_A15 = FR_A15,FR_r,FR_A12 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_A11 = FR_A11,FR_r,FR_A8 - nop.i 0 -};; -{ .mfi - nop.m 0 -(p6) fma.s1 FR_Rcp3 = FR_Rcp2,FR_Rcp3,FR_Rcp2 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_A7 = FR_A7,FR_r,FR_A4 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_A3 = FR_A3,FR_r,FR_A0 - nop.i 0 -};; -{ .mfi - nop.m 0 - fma.s1 FR_A15 = FR_A15,FR_r4,FR_A11 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 FR_A7 = FR_A7,FR_r4,FR_A3 - nop.i 0 -};; -.pred.rel "mutex",p6,p7 -{ .mfi - nop.m 0 -(p6) fma.s1 FR_A15 = FR_A15,FR_r8,FR_A7 - nop.i 0 -} -{ .mfi - nop.m 0 -(p7) fma.d.s0 f8 = FR_A15,FR_r8,FR_A7 - nop.i 0 -};; -{ .mfb - nop.m 0 -(p6) fma.d.s0 f8 = FR_A15,FR_Rcp3,f0 - br.ret.sptk b0 -};; - -// overflow -//-------------------------------------------------------------------- -.align 32 -tgamma_ovf_near_0_boundary: -.pred.rel "mutex",p14,p15 -{ .mfi - mov GR_fpsr = ar.fpsr - nop.f 0 -(p15) mov r8 = 0x7ff -} -{ .mfi - nop.m 0 - nop.f 0 -(p14) mov r8 = 0xfff -};; -{ .mfi - nop.m 0 - nop.f 0 - shl r8 = r8,52 -};; -{ .mfi - sub r8 = r8,r0,1 - nop.f 0 - extr.u GR_fpsr = GR_fpsr,10,2 // rounding mode -};; -.pred.rel "mutex",p14,p15 -{ .mfi - // set p8 to 0 in case of overflow and to 1 otherwise - // for negative arg: - // no overflow if rounding mode either Z or +Inf, i.e. - // GR_fpsr > 1 -(p14) cmp.lt p8,p0 = 1,GR_fpsr - nop.f 0 - // for positive arg: - // no overflow if rounding mode either Z or -Inf, i.e. - // (GR_fpsr & 1) == 0 -(p15) tbit.z p0,p8 = GR_fpsr,0 -};; -{ .mib -(p8) setf.d f8 = r8 // set result to 0x7fefffffffffffff without - // OVERFLOW flag raising - nop.i 0 -(p8) br.ret.sptk b0 -};; -.align 32 -tgamma_ovf_near_0: -{ .mfi - mov r8 = 0x1FFFE - nop.f 0 - nop.i 0 -};; -{ .mfi - setf.exp f9 = r8 - fmerge.s FR_X = f8,f8 - mov GR_TAG = 258 // overflow -};; -.pred.rel "mutex",p14,p15 -{ .mfi - nop.m 0 -(p15) fma.d.s0 f8 = f9,f9,f0 // Set I,O and +INF result - nop.i 0 -} -{ .mfb - nop.m 0 -(p14) fnma.d.s0 f8 = f9,f9,f0 // Set I,O and -INF result - br.cond.sptk tgamma_libm_err -};; -// overflow or absolute value of x is too big -//-------------------------------------------------------------------- -.align 32 -tgamma_spec_res: -{ .mfi - mov GR_0x30033 = 0x30033 -(p14) fcmp.eq.unc.s1 p10,p11 = f8,FR_Xt -(p15) mov r8 = 0x1FFFE -};; -{ .mfi -(p15) setf.exp f9 = r8 - nop.f 0 - nop.i 0 -};; -{ .mfb -(p11) cmp.ltu.unc p7,p8 = GR_0x30033,GR_Sign_Exp - nop.f 0 -(p10) br.cond.spnt tgamma_singularity -};; -.pred.rel "mutex",p7,p8 -{ .mbb - nop.m 0 -(p7) br.cond.spnt tgamma_singularity -(p8) br.cond.spnt tgamma_underflow -};; -{ .mfi - nop.m 0 - fmerge.s FR_X = f8,f8 - mov GR_TAG = 258 // overflow -} -{ .mfb - nop.m 0 -(p15) fma.d.s0 f8 = f9,f9,f0 // Set I,O and +INF result - br.cond.sptk tgamma_libm_err -};; - -// x is negative integer or +/-0 -//-------------------------------------------------------------------- -.align 32 -tgamma_singularity: -{ .mfi - nop.m 0 - fmerge.s FR_X = f8,f8 - mov GR_TAG = 259 // negative -} -{ .mfb - nop.m 0 - frcpa.s0 f8,p0 = f0,f0 - br.cond.sptk tgamma_libm_err -};; -// x is negative noninteger with big absolute value -//-------------------------------------------------------------------- -.align 32 -tgamma_underflow: -{ .mmi - getf.sig GR_Sig = FR_iXt - mov r11 = 0x00001 - nop.i 0 -};; -{ .mfi - setf.exp f9 = r11 - nop.f 0 - nop.i 0 -};; -{ .mfi - nop.m 0 - nop.f 0 - tbit.z p6,p7 = GR_Sig,0 -};; -.pred.rel "mutex",p6,p7 -{ .mfi - nop.m 0 -(p6) fms.d.s0 f8 = f9,f9,f9 - nop.i 0 -} -{ .mfb - nop.m 0 -(p7) fma.d.s0 f8 = f9,f9,f9 - br.ret.sptk b0 -};; - -// x for natval, nan, +/-inf or +/-0 -//-------------------------------------------------------------------- -.align 32 -tgamma_spec: -{ .mfi - nop.m 0 - fclass.m p6,p0 = f8,0x1E1 // Test x for natval, nan, +inf - nop.i 0 -};; -{ .mfi - nop.m 0 - fclass.m p7,p8 = f8,0x7 // +/-0 - nop.i 0 -};; -{ .mfi - nop.m 0 - fmerge.s FR_X = f8,f8 - nop.i 0 -} -{ .mfb - nop.m 0 -(p6) fma.d.s0 f8 = f8,f1,f8 -(p6) br.ret.spnt b0 -};; -.pred.rel "mutex",p7,p8 -{ .mfi -(p7) mov GR_TAG = 259 // negative -(p7) frcpa.s0 f8,p0 = f1,f8 - nop.i 0 -} -{ .mib - nop.m 0 - nop.i 0 -(p8) br.cond.spnt tgamma_singularity -};; - -.align 32 -tgamma_libm_err: -{ .mfi - alloc r32 = ar.pfs,1,4,4,0 - nop.f 0 - mov GR_Parameter_TAG = GR_TAG -};; - -GLOBAL_LIBM_END(tgamma) - -LOCAL_LIBM_ENTRY(__libm_error_region) -.prologue -{ .mfi - add GR_Parameter_Y=-32,sp // Parameter 2 value - nop.f 0 -.save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS=ar.pfs // Save ar.pfs -} -{ .mfi -.fframe 64 - add sp=-64,sp // Create new stack - nop.f 0 - mov GR_SAVE_GP=gp // Save gp -};; -{ .mmi - stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack - add GR_Parameter_X = 16,sp // Parameter 1 address -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0=b0 // Save b0 -};; -.body -{ .mib - stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack - add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address - nop.b 0 -} -{ .mib - stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack - add GR_Parameter_Y = -16,GR_Parameter_Y - br.call.sptk b0=__libm_error_support# // Call error handling function -};; -{ .mmi - nop.m 0 - nop.m 0 - add GR_Parameter_RESULT = 48,sp -};; -{ .mmi - ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack -.restore sp - add sp = 64,sp // Restore stack pointer - mov b0 = GR_SAVE_B0 // Restore return address -};; -{ .mib - mov gp = GR_SAVE_GP // Restore gp - mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs - br.ret.sptk b0 // Return -};; - -LOCAL_LIBM_END(__libm_error_region) -.type __libm_error_support#,@function -.global __libm_error_support# - |