diff options
Diffstat (limited to 'sysdeps/ia64/fpu/s_tanl.S')
-rw-r--r-- | sysdeps/ia64/fpu/s_tanl.S | 3057 |
1 files changed, 3057 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/s_tanl.S b/sysdeps/ia64/fpu/s_tanl.S new file mode 100644 index 0000000000..d7cc3ee5ab --- /dev/null +++ b/sysdeps/ia64/fpu/s_tanl.S @@ -0,0 +1,3057 @@ +.file "tanl.s" + +// Copyright (c) 2000, 2001, Intel Corporation +// All rights reserved. +// +// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, +// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation. +// +// WARRANTY DISCLAIMER +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Intel Corporation is the author of this code, and requests that all +// problem reports or change requests be submitted to it directly at +// http://developer.intel.com/opensource. +// +// ********************************************************************* +// +// History: +// +// 2/02/2000 (hand-optimized) +// 4/04/00 Unwind support added +// 12/28/00 Fixed false invalid flags +// +// ********************************************************************* +// +// Function: tanl(x) = tangent(x), for double-extended precision x values +// +// ********************************************************************* +// +// Resources Used: +// +// Floating-Point Registers: f8 (Input and Return Value) +// f9-f15 +// f32-f112 +// +// General Purpose Registers: +// r32-r48 +// r49-r50 (Used to pass arguments to pi_by_2 reduce routine) +// +// Predicate Registers: p6-p15 +// +// ********************************************************************* +// +// IEEE Special Conditions: +// +// Denormal fault raised on denormal inputs +// Overflow exceptions do not occur +// Underflow exceptions raised when appropriate for tan +// (No specialized error handling for this routine) +// Inexact raised when appropriate by algorithm +// +// tan(SNaN) = QNaN +// tan(QNaN) = QNaN +// tan(inf) = QNaN +// tan(+/-0) = +/-0 +// +// ********************************************************************* +// +// Mathematical Description +// +// We consider the computation of FPTANL of Arg. Now, given +// +// Arg = N pi/2 + alpha, |alpha| <= pi/4, +// +// basic mathematical relationship shows that +// +// tan( Arg ) = tan( alpha ) if N is even; +// = -cot( alpha ) otherwise. +// +// The value of alpha is obtained by argument reduction and +// represented by two working precision numbers r and c where +// +// alpha = r + c accurately. +// +// The reduction method is described in a previous write up. +// The argument reduction scheme identifies 4 cases. For Cases 2 +// and 4, because |alpha| is small, tan(r+c) and -cot(r+c) can be +// computed very easily by 2 or 3 terms of the Taylor series +// expansion as follows: +// +// Case 2: +// ------- +// +// tan(r + c) = r + c + r^3/3 ...accurately +// -cot(r + c) = -1/(r+c) + r/3 ...accurately +// +// Case 4: +// ------- +// +// tan(r + c) = r + c + r^3/3 + 2r^5/15 ...accurately +// -cot(r + c) = -1/(r+c) + r/3 + r^3/45 ...accurately +// +// +// The only cases left are Cases 1 and 3 of the argument reduction +// procedure. These two cases will be merged since after the +// argument is reduced in either cases, we have the reduced argument +// represented as r + c and that the magnitude |r + c| is not small +// enough to allow the usage of a very short approximation. +// +// The greatest challenge of this task is that the second terms of +// the Taylor series for tan(r) and -cot(r) +// +// r + r^3/3 + 2 r^5/15 + ... +// +// and +// +// -1/r + r/3 + r^3/45 + ... +// +// are not very small when |r| is close to pi/4 and the rounding +// errors will be a concern if simple polynomial accumulation is +// used. When |r| < 2^(-2), however, the second terms will be small +// enough (5 bits or so of right shift) that a normal Horner +// recurrence suffices. Hence there are two cases that we consider +// in the accurate computation of tan(r) and cot(r), |r| <= pi/4. +// +// Case small_r: |r| < 2^(-2) +// -------------------------- +// +// Since Arg = N pi/4 + r + c accurately, we have +// +// tan(Arg) = tan(r+c) for N even, +// = -cot(r+c) otherwise. +// +// Here for this case, both tan(r) and -cot(r) can be approximated +// by simple polynomials: +// +// tan(r) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19 +// -cot(r) = -1/r + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13 +// +// accurately. Since |r| is relatively small, tan(r+c) and +// -cot(r+c) can be accurately approximated by replacing r with +// r+c only in the first two terms of the corresponding polynomials. +// +// Note that P1_1 (and Q1_1 for that matter) approximates 1/3 to +// almost 64 sig. bits, thus +// +// P1_1 (r+c)^3 = P1_1 r^3 + c * r^2 accurately. +// +// Hence, +// +// tan(r+c) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19 +// + c*(1 + r^2) +// +// -cot(r+c) = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13 +// + Q1_1*c +// +// +// Case normal_r: 2^(-2) <= |r| <= pi/4 +// ------------------------------------ +// +// This case is more likely than the previous one if one considers +// r to be uniformly distributed in [-pi/4 pi/4]. +// +// The required calculation is either +// +// tan(r + c) = tan(r) + correction, or +// -cot(r + c) = -cot(r) + correction. +// +// Specifically, +// +// tan(r + c) = tan(r) + c tan'(r) + O(c^2) +// = tan(r) + c sec^2(r) + O(c^2) +// = tan(r) + c SEC_sq ...accurately +// as long as SEC_sq approximates sec^2(r) +// to, say, 5 bits or so. +// +// Similarly, +// +// -cot(r + c) = -cot(r) - c cot'(r) + O(c^2) +// = -cot(r) + c csc^2(r) + O(c^2) +// = -cot(r) + c CSC_sq ...accurately +// as long as CSC_sq approximates csc^2(r) +// to, say, 5 bits or so. +// +// We therefore concentrate on accurately calculating tan(r) and +// cot(r) for a working-precision number r, |r| <= pi/4 to within +// 0.1% or so. +// +// We will employ a table-driven approach. Let +// +// r = sgn_r * 2^k * 1.b_1 b_2 ... b_5 ... b_63 +// = sgn_r * ( B + x ) +// +// where +// +// B = 2^k * 1.b_1 b_2 ... b_5 1 +// x = |r| - B +// +// Now, +// tan(B) + tan(x) +// tan( B + x ) = ------------------------ +// 1 - tan(B)*tan(x) +// +// / \ +// | tan(B) + tan(x) | + +// = tan(B) + | ------------------------ - tan(B) | +// | 1 - tan(B)*tan(x) | +// \ / +// +// sec^2(B) * tan(x) +// = tan(B) + ------------------------ +// 1 - tan(B)*tan(x) +// +// (1/[sin(B)*cos(B)]) * tan(x) +// = tan(B) + -------------------------------- +// cot(B) - tan(x) +// +// +// Clearly, the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are +// calculated beforehand and stored in a table. Since +// +// |x| <= 2^k * 2^(-6) <= 2^(-7) (because k = -1, -2) +// +// a very short polynomial will be sufficient to approximate tan(x) +// accurately. The details involved in computing the last expression +// will be given in the next section on algorithm description. +// +// +// Now, we turn to the case where cot( B + x ) is needed. +// +// +// 1 - tan(B)*tan(x) +// cot( B + x ) = ------------------------ +// tan(B) + tan(x) +// +// / \ +// | 1 - tan(B)*tan(x) | + +// = cot(B) + | ----------------------- - cot(B) | +// | tan(B) + tan(x) | +// \ / +// +// [tan(B) + cot(B)] * tan(x) +// = cot(B) - ---------------------------- +// tan(B) + tan(x) +// +// (1/[sin(B)*cos(B)]) * tan(x) +// = cot(B) - -------------------------------- +// tan(B) + tan(x) +// +// +// Note that the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) that +// are needed are the same set of values needed in the previous +// case. +// +// Finally, we can put all the ingredients together as follows: +// +// Arg = N * pi/2 + r + c ...accurately +// +// tan(Arg) = tan(r) + correction if N is even; +// = -cot(r) + correction otherwise. +// +// For Cases 2 and 4, +// +// Case 2: +// tan(Arg) = tan(r + c) = r + c + r^3/3 N even +// = -cot(r + c) = -1/(r+c) + r/3 N odd +// Case 4: +// tan(Arg) = tan(r + c) = r + c + r^3/3 + 2r^5/15 N even +// = -cot(r + c) = -1/(r+c) + r/3 + r^3/45 N odd +// +// +// For Cases 1 and 3, +// +// Case small_r: |r| < 2^(-2) +// +// tan(Arg) = r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19 +// + c*(1 + r^2) N even +// +// = -1/(r+c) + Q1_1 r + Q1_2 r^3 + ... + Q1_7 r^13 +// + Q1_1*c N odd +// +// Case normal_r: 2^(-2) <= |r| <= pi/4 +// +// tan(Arg) = tan(r) + c * sec^2(r) N even +// = -cot(r) + c * csc^2(r) otherwise +// +// For N even, +// +// tan(Arg) = tan(r) + c*sec^2(r) +// = tan( sgn_r * (B+x) ) + c * sec^2(|r|) +// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(|r|) ) +// = sgn_r * ( tan(B+x) + sgn_r*c*sec^2(B) ) +// +// since B approximates |r| to 2^(-6) in relative accuracy. +// +// / (1/[sin(B)*cos(B)]) * tan(x) +// tan(Arg) = sgn_r * | tan(B) + -------------------------------- +// \ cot(B) - tan(x) +// \ +// + CORR | + +// / +// where +// +// CORR = sgn_r*c*tan(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)). +// +// For N odd, +// +// tan(Arg) = -cot(r) + c*csc^2(r) +// = -cot( sgn_r * (B+x) ) + c * csc^2(|r|) +// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(|r|) ) +// = sgn_r * ( -cot(B+x) + sgn_r*c*csc^2(B) ) +// +// since B approximates |r| to 2^(-6) in relative accuracy. +// +// / (1/[sin(B)*cos(B)]) * tan(x) +// tan(Arg) = sgn_r * | -cot(B) + -------------------------------- +// \ tan(B) + tan(x) +// \ +// + CORR | + +// / +// where +// +// CORR = sgn_r*c*cot(B)*SC_inv(B); SC_inv(B) = 1/(sin(B)*cos(B)). +// +// +// The actual algorithm prescribes how all the mathematical formulas +// are calculated. +// +// +// 2. Algorithmic Description +// ========================== +// +// 2.1 Computation for Cases 2 and 4. +// ---------------------------------- +// +// For Case 2, we use two-term polynomials. +// +// For N even, +// +// rsq := r * r +// Result := c + r * rsq * P1_1 +// Result := r + Result ...in user-defined rounding +// +// For N odd, +// S_hi := -frcpa(r) ...8 bits +// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits +// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits +// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits +// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c ) +// ...S_hi + S_lo is -1/(r+c) to extra precision +// S_lo := S_lo + Q1_1*r +// +// Result := S_hi + S_lo ...in user-defined rounding +// +// For Case 4, we use three-term polynomials +// +// For N even, +// +// rsq := r * r +// Result := c + r * rsq * (P1_1 + rsq * P1_2) +// Result := r + Result ...in user-defined rounding +// +// For N odd, +// S_hi := -frcpa(r) ...8 bits +// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits +// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits +// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits +// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c ) +// ...S_hi + S_lo is -1/(r+c) to extra precision +// rsq := r * r +// P := Q1_1 + rsq*Q1_2 +// S_lo := S_lo + r*P +// +// Result := S_hi + S_lo ...in user-defined rounding +// +// +// Note that the coefficients P1_1, P1_2, Q1_1, and Q1_2 are +// the same as those used in the small_r case of Cases 1 and 3 +// below. +// +// +// 2.2 Computation for Cases 1 and 3. +// ---------------------------------- +// This is further divided into the case of small_r, +// where |r| < 2^(-2), and the case of normal_r, where |r| lies between +// 2^(-2) and pi/4. +// +// Algorithm for the case of small_r +// --------------------------------- +// +// For N even, +// rsq := r * r +// Poly1 := rsq*(P1_1 + rsq*(P1_2 + rsq*P1_3)) +// r_to_the_8 := rsq * rsq +// r_to_the_8 := r_to_the_8 * r_to_the_8 +// Poly2 := P1_4 + rsq*(P1_5 + rsq*(P1_6 + ... rsq*P1_9)) +// CORR := c * ( 1 + rsq ) +// Poly := Poly1 + r_to_the_8*Poly2 +// Result := r*Poly + CORR +// Result := r + Result ...in user-defined rounding +// ...note that Poly1 and r_to_the_8 can be computed in parallel +// ...with Poly2 (Poly1 is intentionally set to be much +// ...shorter than Poly2 so that r_to_the_8 and CORR can be hidden) +// +// For N odd, +// S_hi := -frcpa(r) ...8 bits +// S_hi := S_hi + S_hi*(1 + S_hi*r) ...16 bits +// S_hi := S_hi + S_hi*(1 + S_hi*r) ...32 bits +// S_hi := S_hi + S_hi*(1 + S_hi*r) ...64 bits +// S_lo := S_hi*( (1 + S_hi*r) + S_hi*c ) +// ...S_hi + S_lo is -1/(r+c) to extra precision +// S_lo := S_lo + Q1_1*c +// +// ...S_hi and S_lo are computed in parallel with +// ...the following +// rsq := r*r +// P := Q1_1 + rsq*(Q1_2 + rsq*(Q1_3 + ... + rsq*Q1_7)) +// +// Result := r*P + S_lo +// Result := S_hi + Result ...in user-defined rounding +// +// +// Algorithm for the case of normal_r +// ---------------------------------- +// +// Here, we first consider the computation of tan( r + c ). As +// presented in the previous section, +// +// tan( r + c ) = tan(r) + c * sec^2(r) +// = sgn_r * [ tan(B+x) + CORR ] +// CORR = sgn_r * c * tan(B) * 1/[sin(B)*cos(B)] +// +// because sec^2(r) = sec^(|r|), and B approximate |r| to 6.5 bits. +// +// tan( r + c ) = +// / (1/[sin(B)*cos(B)]) * tan(x) +// sgn_r * | tan(B) + -------------------------------- + +// \ cot(B) - tan(x) +// \ +// CORR | + +// / +// +// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are +// calculated beforehand and stored in a table. Specifically, +// the table values are +// +// tan(B) as T_hi + T_lo; +// cot(B) as C_hi + C_lo; +// 1/[sin(B)*cos(B)] as SC_inv +// +// T_hi, C_hi are in double-precision memory format; +// T_lo, C_lo are in single-precision memory format; +// SC_inv is in extended-precision memory format. +// +// The value of tan(x) will be approximated by a short polynomial of +// the form +// +// tan(x) as x + x * P, where +// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3)) +// +// Because |x| <= 2^(-7), cot(B) - x approximates cot(B) - tan(x) +// to a relative accuracy better than 2^(-20). Thus, a good +// initial guess of 1/( cot(B) - tan(x) ) to initiate the iterative +// division is: +// +// 1/(cot(B) - tan(x)) is approximately +// 1/(cot(B) - x) is +// tan(B)/(1 - x*tan(B)) is approximately +// T_hi / ( 1 - T_hi * x ) is approximately +// +// T_hi * [ 1 + (Thi * x) + (T_hi * x)^2 ] +// +// The calculation of tan(r+c) therefore proceed as follows: +// +// Tx := T_hi * x +// xsq := x * x +// +// V_hi := T_hi*(1 + Tx*(1 + Tx)) +// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3)) +// ...V_hi serves as an initial guess of 1/(cot(B) - tan(x)) +// ...good to about 20 bits of accuracy +// +// tanx := x + x*P +// D := C_hi - tanx +// ...D is a double precision denominator: cot(B) - tan(x) +// +// V_hi := V_hi + V_hi*(1 - V_hi*D) +// ....V_hi approximates 1/(cot(B)-tan(x)) to 40 bits +// +// V_lo := V_hi * ( [ (1 - V_hi*C_hi) + V_hi*tanx ] +// - V_hi*C_lo ) ...observe all order +// ...V_hi + V_lo approximates 1/(cot(B) - tan(x)) +// ...to extra accuracy +// +// ... SC_inv(B) * (x + x*P) +// ... tan(B) + ------------------------- + CORR +// ... cot(B) - (x + x*P) +// ... +// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR +// ... +// +// Sx := SC_inv * x +// CORR := sgn_r * c * SC_inv * T_hi +// +// ...put the ingredients together to compute +// ... SC_inv(B) * (x + x*P) +// ... tan(B) + ------------------------- + CORR +// ... cot(B) - (x + x*P) +// ... +// ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR +// ... +// ... = T_hi + T_lo + CORR + +// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo) +// +// CORR := CORR + T_lo +// tail := V_lo + P*(V_hi + V_lo) +// tail := Sx * tail + CORR +// tail := Sx * V_hi + tail +// T_hi := sgn_r * T_hi +// +// ...T_hi + sgn_r*tail now approximate +// ...sgn_r*(tan(B+x) + CORR) accurately +// +// Result := T_hi + sgn_r*tail ...in user-defined +// ...rounding control +// ...It is crucial that independent paths be fully +// ...exploited for performance's sake. +// +// +// Next, we consider the computation of -cot( r + c ). As +// presented in the previous section, +// +// -cot( r + c ) = -cot(r) + c * csc^2(r) +// = sgn_r * [ -cot(B+x) + CORR ] +// CORR = sgn_r * c * cot(B) * 1/[sin(B)*cos(B)] +// +// because csc^2(r) = csc^(|r|), and B approximate |r| to 6.5 bits. +// +// -cot( r + c ) = +// / (1/[sin(B)*cos(B)]) * tan(x) +// sgn_r * | -cot(B) + -------------------------------- + +// \ tan(B) + tan(x) +// \ +// CORR | + +// / +// +// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are +// calculated beforehand and stored in a table. Specifically, +// the table values are +// +// tan(B) as T_hi + T_lo; +// cot(B) as C_hi + C_lo; +// 1/[sin(B)*cos(B)] as SC_inv +// +// T_hi, C_hi are in double-precision memory format; +// T_lo, C_lo are in single-precision memory format; +// SC_inv is in extended-precision memory format. +// +// The value of tan(x) will be approximated by a short polynomial of +// the form +// +// tan(x) as x + x * P, where +// P = x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3)) +// +// Because |x| <= 2^(-7), tan(B) + x approximates tan(B) + tan(x) +// to a relative accuracy better than 2^(-18). Thus, a good +// initial guess of 1/( tan(B) + tan(x) ) to initiate the iterative +// division is: +// +// 1/(tan(B) + tan(x)) is approximately +// 1/(tan(B) + x) is +// cot(B)/(1 + x*cot(B)) is approximately +// C_hi / ( 1 + C_hi * x ) is approximately +// +// C_hi * [ 1 - (C_hi * x) + (C_hi * x)^2 ] +// +// The calculation of -cot(r+c) therefore proceed as follows: +// +// Cx := C_hi * x +// xsq := x * x +// +// V_hi := C_hi*(1 - Cx*(1 - Cx)) +// P := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3)) +// ...V_hi serves as an initial guess of 1/(tan(B) + tan(x)) +// ...good to about 18 bits of accuracy +// +// tanx := x + x*P +// D := T_hi + tanx +// ...D is a double precision denominator: tan(B) + tan(x) +// +// V_hi := V_hi + V_hi*(1 - V_hi*D) +// ....V_hi approximates 1/(tan(B)+tan(x)) to 40 bits +// +// V_lo := V_hi * ( [ (1 - V_hi*T_hi) - V_hi*tanx ] +// - V_hi*T_lo ) ...observe all order +// ...V_hi + V_lo approximates 1/(tan(B) + tan(x)) +// ...to extra accuracy +// +// ... SC_inv(B) * (x + x*P) +// ... -cot(B) + ------------------------- + CORR +// ... tan(B) + (x + x*P) +// ... +// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR +// ... +// +// Sx := SC_inv * x +// CORR := sgn_r * c * SC_inv * C_hi +// +// ...put the ingredients together to compute +// ... SC_inv(B) * (x + x*P) +// ... -cot(B) + ------------------------- + CORR +// ... tan(B) + (x + x*P) +// ... +// ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR +// ... +// ... =-C_hi - C_lo + CORR + +// ... Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo) +// +// CORR := CORR - C_lo +// tail := V_lo + P*(V_hi + V_lo) +// tail := Sx * tail + CORR +// tail := Sx * V_hi + tail +// C_hi := -sgn_r * C_hi +// +// ...C_hi + sgn_r*tail now approximates +// ...sgn_r*(-cot(B+x) + CORR) accurately +// +// Result := C_hi + sgn_r*tail in user-defined rounding control +// ...It is crucial that independent paths be fully +// ...exploited for performance's sake. +// +// 3. Implementation Notes +// ======================= +// +// Table entries T_hi, T_lo; C_hi, C_lo; SC_inv +// +// Recall that 2^(-2) <= |r| <= pi/4; +// +// r = sgn_r * 2^k * 1.b_1 b_2 ... b_63 +// +// and +// +// B = 2^k * 1.b_1 b_2 b_3 b_4 b_5 1 +// +// Thus, for k = -2, possible values of B are +// +// B = 2^(-2) * ( 1 + index/32 + 1/64 ), +// index ranges from 0 to 31 +// +// For k = -1, however, since |r| <= pi/4 = 0.78... +// possible values of B are +// +// B = 2^(-1) * ( 1 + index/32 + 1/64 ) +// index ranges from 0 to 19. +// +// + +#include "libm_support.h" + +#ifdef _LIBC +.rodata +#else +.data +#endif +.align 128 + +TANL_BASE_CONSTANTS: +ASM_TYPE_DIRECTIVE(TANL_BASE_CONSTANTS,@object) +data4 0x4B800000, 0xCB800000, 0x38800000, 0xB8800000 // two**24, -two**24 + // two**-14, -two**-14 +data4 0x4E44152A, 0xA2F9836E, 0x00003FFE, 0x00000000 // two_by_pi +data4 0xCE81B9F1, 0xC84D32B0, 0x00004016, 0x00000000 // P_0 +data4 0x2168C235, 0xC90FDAA2, 0x00003FFF, 0x00000000 // P_1 +data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD, 0x00000000 // P_2 +data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C, 0x00000000 // P_3 +data4 0x5F000000, 0xDF000000, 0x00000000, 0x00000000 // two_to_63, -two_to_63 +data4 0x6EC6B45A, 0xA397E504, 0x00003FE7, 0x00000000 // Inv_P_0 +data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF, 0x00000000 // d_1 +data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C, 0x00000000 // d_2 +data4 0x2168C234, 0xC90FDAA2, 0x00003FFE, 0x00000000 // PI_BY_4 +data4 0x2168C234, 0xC90FDAA2, 0x0000BFFE, 0x00000000 // MPI_BY_4 +data4 0x3E800000, 0xBE800000, 0x00000000, 0x00000000 // two**-2, -two**-2 +data4 0x2F000000, 0xAF000000, 0x00000000, 0x00000000 // two**-33, -two**-33 +data4 0xAAAAAABD, 0xAAAAAAAA, 0x00003FFD, 0x00000000 // P1_1 +data4 0x88882E6A, 0x88888888, 0x00003FFC, 0x00000000 // P1_2 +data4 0x0F0177B6, 0xDD0DD0DD, 0x00003FFA, 0x00000000 // P1_3 +data4 0x646B8C6D, 0xB327A440, 0x00003FF9, 0x00000000 // P1_4 +data4 0x1D5F7D20, 0x91371B25, 0x00003FF8, 0x00000000 // P1_5 +data4 0x61C67914, 0xEB69A5F1, 0x00003FF6, 0x00000000 // P1_6 +data4 0x019318D2, 0xBEDD37BE, 0x00003FF5, 0x00000000 // P1_7 +data4 0x3C794015, 0x9979B146, 0x00003FF4, 0x00000000 // P1_8 +data4 0x8C6EB58A, 0x8EBD21A3, 0x00003FF3, 0x00000000 // P1_9 +data4 0xAAAAAAB4, 0xAAAAAAAA, 0x00003FFD, 0x00000000 // Q1_1 +data4 0x0B5FC93E, 0xB60B60B6, 0x00003FF9, 0x00000000 // Q1_2 +data4 0x0C9BBFBF, 0x8AB355E0, 0x00003FF6, 0x00000000 // Q1_3 +data4 0xCBEE3D4C, 0xDDEBBC89, 0x00003FF2, 0x00000000 // Q1_4 +data4 0x5F80BBB6, 0xB3548A68, 0x00003FEF, 0x00000000 // Q1_5 +data4 0x4CED5BF1, 0x91362560, 0x00003FEC, 0x00000000 // Q1_6 +data4 0x8EE92A83, 0xF189D95A, 0x00003FE8, 0x00000000 // Q1_7 +data4 0xAAAB362F, 0xAAAAAAAA, 0x00003FFD, 0x00000000 // P2_1 +data4 0xE97A6097, 0x88888886, 0x00003FFC, 0x00000000 // P2_2 +data4 0x25E716A1, 0xDD108EE0, 0x00003FFA, 0x00000000 // P2_3 +// +// Entries T_hi double-precision memory format +// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64) +// Entries T_lo single-precision memory format +// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64) +// +data4 0x62400794, 0x3FD09BC3, 0x23A05C32, 0x00000000 +data4 0xDFFBC074, 0x3FD124A9, 0x240078B2, 0x00000000 +data4 0x5BD4920F, 0x3FD1AE23, 0x23826B8E, 0x00000000 +data4 0x15E2701D, 0x3FD23835, 0x22D31154, 0x00000000 +data4 0x63739C2D, 0x3FD2C2E4, 0x2265C9E2, 0x00000000 +data4 0xAFEEA48B, 0x3FD34E36, 0x245C05EB, 0x00000000 +data4 0x7DBB35D1, 0x3FD3DA31, 0x24749F2D, 0x00000000 +data4 0x67321619, 0x3FD466DA, 0x2462CECE, 0x00000000 +data4 0x1F94A4D5, 0x3FD4F437, 0x246D0DF1, 0x00000000 +data4 0x740C3E6D, 0x3FD5824D, 0x240A85B5, 0x00000000 +data4 0x4CB1E73D, 0x3FD61123, 0x23F96E33, 0x00000000 +data4 0xAD9EA64B, 0x3FD6A0BE, 0x247C5393, 0x00000000 +data4 0xB804FD01, 0x3FD73125, 0x241F3B29, 0x00000000 +data4 0xAB53EE83, 0x3FD7C25E, 0x2479989B, 0x00000000 +data4 0xE6640EED, 0x3FD8546F, 0x23B343BC, 0x00000000 +data4 0xE8AF1892, 0x3FD8E75F, 0x241454D1, 0x00000000 +data4 0x53928BDA, 0x3FD97B35, 0x238613D9, 0x00000000 +data4 0xEB9DE4DE, 0x3FDA0FF6, 0x22859FA7, 0x00000000 +data4 0x99ECF92D, 0x3FDAA5AB, 0x237A6D06, 0x00000000 +data4 0x6D8F1796, 0x3FDB3C5A, 0x23952F6C, 0x00000000 +data4 0x9CFB8BE4, 0x3FDBD40A, 0x2280FC95, 0x00000000 +data4 0x87943100, 0x3FDC6CC3, 0x245D2EC0, 0x00000000 +data4 0xB736C500, 0x3FDD068C, 0x23C4AD7D, 0x00000000 +data4 0xE1DDBC31, 0x3FDDA16D, 0x23D076E6, 0x00000000 +data4 0xEB515A93, 0x3FDE3D6E, 0x244809A6, 0x00000000 +data4 0xE6E9E5F1, 0x3FDEDA97, 0x220856C8, 0x00000000 +data4 0x1963CE69, 0x3FDF78F1, 0x244BE993, 0x00000000 +data4 0x7D635BCE, 0x3FE00C41, 0x23D21799, 0x00000000 +data4 0x1C302CD3, 0x3FE05CAB, 0x248A1B1D, 0x00000000 +data4 0xDB6A1FA0, 0x3FE0ADB9, 0x23D53E33, 0x00000000 +data4 0x4A20BA81, 0x3FE0FF72, 0x24DB9ED5, 0x00000000 +data4 0x153FA6F5, 0x3FE151D9, 0x24E9E451, 0x00000000 +// +// Entries T_hi double-precision memory format +// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64) +// Entries T_lo single-precision memory format +// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64) +// +data4 0xBA1BE39E, 0x3FE1CEC4, 0x24B60F9E, 0x00000000 +data4 0x5ABD9B2D, 0x3FE277E4, 0x248C2474, 0x00000000 +data4 0x0272B110, 0x3FE32418, 0x247B8311, 0x00000000 +data4 0x890E2DF0, 0x3FE3D38B, 0x24C55751, 0x00000000 +data4 0x46236871, 0x3FE4866D, 0x24E5BC34, 0x00000000 +data4 0x45E044B0, 0x3FE53CEE, 0x24001BA4, 0x00000000 +data4 0x82EC06E4, 0x3FE5F742, 0x24B973DC, 0x00000000 +data4 0x25DF43F9, 0x3FE6B5A1, 0x24895440, 0x00000000 +data4 0xCAFD348C, 0x3FE77844, 0x240021CA, 0x00000000 +data4 0xCEED6B92, 0x3FE83F6B, 0x24C45372, 0x00000000 +data4 0xA34F3665, 0x3FE90B58, 0x240DAD33, 0x00000000 +data4 0x2C1E56B4, 0x3FE9DC52, 0x24F846CE, 0x00000000 +data4 0x27041578, 0x3FEAB2A4, 0x2323FB6E, 0x00000000 +data4 0x9DD8C373, 0x3FEB8E9F, 0x24B3090B, 0x00000000 +data4 0x65C9AA7B, 0x3FEC709B, 0x2449F611, 0x00000000 +data4 0xACCF8435, 0x3FED58F4, 0x23616A7E, 0x00000000 +data4 0x97635082, 0x3FEE480F, 0x24C2FEAE, 0x00000000 +data4 0xF0ACC544, 0x3FEF3E57, 0x242CE964, 0x00000000 +data4 0xF7E06E4B, 0x3FF01E20, 0x2480D3EE, 0x00000000 +data4 0x8A798A69, 0x3FF0A125, 0x24DB8967, 0x00000000 +// +// Entries C_hi double-precision memory format +// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64) +// Entries C_lo single-precision memory format +// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64) +// +data4 0xE63EFBD0, 0x400ED3E2, 0x259D94D4, 0x00000000 +data4 0xC515DAB5, 0x400DDDB4, 0x245F0537, 0x00000000 +data4 0xBE19A79F, 0x400CF57A, 0x25D4EA9F, 0x00000000 +data4 0xD15298ED, 0x400C1A06, 0x24AE40A0, 0x00000000 +data4 0x164B2708, 0x400B4A4C, 0x25A5AAB6, 0x00000000 +data4 0x5285B068, 0x400A855A, 0x25524F18, 0x00000000 +data4 0x3FFA549F, 0x4009CA5A, 0x24C999C0, 0x00000000 +data4 0x646AF623, 0x4009188A, 0x254FD801, 0x00000000 +data4 0x6084D0E7, 0x40086F3C, 0x2560F5FD, 0x00000000 +data4 0xA29A76EE, 0x4007CDD2, 0x255B9D19, 0x00000000 +data4 0x6C8ECA95, 0x400733BE, 0x25CB021B, 0x00000000 +data4 0x1F8DDC52, 0x4006A07E, 0x24AB4722, 0x00000000 +data4 0xC298AD58, 0x4006139B, 0x252764E2, 0x00000000 +data4 0xBAD7164B, 0x40058CAB, 0x24DAF5DB, 0x00000000 +data4 0xAE31A5D3, 0x40050B4B, 0x25EA20F4, 0x00000000 +data4 0x89F85A8A, 0x40048F21, 0x2583A3E8, 0x00000000 +data4 0xA862380D, 0x400417DA, 0x25DCC4CC, 0x00000000 +data4 0x1088FCFE, 0x4003A52B, 0x2430A492, 0x00000000 +data4 0xCD3527D5, 0x400336CC, 0x255F77CF, 0x00000000 +data4 0x5760766D, 0x4002CC7F, 0x25DA0BDA, 0x00000000 +data4 0x11CE02E3, 0x40026607, 0x256FF4A2, 0x00000000 +data4 0xD37BBE04, 0x4002032C, 0x25208AED, 0x00000000 +data4 0x7F050775, 0x4001A3BD, 0x24B72DD6, 0x00000000 +data4 0xA554848A, 0x40014789, 0x24AB4DAA, 0x00000000 +data4 0x323E81B7, 0x4000EE65, 0x2584C440, 0x00000000 +data4 0x21CF1293, 0x40009827, 0x25C9428D, 0x00000000 +data4 0x3D415EEB, 0x400044A9, 0x25DC8482, 0x00000000 +data4 0xBD72C577, 0x3FFFE78F, 0x257F5070, 0x00000000 +data4 0x75EFD28E, 0x3FFF4AC3, 0x23EBBF7A, 0x00000000 +data4 0x60B52DDE, 0x3FFEB2AF, 0x22EECA07, 0x00000000 +data4 0x35204180, 0x3FFE1F19, 0x24191079, 0x00000000 +data4 0x54F7E60A, 0x3FFD8FCA, 0x248D3058, 0x00000000 +// +// Entries C_hi double-precision memory format +// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64) +// Entries C_lo single-precision memory format +// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64) +// +data4 0x79F6FADE, 0x3FFCC06A, 0x239C7886, 0x00000000 +data4 0x891662A6, 0x3FFBB91F, 0x250BD191, 0x00000000 +data4 0x529F155D, 0x3FFABFB6, 0x256CC3E6, 0x00000000 +data4 0x2E964AE9, 0x3FF9D300, 0x250843E3, 0x00000000 +data4 0x89DCB383, 0x3FF8F1EF, 0x2277C87E, 0x00000000 +data4 0x7C87DBD6, 0x3FF81B93, 0x256DA6CF, 0x00000000 +data4 0x1042EDE4, 0x3FF74F14, 0x2573D28A, 0x00000000 +data4 0x1784B360, 0x3FF68BAF, 0x242E489A, 0x00000000 +data4 0x7C923C4C, 0x3FF5D0B5, 0x2532D940, 0x00000000 +data4 0xF418EF20, 0x3FF51D88, 0x253C7DD6, 0x00000000 +data4 0x02F88DAE, 0x3FF4719A, 0x23DB59BF, 0x00000000 +data4 0x49DA0788, 0x3FF3CC66, 0x252B4756, 0x00000000 +data4 0x0B980DB8, 0x3FF32D77, 0x23FE585F, 0x00000000 +data4 0xE56C987A, 0x3FF2945F, 0x25378A63, 0x00000000 +data4 0xB16523F6, 0x3FF200BD, 0x247BB2E0, 0x00000000 +data4 0x8CE27778, 0x3FF17235, 0x24446538, 0x00000000 +data4 0xFDEFE692, 0x3FF0E873, 0x2514638F, 0x00000000 +data4 0x33154062, 0x3FF0632C, 0x24A7FC27, 0x00000000 +data4 0xB3EF115F, 0x3FEFC42E, 0x248FD0FE, 0x00000000 +data4 0x135D26F6, 0x3FEEC9E8, 0x2385C719, 0x00000000 +// +// Entries SC_inv in Swapped IEEE format (extended) +// Index = 0,1,...,31 B = 2^(-2)*(1+Index/32+1/64) +// +data4 0x1BF30C9E, 0x839D6D4A, 0x00004001, 0x00000000 +data4 0x554B0EB0, 0x80092804, 0x00004001, 0x00000000 +data4 0xA1CF0DE9, 0xF959F94C, 0x00004000, 0x00000000 +data4 0x77378677, 0xF3086BA0, 0x00004000, 0x00000000 +data4 0xCCD4723C, 0xED154515, 0x00004000, 0x00000000 +data4 0x1C27CF25, 0xE7790944, 0x00004000, 0x00000000 +data4 0x8DDACB88, 0xE22D037D, 0x00004000, 0x00000000 +data4 0x89C73522, 0xDD2B2D8A, 0x00004000, 0x00000000 +data4 0xBB2C1171, 0xD86E1A23, 0x00004000, 0x00000000 +data4 0xDFF5E0F9, 0xD3F0E288, 0x00004000, 0x00000000 +data4 0x283BEBD5, 0xCFAF16B1, 0x00004000, 0x00000000 +data4 0x0D88DD53, 0xCBA4AFAA, 0x00004000, 0x00000000 +data4 0xCA67C43D, 0xC7CE03CC, 0x00004000, 0x00000000 +data4 0x0CA0DDB0, 0xC427BC82, 0x00004000, 0x00000000 +data4 0xF13D8CAB, 0xC0AECD57, 0x00004000, 0x00000000 +data4 0x71ECE6B1, 0xBD606C38, 0x00004000, 0x00000000 +data4 0xA44C4929, 0xBA3A0A96, 0x00004000, 0x00000000 +data4 0xE5CCCEC1, 0xB7394F6F, 0x00004000, 0x00000000 +data4 0x9637D8BC, 0xB45C1203, 0x00004000, 0x00000000 +data4 0x92CB051B, 0xB1A05528, 0x00004000, 0x00000000 +data4 0x6BA2FFD0, 0xAF04432B, 0x00004000, 0x00000000 +data4 0x7221235F, 0xAC862A23, 0x00004000, 0x00000000 +data4 0x5F00A9D1, 0xAA2478AF, 0x00004000, 0x00000000 +data4 0x81E082BF, 0xA7DDBB0C, 0x00004000, 0x00000000 +data4 0x45684FEE, 0xA5B0987D, 0x00004000, 0x00000000 +data4 0x627A8F53, 0xA39BD0F5, 0x00004000, 0x00000000 +data4 0x6EC5C8B0, 0xA19E3B03, 0x00004000, 0x00000000 +data4 0x91CD7C66, 0x9FB6C1F0, 0x00004000, 0x00000000 +data4 0x1FA3DF8A, 0x9DE46410, 0x00004000, 0x00000000 +data4 0xA8F6B888, 0x9C263139, 0x00004000, 0x00000000 +data4 0xC27B0450, 0x9A7B4968, 0x00004000, 0x00000000 +data4 0x5EE614EE, 0x98E2DB7E, 0x00004000, 0x00000000 +// +// Entries SC_inv in Swapped IEEE format (extended) +// Index = 0,1,...,19 B = 2^(-1)*(1+Index/32+1/64) +// +data4 0x13B2B5BA, 0x969F335C, 0x00004000, 0x00000000 +data4 0xD4C0F548, 0x93D446D9, 0x00004000, 0x00000000 +data4 0x61B798AF, 0x9147094F, 0x00004000, 0x00000000 +data4 0x758787AC, 0x8EF317CC, 0x00004000, 0x00000000 +data4 0xB99EEFDB, 0x8CD498B3, 0x00004000, 0x00000000 +data4 0xDFF8BC37, 0x8AE82A7D, 0x00004000, 0x00000000 +data4 0xE3C55D42, 0x892AD546, 0x00004000, 0x00000000 +data4 0xD15573C1, 0x8799FEA9, 0x00004000, 0x00000000 +data4 0x435A4B4C, 0x86335F88, 0x00004000, 0x00000000 +data4 0x3E93A87B, 0x84F4FB6E, 0x00004000, 0x00000000 +data4 0x80A382FB, 0x83DD1952, 0x00004000, 0x00000000 +data4 0xA4CB8C9E, 0x82EA3D7F, 0x00004000, 0x00000000 +data4 0x6861D0A8, 0x821B247C, 0x00004000, 0x00000000 +data4 0x63E8D244, 0x816EBED1, 0x00004000, 0x00000000 +data4 0x27E4CFC6, 0x80E42D91, 0x00004000, 0x00000000 +data4 0x28E64AFD, 0x807ABF8D, 0x00004000, 0x00000000 +data4 0x863B4FD8, 0x8031EF26, 0x00004000, 0x00000000 +data4 0xAE8C11FD, 0x800960AD, 0x00004000, 0x00000000 +data4 0x5FDBEC21, 0x8000E147, 0x00004000, 0x00000000 +data4 0xA07791FA, 0x80186650, 0x00004000, 0x00000000 +ASM_SIZE_DIRECTIVE(TANL_BASE_CONSTANTS) + +Arg = f8 +Result = f8 +fp_tmp = f9 +U_2 = f10 +rsq = f11 +C_hi = f12 +C_lo = f13 +T_hi = f14 +T_lo = f15 + +N_0 = f32 +d_1 = f33 +MPI_BY_4 = f34 +tail = f35 +tanx = f36 +Cx = f37 +Sx = f38 +sgn_r = f39 +CORR = f40 +P = f41 +D = f42 +ArgPrime = f43 +P_0 = f44 + +P2_1 = f45 +P2_2 = f46 +P2_3 = f47 + +P1_1 = f45 +P1_2 = f46 +P1_3 = f47 + +P1_4 = f48 +P1_5 = f49 +P1_6 = f50 +P1_7 = f51 +P1_8 = f52 +P1_9 = f53 + +TWO_TO_63 = f54 +NEGTWO_TO_63 = f55 +x = f56 +xsq = f57 +Tx = f58 +Tx1 = f59 +Set = f60 +poly1 = f61 +poly2 = f62 +Poly = f63 +Poly1 = f64 +Poly2 = f65 +r_to_the_8 = f66 +B = f67 +SC_inv = f68 +Pos_r = f69 +N_0_fix = f70 +PI_BY_4 = f71 +NEGTWO_TO_NEG2 = f72 +TWO_TO_24 = f73 +TWO_TO_NEG14 = f74 +TWO_TO_NEG33 = f75 +NEGTWO_TO_24 = f76 +NEGTWO_TO_NEG14 = f76 +NEGTWO_TO_NEG33 = f77 +two_by_PI = f78 +N = f79 +N_fix = f80 +P_1 = f81 +P_2 = f82 +P_3 = f83 +s_val = f84 +w = f85 +c = f86 +r = f87 +A = f89 +a = f90 +t = f91 +U_1 = f92 +d_2 = f93 +TWO_TO_NEG2 = f94 +Q1_1 = f95 +Q1_2 = f96 +Q1_3 = f97 +Q1_4 = f98 +Q1_5 = f99 +Q1_6 = f100 +Q1_7 = f101 +Q1_8 = f102 +S_hi = f103 +S_lo = f104 +V_hi = f105 +V_lo = f106 +U_hi = f107 +U_lo = f108 +U_hiabs = f109 +V_hiabs = f110 +V = f111 +Inv_P_0 = f112 + +GR_SAVE_B0 = r33 +GR_SAVE_GP = r34 +GR_SAVE_PFS = r35 +delta1 = r36 +table_ptr1 = r37 +table_ptr2 = r38 +i_0 = r39 +i_1 = r40 +N_fix_gr = r41 +N_inc = r42 +exp_Arg = r43 +exp_r = r44 +sig_r = r45 +lookup = r46 +table_offset = r47 +Create_B = r48 +gr_tmp = r49 + +.section .text +.global tanl +.proc tanl +tanl: +#ifdef _LIBC +.global __tanl +.proc __tanl +__tanl: +#endif +{ .mfi +alloc r32 = ar.pfs, 0,17,2,0 +(p0) fclass.m.unc p6,p0 = Arg, 0x1E7 + addl gr_tmp = -1,r0 +} +{ .mfi + nop.m 0 +(p0) fclass.nm.unc p7,p0 = Arg, 0x1FF + nop.i 0 +};; + +{ .mfi +(p0) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp + nop.f 999 + nop.i 0 +} +;; +{ .mmi +(p0) ld8 table_ptr1 = [table_ptr1] + setf.sig fp_tmp = gr_tmp // Make a constant so fmpy produces inexact + nop.i 999 +} +;; + +// +// Check for NatVals, Infs , NaNs, and Zeros +// Check for everything - if false, then must be pseudo-zero +// or pseudo-nan. +// Local table pointer +// +{ .mbb +(p0) add table_ptr2 = 96, table_ptr1 +(p6) br.cond.spnt L(TANL_SPECIAL) +(p7) br.cond.spnt L(TANL_SPECIAL) ;; +} +// +// Point to Inv_P_0 +// Branch out to deal with unsupporteds and special values. +// +{ .mmf +(p0) ldfs TWO_TO_24 = [table_ptr1],4 +(p0) ldfs TWO_TO_63 = [table_ptr2],4 +// +// Load -2**24, load -2**63. +// +(p0) fcmp.eq.s0 p0, p6 = Arg, f1 ;; +} +{ .mfi +(p0) ldfs NEGTWO_TO_63 = [table_ptr2],12 +(p0) fnorm.s1 Arg = Arg + nop.i 999 +} +// +// Load 2**24, Load 2**63. +// +{ .mmi +(p0) ldfs NEGTWO_TO_24 = [table_ptr1],12 ;; +// +// Do fcmp to generate Denormal exception +// - can't do FNORM (will generate Underflow when U is unmasked!) +// Normalize input argument. +// +(p0) ldfe two_by_PI = [table_ptr1],16 + nop.i 999 +} +{ .mmi +(p0) ldfe Inv_P_0 = [table_ptr2],16 ;; +(p0) ldfe d_1 = [table_ptr2],16 + nop.i 999 +} +// +// Decide about the paths to take: +// PR_1 and PR_3 set if -2**24 < Arg < 2**24 - CASE 1 OR 2 +// OTHERWISE - CASE 3 OR 4 +// Load inverse of P_0 . +// Set PR_6 if Arg <= -2**63 +// Are there any Infs, NaNs, or zeros? +// +{ .mmi +(p0) ldfe P_0 = [table_ptr1],16 ;; +(p0) ldfe d_2 = [table_ptr2],16 + nop.i 999 +} +// +// Set PR_8 if Arg <= -2**24 +// Set PR_6 if Arg >= 2**63 +// +{ .mmi +(p0) ldfe P_1 = [table_ptr1],16 ;; +(p0) ldfe PI_BY_4 = [table_ptr2],16 + nop.i 999 +} +// +// Set PR_8 if Arg >= 2**24 +// +{ .mmi +(p0) ldfe P_2 = [table_ptr1],16 ;; +(p0) ldfe MPI_BY_4 = [table_ptr2],16 + nop.i 999 +} +// +// Load P_2 and PI_BY_4 +// +{ .mfi +(p0) ldfe P_3 = [table_ptr1],16 + nop.f 999 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fcmp.le.unc.s1 p6,p7 = Arg,NEGTWO_TO_63 + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fcmp.le.unc.s1 p8,p9 = Arg,NEGTWO_TO_24 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p7) fcmp.ge.s1 p6,p0 = Arg,TWO_TO_63 + nop.i 999 +} +{ .mfi + nop.m 999 +(p9) fcmp.ge.s1 p8,p0 = Arg,TWO_TO_24 + nop.i 999 ;; +} +{ .mib + nop.m 999 + nop.i 999 +// +// Load P_3 and -PI_BY_4 +// +(p6) br.cond.spnt L(TANL_ARG_TOO_LARGE) ;; +} +{ .mib + nop.m 999 + nop.i 999 +// +// Load 2**(-2). +// Load -2**(-2). +// Branch out if we have a special argument. +// Branch out if the magnitude of the input argument is too large +// - do this branch before the next. +// +(p8) br.cond.spnt L(TANL_LARGER_ARG) ;; +} +// +// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24 +// +{ .mfi +(p0) ldfs TWO_TO_NEG2 = [table_ptr2],4 +// ARGUMENT REDUCTION CODE - CASE 1 and 2 +// Load 2**(-2). +// Load -2**(-2). +(p0) fmpy.s1 N = Arg,two_by_PI + nop.i 999 ;; +} +{ .mfi +(p0) ldfs NEGTWO_TO_NEG2 = [table_ptr2],12 +// +// N = Arg * 2/pi +// +(p0) fcmp.lt.unc.s1 p8,p9= Arg,PI_BY_4 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// if Arg < pi/4, set PR_8. +// +(p8) fcmp.gt.s1 p8,p9= Arg,MPI_BY_4 + nop.i 999 ;; +} +// +// Case 1: Is |r| < 2**(-2). +// Arg is the same as r in this case. +// r = Arg +// c = 0 +// +{ .mfi +(p8) mov N_fix_gr = r0 +// +// if Arg > -pi/4, reset PR_8. +// Select the case when |Arg| < pi/4 - set PR[8] = true. +// Else Select the case when |Arg| >= pi/4 - set PR[9] = true. +// +(p0) fcvt.fx.s1 N_fix = N + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Grab the integer part of N . +// +(p8) mov r = Arg + nop.i 999 +} +{ .mfi + nop.m 999 +(p8) mov c = f0 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p8) fcmp.lt.unc.s1 p10, p11 = Arg, TWO_TO_NEG2 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p10) fcmp.gt.s1 p10,p0 = Arg, NEGTWO_TO_NEG2 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 2: Place integer part of N in GP register. +// +(p9) fcvt.xf N = N_fix + nop.i 999 ;; +} +{ .mib +(p9) getf.sig N_fix_gr = N_fix + nop.i 999 +// +// Case 2: Convert integer N_fix back to normalized floating-point value. +// +(p10) br.cond.spnt L(TANL_SMALL_R) ;; +} +{ .mib + nop.m 999 + nop.i 999 +(p8) br.cond.sptk L(TANL_NORMAL_R) ;; +} +// +// Case 1: PR_3 is only affected when PR_1 is set. +// +{ .mmi +(p9) ldfs TWO_TO_NEG33 = [table_ptr2], 4 ;; +// +// Case 2: Load 2**(-33). +// +(p9) ldfs NEGTWO_TO_NEG33 = [table_ptr2], 4 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 2: Load -2**(-33). +// +(p9) fnma.s1 s_val = N, P_1, Arg + nop.i 999 +} +{ .mfi + nop.m 999 +(p9) fmpy.s1 w = N, P_2 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 2: w = N * P_2 +// Case 2: s_val = -N * P_1 + Arg +// +(p0) fcmp.lt.unc.s1 p9,p8 = s_val, TWO_TO_NEG33 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Decide between case_1 and case_2 reduce: +// +(p9) fcmp.gt.s1 p9, p8 = s_val, NEGTWO_TO_NEG33 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 1_reduce: s <= -2**(-33) or s >= 2**(-33) +// Case 2_reduce: -2**(-33) < s < 2**(-33) +// +(p8) fsub.s1 r = s_val, w + nop.i 999 +} +{ .mfi + nop.m 999 +(p9) fmpy.s1 w = N, P_3 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p9) fma.s1 U_1 = N, P_2, w + nop.i 999 +} +{ .mfi + nop.m 999 +// +// Case 1_reduce: Is |r| < 2**(-2), if so set PR_10 +// else set PR_11. +// +(p8) fsub.s1 c = s_val, r + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 1_reduce: r = s + w (change sign) +// Case 2_reduce: w = N * P_3 (change sign) +// +(p8) fcmp.lt.unc.s1 p10, p11 = r, TWO_TO_NEG2 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p10) fcmp.gt.s1 p10, p11 = r, NEGTWO_TO_NEG2 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p9) fsub.s1 r = s_val, U_1 + nop.i 999 +} +{ .mfi + nop.m 999 +// +// Case 1_reduce: c is complete here. +// c = c + w (w has not been negated.) +// Case 2_reduce: r is complete here - continue to calculate c . +// r = s - U_1 +// +(p9) fms.s1 U_2 = N, P_2, U_1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 1_reduce: c = s - r +// Case 2_reduce: U_1 = N * P_2 + w +// +(p8) fsub.s1 c = c, w + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p9) fsub.s1 s_val = s_val, r + nop.i 999 +} +{ .mfb + nop.m 999 +// +// Case 2_reduce: +// U_2 = N * P_2 - U_1 +// Not needed until later. +// +(p9) fadd.s1 U_2 = U_2, w +// +// Case 2_reduce: +// s = s - r +// U_2 = U_2 + w +// +(p10) br.cond.spnt L(TANL_SMALL_R) ;; +} +{ .mib + nop.m 999 + nop.i 999 +(p11) br.cond.sptk L(TANL_NORMAL_R) ;; +} +{ .mii + nop.m 999 +// +// Case 2_reduce: +// c = c - U_2 +// c is complete here +// Argument reduction ends here. +// +(p9) extr.u i_1 = N_fix_gr, 0, 1 ;; +(p9) cmp.eq.unc p11, p12 = 0x0000,i_1 ;; +} +{ .mfi + nop.m 999 +// +// Is i_1 even or odd? +// if i_1 == 0, set p11, else set p12. +// +(p11) fmpy.s1 rsq = r, r + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) frcpa.s1 S_hi,p0 = f1, r + nop.i 999 +} + + + +// +// Case 1: Branch to SMALL_R or NORMAL_R. +// Case 1 is done now. +// + +{ .mfi +(p9) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp +(p9) fsub.s1 c = s_val, U_1 + nop.i 999 ;; +} +;; + +{ .mmi +(p9) ld8 table_ptr1 = [table_ptr1] + nop.m 999 + nop.i 999 +} +;; + + +{ .mmi +(p9) add table_ptr1 = 224, table_ptr1 ;; +(p9) ldfe P1_1 = [table_ptr1],144 + nop.i 999 ;; +} +// +// Get [i_1] - lsb of N_fix_gr . +// Load P1_1 and point to Q1_1 . +// +{ .mfi +(p9) ldfe Q1_1 = [table_ptr1] , 0 +// +// N even: rsq = r * Z +// N odd: S_hi = frcpa(r) +// +(p12) fmerge.ns S_hi = S_hi, S_hi + nop.i 999 +} +{ .mfi + nop.m 999 +// +// Case 2_reduce: +// c = s - U_1 +// +(p9) fsub.s1 c = c, U_2 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: Change sign of S_hi +// +(p11) fmpy.s1 rsq = rsq, P1_1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 S_hi = S_hi, poly1, S_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: rsq = rsq * P1_1 +// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary +// +(p11) fma.s1 Result = r, rsq, c + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: Result = c + r * rsq +// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary +// +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: Result = Result + r +// N odd: poly1 = 1.0 + S_hi * r 32 bits partial +// +(p11) fadd.s0 Result = r, Result + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 S_hi = S_hi, poly1, S_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: Result1 = Result + r +// N odd: S_hi = S_hi * poly1 + S_hi 32 bits +// +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: poly1 = S_hi * r + 1.0 64 bits partial +// +(p12) fma.s1 S_hi = S_hi, poly1, S_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: poly1 = S_hi * poly + 1.0 64 bits +// +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: poly1 = S_hi * r + 1.0 +// +(p12) fma.s1 poly1 = S_hi, c, poly1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: poly1 = S_hi * c + poly1 +// +(p12) fmpy.s1 S_lo = S_hi, poly1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: S_lo = S_hi * poly1 +// +(p12) fma.s1 S_lo = Q1_1, r, S_lo + nop.i 999 +} +{ .mfi + nop.m 999 +// +// N odd: Result = S_hi + S_lo +// +(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact + nop.i 999 ;; +} +{ .mfb + nop.m 999 +// +// N odd: S_lo = S_lo + Q1_1 * r +// +(p12) fadd.s0 Result = S_hi, S_lo +(p0) br.ret.sptk b0 ;; +} + + +L(TANL_LARGER_ARG): + +// +// ARGUMENT REDUCTION CODE - CASE 3 and 4 +// + +{ .mfi +(p0) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp +(p0) fmpy.s1 N_0 = Arg, Inv_P_0 + nop.i 999 +} +;; + +{ .mmi +(p0) ld8 table_ptr1 = [table_ptr1] + nop.m 999 + nop.i 999 +} +;; + + +// +// Adjust table_ptr1 to beginning of table. +// N_0 = Arg * Inv_P_0 +// +{ .mmi +(p0) add table_ptr1 = 8, table_ptr1 ;; +// +// Point to 2*-14 +// +(p0) ldfs TWO_TO_NEG14 = [table_ptr1], 4 + nop.i 999 ;; +} +// +// Load 2**(-14). +// +{ .mmi +(p0) ldfs NEGTWO_TO_NEG14 = [table_ptr1], 180 ;; +// +// N_0_fix = integer part of N_0 . +// Adjust table_ptr1 to beginning of table. +// +(p0) ldfs TWO_TO_NEG2 = [table_ptr1], 4 + nop.i 999 ;; +} +// +// Make N_0 the integer part. +// +{ .mfi +(p0) ldfs NEGTWO_TO_NEG2 = [table_ptr1] +// +// Load -2**(-14). +// +(p0) fcvt.fx.s1 N_0_fix = N_0 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fcvt.xf N_0 = N_0_fix + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fnma.s1 ArgPrime = N_0, P_0, Arg + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 w = N_0, d_1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// ArgPrime = -N_0 * P_0 + Arg +// w = N_0 * d_1 +// +(p0) fmpy.s1 N = ArgPrime, two_by_PI + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N = ArgPrime * 2/pi +// +(p0) fcvt.fx.s1 N_fix = N + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N_fix is the integer part. +// +(p0) fcvt.xf N = N_fix + nop.i 999 ;; +} +{ .mfi +(p0) getf.sig N_fix_gr = N_fix + nop.f 999 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N is the integer part of the reduced-reduced argument. +// Put the integer in a GP register. +// +(p0) fnma.s1 s_val = N, P_1, ArgPrime + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fnma.s1 w = N, P_2, w + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// s_val = -N*P_1 + ArgPrime +// w = -N*P_2 + w +// +(p0) fcmp.lt.unc.s1 p11, p10 = s_val, TWO_TO_NEG14 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p11) fcmp.gt.s1 p11, p10 = s_val, NEGTWO_TO_NEG14 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 3: r = s_val + w (Z complete) +// Case 4: U_hi = N_0 * d_1 +// +(p10) fmpy.s1 V_hi = N, P_2 + nop.i 999 +} +{ .mfi + nop.m 999 +(p11) fmpy.s1 U_hi = N_0, d_1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 3: r = s_val + w (Z complete) +// Case 4: U_hi = N_0 * d_1 +// +(p11) fmpy.s1 V_hi = N, P_2 + nop.i 999 +} +{ .mfi + nop.m 999 +(p11) fmpy.s1 U_hi = N_0, d_1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Decide between case 3 and 4: +// Case 3: s <= -2**(-14) or s >= 2**(-14) +// Case 4: -2**(-14) < s < 2**(-14) +// +(p10) fadd.s1 r = s_val, w + nop.i 999 +} +{ .mfi + nop.m 999 +(p11) fmpy.s1 w = N, P_3 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 4: We need abs of both U_hi and V_hi - dont +// worry about switched sign of V_hi . +// +(p11) fsub.s1 A = U_hi, V_hi + nop.i 999 +} +{ .mfi + nop.m 999 +// +// Case 4: A = U_hi + V_hi +// Note: Worry about switched sign of V_hi, so subtract instead of add. +// +(p11) fnma.s1 V_lo = N, P_2, V_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p11) fms.s1 U_lo = N_0, d_1, U_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p11) fabs V_hiabs = V_hi + nop.i 999 +} +{ .mfi + nop.m 999 +// +// Case 4: V_hi = N * P_2 +// w = N * P_3 +// Note the product does not include the (-) as in the writeup +// so (-) missing for V_hi and w . +(p10) fadd.s1 r = s_val, w + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 3: c = s_val - r +// Case 4: U_lo = N_0 * d_1 - U_hi +// +(p11) fabs U_hiabs = U_hi + nop.i 999 +} +{ .mfi + nop.m 999 +(p11) fmpy.s1 w = N, P_3 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 4: Set P_12 if U_hiabs >= V_hiabs +// +(p11) fadd.s1 C_hi = s_val, A + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 4: C_hi = s_val + A +// +(p11) fadd.s1 t = U_lo, V_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 3: Is |r| < 2**(-2), if so set PR_7 +// else set PR_8. +// Case 3: If PR_7 is set, prepare to branch to Small_R. +// Case 3: If PR_8 is set, prepare to branch to Normal_R. +// +(p10) fsub.s1 c = s_val, r + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 3: c = (s - r) + w (c complete) +// +(p11) fcmp.ge.unc.s1 p12, p13 = U_hiabs, V_hiabs + nop.i 999 +} +{ .mfi + nop.m 999 +(p11) fms.s1 w = N_0, d_2, w + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 4: V_hi = N * P_2 +// w = N * P_3 +// Note the product does not include the (-) as in the writeup +// so (-) missing for V_hi and w . +// +(p10) fcmp.lt.unc.s1 p14, p15 = r, TWO_TO_NEG2 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p14) fcmp.gt.s1 p14, p15 = r, NEGTWO_TO_NEG2 + nop.i 999 ;; +} +{ .mfb + nop.m 999 +// +// Case 4: V_lo = -N * P_2 - V_hi (U_hi is in place of V_hi in writeup) +// Note: the (-) is still missing for V_hi . +// Case 4: w = w + N_0 * d_2 +// Note: the (-) is now incorporated in w . +// +(p10) fadd.s1 c = c, w +// +// Case 4: t = U_lo + V_lo +// Note: remember V_lo should be (-), subtract instead of add. NO +// +(p14) br.cond.spnt L(TANL_SMALL_R) ;; +} +{ .mib + nop.m 999 + nop.i 999 +(p15) br.cond.spnt L(TANL_NORMAL_R) ;; +} +{ .mfi + nop.m 999 +// +// Case 3: Vector off when |r| < 2**(-2). Recall that PR_3 will be true. +// The remaining stuff is for Case 4. +// +(p12) fsub.s1 a = U_hi, A +(p11) extr.u i_1 = N_fix_gr, 0, 1 ;; +} +{ .mfi + nop.m 999 +// +// Case 4: C_lo = s_val - C_hi +// +(p11) fadd.s1 t = t, w + nop.i 999 +} +{ .mfi + nop.m 999 +(p13) fadd.s1 a = V_hi, A + nop.i 999 ;; +} + + + +// +// Case 4: a = U_hi - A +// a = V_hi - A (do an add to account for missing (-) on V_hi +// + +{ .mfi +(p11) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp +(p11) fsub.s1 C_lo = s_val, C_hi + nop.i 999 +} +;; + + + +// +// Case 4: a = (U_hi - A) + V_hi +// a = (V_hi - A) + U_hi +// In each case account for negative missing form V_hi . +// + + +{ .mmi +(p11) ld8 table_ptr1 = [table_ptr1] + nop.m 999 + nop.i 999 +} +;; + + +// +// Case 4: C_lo = (s_val - C_hi) + A +// +{ .mmi +(p11) add table_ptr1 = 224, table_ptr1 ;; +(p11) ldfe P1_1 = [table_ptr1], 16 + nop.i 999 ;; +} +{ .mfi +(p11) ldfe P1_2 = [table_ptr1], 128 +// +// Case 4: w = U_lo + V_lo + w +// +(p12) fsub.s1 a = a, V_hi + nop.i 999 ;; +} +// +// Case 4: r = C_hi + C_lo +// +{ .mfi +(p11) ldfe Q1_1 = [table_ptr1], 16 +(p11) fadd.s1 C_lo = C_lo, A + nop.i 999 ;; +} +// +// Case 4: c = C_hi - r +// Get [i_1] - lsb of N_fix_gr. +// +{ .mfi +(p11) ldfe Q1_2 = [table_ptr1], 16 + nop.f 999 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p13) fsub.s1 a = U_hi, a + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p11) fadd.s1 t = t, a + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 4: t = t + a +// +(p11) fadd.s1 C_lo = C_lo, t + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Case 4: C_lo = C_lo + t +// +(p11) fadd.s1 r = C_hi, C_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p11) fsub.s1 c = C_hi, r + nop.i 999 +} +{ .mfi + nop.m 999 +// +// Case 4: c = c + C_lo finished. +// Is i_1 even or odd? +// if i_1 == 0, set PR_4, else set PR_5. +// +// r and c have been computed. +// We known whether this is the sine or cosine routine. +// Make sure ftz mode is set - should be automatic when using wre +(p0) fmpy.s1 rsq = r, r + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p11) fadd.s1 c = c , C_lo +(p11) cmp.eq.unc p11, p12 = 0x0000, i_1 ;; +} +{ .mfi + nop.m 999 +(p12) frcpa.s1 S_hi, p0 = f1, r + nop.i 999 +} +{ .mfi + nop.m 999 +// +// N odd: Change sign of S_hi +// +(p11) fma.s1 Result = rsq, P1_2, P1_1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 P = rsq, Q1_2, Q1_1 + nop.i 999 +} +{ .mfi + nop.m 999 +// +// N odd: Result = S_hi + S_lo (User supplied rounding mode for C1) +// +(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: rsq = r * r +// N odd: S_hi = frcpa(r) +// +(p12) fmerge.ns S_hi = S_hi, S_hi + nop.i 999 +} +{ .mfi + nop.m 999 +// +// N even: rsq = rsq * P1_2 + P1_1 +// N odd: poly1 = 1.0 + S_hi * r 16 bits partial account for necessary +// +(p11) fmpy.s1 Result = rsq, Result + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly1 = S_hi, r,f1 + nop.i 999 +} +{ .mfi + nop.m 999 +// +// N even: Result = Result * rsq +// N odd: S_hi = S_hi + S_hi*poly1 16 bits account for necessary +// +(p11) fma.s1 Result = r, Result, c + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 S_hi = S_hi, poly1, S_hi + nop.i 999 +} +{ .mfi + nop.m 999 +// +// N odd: S_hi = S_hi * poly1 + S_hi 32 bits +// +(p11) fadd.s0 Result= r, Result + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: Result = Result * r + c +// N odd: poly1 = 1.0 + S_hi * r 32 bits partial +// +(p12) fma.s1 S_hi = S_hi, poly1, S_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: Result1 = Result + r (Rounding mode S0) +// N odd: poly1 = S_hi * r + 1.0 64 bits partial +// +(p12) fma.s1 S_hi = S_hi, poly1, S_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: poly1 = S_hi * poly + S_hi 64 bits +// +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: poly1 = S_hi * r + 1.0 +// +(p12) fma.s1 poly1 = S_hi, c, poly1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: poly1 = S_hi * c + poly1 +// +(p12) fmpy.s1 S_lo = S_hi, poly1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: S_lo = S_hi * poly1 +// +(p12) fma.s1 S_lo = P, r, S_lo + nop.i 999 ;; +} +{ .mfb + nop.m 999 +// +// N odd: S_lo = S_lo + r * P +// +(p12) fadd.s0 Result = S_hi, S_lo +(p0) br.ret.sptk b0 ;; +} + + +L(TANL_SMALL_R): +{ .mii + nop.m 999 +(p0) extr.u i_1 = N_fix_gr, 0, 1 ;; +(p0) cmp.eq.unc p11, p12 = 0x0000, i_1 +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 rsq = r, r + nop.i 999 ;; +} +{ .mfi +(p0) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp +(p12) frcpa.s1 S_hi, p0 = f1, r + nop.i 999 +} +;; + + +{ .mmi +(p0) ld8 table_ptr1 = [table_ptr1] + nop.m 999 + nop.i 999 +} +;; + +// ***************************************************************** +// ***************************************************************** +// ***************************************************************** + + +{ .mmi +(p0) add table_ptr1 = 224, table_ptr1 ;; +(p0) ldfe P1_1 = [table_ptr1], 16 + nop.i 999 ;; +} +// r and c have been computed. +// We known whether this is the sine or cosine routine. +// Make sure ftz mode is set - should be automatic when using wre +// |r| < 2**(-2) +{ .mfi +(p0) ldfe P1_2 = [table_ptr1], 16 +(p11) fmpy.s1 r_to_the_8 = rsq, rsq + nop.i 999 ;; +} +// +// Set table_ptr1 to beginning of constant table. +// Get [i_1] - lsb of N_fix_gr. +// +{ .mfi +(p0) ldfe P1_3 = [table_ptr1], 96 +// +// N even: rsq = r * r +// N odd: S_hi = frcpa(r) +// +(p12) fmerge.ns S_hi = S_hi, S_hi + nop.i 999 ;; +} +// +// Is i_1 even or odd? +// if i_1 == 0, set PR_11. +// if i_1 != 0, set PR_12. +// +{ .mfi +(p11) ldfe P1_9 = [table_ptr1], -16 +// +// N even: Poly2 = P1_7 + Poly2 * rsq +// N odd: poly2 = Q1_5 + poly2 * rsq +// +(p11) fadd.s1 CORR = rsq, f1 + nop.i 999 ;; +} +{ .mmi +(p11) ldfe P1_8 = [table_ptr1], -16 ;; +// +// N even: Poly1 = P1_2 + P1_3 * rsq +// N odd: poly1 = 1.0 + S_hi * r +// 16 bits partial account for necessary (-1) +// +(p11) ldfe P1_7 = [table_ptr1], -16 + nop.i 999 ;; +} +// +// N even: Poly1 = P1_1 + Poly1 * rsq +// N odd: S_hi = S_hi + S_hi * poly1) 16 bits account for necessary +// +{ .mfi +(p11) ldfe P1_6 = [table_ptr1], -16 +// +// N even: Poly2 = P1_5 + Poly2 * rsq +// N odd: poly2 = Q1_3 + poly2 * rsq +// +(p11) fmpy.s1 r_to_the_8 = r_to_the_8, r_to_the_8 + nop.i 999 ;; +} +// +// N even: Poly1 = Poly1 * rsq +// N odd: poly1 = 1.0 + S_hi * r 32 bits partial +// +{ .mfi +(p11) ldfe P1_5 = [table_ptr1], -16 +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 ;; +} + +// +// N even: CORR = CORR * c +// N odd: S_hi = S_hi * poly1 + S_hi 32 bits +// + +// +// N even: Poly2 = P1_6 + Poly2 * rsq +// N odd: poly2 = Q1_4 + poly2 * rsq +// + +{ .mmf +(p11) ldfe P1_4 = [table_ptr1], -16 +(p0) addl table_ptr2 = @ltoff(TANL_BASE_CONSTANTS), gp +(p11) fmpy.s1 CORR = CORR, c +} +;; + + +{ .mmi +(p0) ld8 table_ptr2 = [table_ptr2] + nop.m 999 + nop.i 999 +} +;; + + +{ .mii +(p0) add table_ptr2 = 464, table_ptr2 + nop.i 999 ;; + nop.i 999 +} +{ .mfi + nop.m 999 +(p11) fma.s1 Poly1 = P1_3, rsq, P1_2 + nop.i 999 ;; +} +{ .mfi +(p0) ldfe Q1_7 = [table_ptr2], -16 +(p12) fma.s1 S_hi = S_hi, poly1, S_hi + nop.i 999 ;; +} +{ .mfi +(p0) ldfe Q1_6 = [table_ptr2], -16 +(p11) fma.s1 Poly2 = P1_9, rsq, P1_8 + nop.i 999 ;; +} +{ .mmi +(p0) ldfe Q1_5 = [table_ptr2], -16 ;; +(p12) ldfe Q1_4 = [table_ptr2], -16 + nop.i 999 ;; +} +{ .mfi +(p12) ldfe Q1_3 = [table_ptr2], -16 +// +// N even: Poly2 = P1_8 + P1_9 * rsq +// N odd: poly2 = Q1_6 + Q1_7 * rsq +// +(p11) fma.s1 Poly1 = Poly1, rsq, P1_1 + nop.i 999 ;; +} +{ .mfi +(p12) ldfe Q1_2 = [table_ptr2], -16 +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 ;; +} +{ .mfi +(p12) ldfe Q1_1 = [table_ptr2], -16 +(p11) fma.s1 Poly2 = Poly2, rsq, P1_7 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: CORR = rsq + 1 +// N even: r_to_the_8 = rsq * rsq +// +(p11) fmpy.s1 Poly1 = Poly1, rsq + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 S_hi = S_hi, poly1, S_hi + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly2 = Q1_7, rsq, Q1_6 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p11) fma.s1 Poly2 = Poly2, rsq, P1_6 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly2 = poly2, rsq, Q1_5 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p11) fma.s1 Poly2= Poly2, rsq, P1_5 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 S_hi = S_hi, poly1, S_hi + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly2 = poly2, rsq, Q1_4 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: r_to_the_8 = r_to_the_8 * r_to_the_8 +// N odd: poly1 = S_hi * r + 1.0 64 bits partial +// +(p11) fma.s1 Poly2 = Poly2, rsq, P1_4 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: Result = CORR + Poly * r +// N odd: P = Q1_1 + poly2 * rsq +// +(p12) fma.s1 poly1 = S_hi, r, f1 + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly2 = poly2, rsq, Q1_3 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: Poly2 = P1_4 + Poly2 * rsq +// N odd: poly2 = Q1_2 + poly2 * rsq +// +(p11) fma.s1 Poly = Poly2, r_to_the_8, Poly1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly1 = S_hi, c, poly1 + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fma.s1 poly2 = poly2, rsq, Q1_2 + nop.i 999 ;; +} + +{ .mfi + nop.m 999 +// +// N even: Poly = Poly1 + Poly2 * r_to_the_8 +// N odd: S_hi = S_hi * poly1 + S_hi 64 bits +// +(p11) fma.s1 Result = Poly, r, CORR + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: Result = r + Result (User supplied rounding mode) +// N odd: poly1 = S_hi * c + poly1 +// +(p12) fmpy.s1 S_lo = S_hi, poly1 + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fma.s1 P = poly2, rsq, Q1_1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: poly1 = S_hi * r + 1.0 +// +// +// N odd: S_lo = S_hi * poly1 +// +(p11) fadd.s0 Result = Result, r + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: S_lo = Q1_1 * c + S_lo +// +(p12) fma.s1 S_lo = Q1_1, c, S_lo + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: Result = S_lo + r * P +// +(p12) fma.s1 Result = P, r, S_lo + nop.i 999 ;; +} +{ .mfb + nop.m 999 +// +// N odd: Result = Result + S_hi (user supplied rounding mode) +// +(p12) fadd.s0 Result = Result, S_hi +(p0) br.ret.sptk b0 ;; +} + + +L(TANL_NORMAL_R): +{ .mfi +(p0) getf.sig sig_r = r +// ******************************************************************* +// ******************************************************************* +// ******************************************************************* +// +// r and c have been computed. +// Make sure ftz mode is set - should be automatic when using wre +// +// +// Get [i_1] - lsb of N_fix_gr alone. +// +(p0) fmerge.s Pos_r = f1, r +(p0) extr.u i_1 = N_fix_gr, 0, 1 ;; +} +{ .mfi + nop.m 999 +(p0) fmerge.s sgn_r = r, f1 +(p0) cmp.eq.unc p11, p12 = 0x0000, i_1 ;; +} +{ .mfi + nop.m 999 + nop.f 999 +(p0) extr.u lookup = sig_r, 58, 5 +} +{ .mlx + nop.m 999 +(p0) movl Create_B = 0x8200000000000000 ;; +} +{ .mfi +(p0) addl table_ptr1 = @ltoff(TANL_BASE_CONSTANTS), gp + nop.f 999 +(p0) dep Create_B = lookup, Create_B, 58, 5 +} +;; + + +// +// Get [i_1] - lsb of N_fix_gr alone. +// Pos_r = abs (r) +// + + +{ .mmi +(p0) ld8 table_ptr1 = [table_ptr1] + nop.m 999 + nop.i 999 +} +;; + + +{ .mmi + nop.m 999 +(p0) setf.sig B = Create_B +// +// Set table_ptr1 and table_ptr2 to base address of +// constant table. +// +(p0) add table_ptr1 = 480, table_ptr1 ;; +} +{ .mmb + nop.m 999 +// +// Is i_1 or i_0 == 0 ? +// Create the constant 1 00000 1000000000000000000000... +// +(p0) ldfe P2_1 = [table_ptr1], 16 + nop.b 999 +} +{ .mmi + nop.m 999 ;; +(p0) getf.exp exp_r = Pos_r + nop.i 999 +} +// +// Get r's exponent +// Get r's significand +// +{ .mmi +(p0) ldfe P2_2 = [table_ptr1], 16 ;; +// +// Get the 5 bits or r for the lookup. 1.xxxxx .... +// from sig_r. +// Grab lsb of exp of B +// +(p0) ldfe P2_3 = [table_ptr1], 16 + nop.i 999 ;; +} +{ .mii + nop.m 999 +(p0) andcm table_offset = 0x0001, exp_r ;; +(p0) shl table_offset = table_offset, 9 ;; +} +{ .mii + nop.m 999 +// +// Deposit 0 00000 1000000000000000000000... on +// 1 xxxxx yyyyyyyyyyyyyyyyyyyyyy..., +// getting rid of the ys. +// Is B = 2** -2 or B= 2** -1? If 2**-1, then +// we want an offset of 512 for table addressing. +// +(p0) shladd table_offset = lookup, 4, table_offset ;; +// +// B = ........ 1xxxxx 1000000000000000000... +// +(p0) add table_ptr1 = table_ptr1, table_offset ;; +} +{ .mmb + nop.m 999 +// +// B = ........ 1xxxxx 1000000000000000000... +// Convert B so it has the same exponent as Pos_r +// +(p0) ldfd T_hi = [table_ptr1], 8 + nop.b 999 ;; +} + + + +// +// x = |r| - B +// Load T_hi. +// Load C_hi. +// + +{ .mmf +(p0) addl table_ptr2 = @ltoff(TANL_BASE_CONSTANTS), gp +(p0) ldfs T_lo = [table_ptr1] +(p0) fmerge.se B = Pos_r, B +} +;; + + +{ .mmi +(p0) ld8 table_ptr2 = [table_ptr2] + nop.m 999 + nop.i 999 +} +;; + + +{ .mii +(p0) add table_ptr2 = 1360, table_ptr2 + nop.i 999 ;; +(p0) add table_ptr2 = table_ptr2, table_offset ;; +} +{ .mfi +(p0) ldfd C_hi = [table_ptr2], 8 +(p0) fsub.s1 x = Pos_r, B + nop.i 999 ;; +} +{ .mii +(p0) ldfs C_lo = [table_ptr2],255 + nop.i 999 ;; +// +// xsq = x * x +// N even: Tx = T_hi * x +// Load T_lo. +// Load C_lo - increment pointer to get SC_inv +// - cant get all the way, do an add later. +// +(p0) add table_ptr2 = 569, table_ptr2 ;; +} +// +// N even: Tx1 = Tx + 1 +// N odd: Cx1 = 1 - Cx +// +{ .mfi +(p0) ldfe SC_inv = [table_ptr2], 0 + nop.f 999 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 xsq = x, x + nop.i 999 +} +{ .mfi + nop.m 999 +(p11) fmpy.s1 Tx = T_hi, x + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fmpy.s1 Cx = C_hi, x + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: Cx = C_hi * x +// +(p0) fma.s1 P = P2_3, xsq, P2_2 + nop.i 999 +} +{ .mfi + nop.m 999 +// +// N even and odd: P = P2_3 + P2_2 * xsq +// +(p11) fadd.s1 Tx1 = Tx, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: D = C_hi - tanx +// N odd: D = T_hi + tanx +// +(p11) fmpy.s1 CORR = SC_inv, T_hi + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 Sx = SC_inv, x + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fmpy.s1 CORR = SC_inv, C_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fsub.s1 V_hi = f1, Cx + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fma.s1 P = P, xsq, P2_1 + nop.i 999 +} +{ .mfi + nop.m 999 +// +// N even and odd: P = P2_1 + P * xsq +// +(p11) fma.s1 V_hi = Tx, Tx1, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: Result = sgn_r * tail + T_hi (user rounding mode for C1) +// N odd: Result = sgn_r * tail + C_hi (user rounding mode for C1) +// +(p0) fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 CORR = CORR, c + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fnma.s1 V_hi = Cx,V_hi,f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: V_hi = Tx * Tx1 + 1 +// N odd: Cx1 = 1 - Cx * Cx1 +// +(p0) fmpy.s1 P = P, xsq + nop.i 999 +} +{ .mfi + nop.m 999 +// +// N even and odd: P = P * xsq +// +(p11) fmpy.s1 V_hi = V_hi, T_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even and odd: tail = P * tail + V_lo +// +(p11) fmpy.s1 T_hi = sgn_r, T_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 CORR = CORR, sgn_r + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p12) fmpy.s1 V_hi = V_hi,C_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: V_hi = T_hi * V_hi +// N odd: V_hi = C_hi * V_hi +// +(p0) fma.s1 tanx = P, x, x + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fnmpy.s1 C_hi = sgn_r, C_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: V_lo = 1 - V_hi + C_hi +// N odd: V_lo = 1 - V_hi + T_hi +// +(p11) fadd.s1 CORR = CORR, T_lo + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fsub.s1 CORR = CORR, C_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even and odd: tanx = x + x * P +// N even and odd: Sx = SC_inv * x +// +(p11) fsub.s1 D = C_hi, tanx + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fadd.s1 D = T_hi, tanx + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N odd: CORR = SC_inv * C_hi +// N even: CORR = SC_inv * T_hi +// +(p0) fnma.s1 D = V_hi, D, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even and odd: D = 1 - V_hi * D +// N even and odd: CORR = CORR * c +// +(p0) fma.s1 V_hi = V_hi, D, V_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even and odd: V_hi = V_hi + V_hi * D +// N even and odd: CORR = sgn_r * CORR +// +(p11) fnma.s1 V_lo = V_hi, C_hi, f1 + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fnma.s1 V_lo = V_hi, T_hi, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: CORR = COOR + T_lo +// N odd: CORR = CORR - C_lo +// +(p11) fma.s1 V_lo = tanx, V_hi, V_lo + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fnma.s1 V_lo = tanx, V_hi, V_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: V_lo = V_lo + V_hi * tanx +// N odd: V_lo = V_lo - V_hi * tanx +// +(p11) fnma.s1 V_lo = C_lo, V_hi, V_lo + nop.i 999 +} +{ .mfi + nop.m 999 +(p12) fnma.s1 V_lo = T_lo, V_hi, V_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: V_lo = V_lo - V_hi * C_lo +// N odd: V_lo = V_lo - V_hi * T_lo +// +(p0) fmpy.s1 V_lo = V_hi, V_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even and odd: V_lo = V_lo * V_hi +// +(p0) fadd.s1 tail = V_hi, V_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even and odd: tail = V_hi + V_lo +// +(p0) fma.s1 tail = tail, P, V_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even: T_hi = sgn_r * T_hi +// N odd : C_hi = -sgn_r * C_hi +// +(p0) fma.s1 tail = tail, Sx, CORR + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even and odd: tail = Sx * tail + CORR +// +(p0) fma.s1 tail = V_hi, Sx, tail + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// N even an odd: tail = Sx * V_hi + tail +// +(p11) fma.s0 Result = sgn_r, tail, T_hi + nop.i 999 +} +{ .mfb + nop.m 999 +(p12) fma.s0 Result = sgn_r, tail, C_hi +(p0) br.ret.sptk b0 ;; +} + +L(TANL_SPECIAL): +{ .mfb + nop.m 999 +(p0) fmpy.s0 Arg = Arg, f0 +(p0) br.ret.sptk b0 ;; +} +// +// Code for NaNs, Unsupporteds, Infs, or +/- zero ? +// Invalid raised for Infs and SNaNs. +// + +.endp tanl +ASM_SIZE_DIRECTIVE(tanl) + +// ******************************************************************* +// ******************************************************************* +// ******************************************************************* +// +// Special Code to handle very large argument case. +// Call int pi_by_2_reduce(&x,&r,&c) +// for |arguments| >= 2**63 +// (Arg or x) is in f8 +// Address to save r and c as double +// ******************************************************************* +// ******************************************************************* +// ******************************************************************* + +.proc __libm_callout +__libm_callout: +L(TANL_ARG_TOO_LARGE): +.prologue +{ .mfi + add r50=-32,sp // Parameter: r address + nop.f 0 +.save ar.pfs,GR_SAVE_PFS + mov GR_SAVE_PFS=ar.pfs // Save ar.pfs +} +{ .mfi +.fframe 64 + add sp=-64,sp // Create new stack + nop.f 0 + mov GR_SAVE_GP=gp // Save gp +};; +{ .mmi + stfe [r50] = f0,16 // Clear Parameter r on stack + add r49 = 16,sp // Parameter x address +.save b0, GR_SAVE_B0 + mov GR_SAVE_B0=b0 // Save b0 +};; +.body +{ .mib + stfe [r50] = f0,-16 // Clear Parameter c on stack + nop.i 0 + nop.b 0 +} +{ .mib + stfe [r49] = Arg // Store Parameter x on stack + nop.i 0 +(p0) br.call.sptk b0=__libm_pi_by_2_reduce# ;; +};; +// +// Load 2^-2 +// +{ .mmi +(p0) ldfe Arg =[r49],16 +// +// Call argument reduction +// +(p0) ldfs TWO_TO_NEG2 = [table_ptr2],4 +// Get Arg off stack +// Get r off stack - hi order part +// Get c off stack - lo order part +(p0) mov N_fix_gr = r8 ;; +} +{ .mmb +(p0) ldfe r =[r50],16 +(p0) ldfs NEGTWO_TO_NEG2 = [table_ptr2],4 + nop.b 999 ;; +} +{ .mfi +(p0) ldfe c =[r50],-32 + nop.f 999 + nop.i 999 ;; +} +{ .mfi +.restore sp + add sp = 64,sp // Restore stack pointer +// +// Is |r| < 2**(-2) +// +(p0) fcmp.lt.unc.s1 p6, p0 = r, TWO_TO_NEG2 +mov b0 = GR_SAVE_B0 // Restore return address +};; +{ .mfi + mov gp = GR_SAVE_GP // Restore gp +(p6) fcmp.gt.unc.s1 p6, p0 = r, NEGTWO_TO_NEG2 + mov ar.pfs = GR_SAVE_PFS // Restore gp +};; +{ .mbb + nop.m 999 +(p6) br.cond.spnt L(TANL_SMALL_R) +(p0) br.cond.sptk L(TANL_NORMAL_R) ;; +} + +.endp __libm_callout +ASM_SIZE_DIRECTIVE(__libm_callout) + +.type __libm_pi_by_2_reduce#,@function +.global __libm_pi_by_2_reduce# |