summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/s_log1pl.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/s_log1pl.S')
-rw-r--r--sysdeps/ia64/fpu/s_log1pl.S2068
1 files changed, 1272 insertions, 796 deletions
diff --git a/sysdeps/ia64/fpu/s_log1pl.S b/sysdeps/ia64/fpu/s_log1pl.S
index 9654265004..7cd3f7834c 100644
--- a/sysdeps/ia64/fpu/s_log1pl.S
+++ b/sysdeps/ia64/fpu/s_log1pl.S
@@ -1,10 +1,10 @@
 .file "log1pl.s" 
 
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
 // All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// 
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
 //
 // Redistribution and use in source and binary forms, with or without
 // modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
 // * The name of Intel Corporation may not be used to endorse or promote
 // products derived from this software without specific prior written
 // permission.
-
+//
 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,49 +35,55 @@
 // 
 // Intel Corporation is the author of this code, and requests that all
 // problem reports or change requests be submitted to it directly at 
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
 //
-//*********************************************************************
+// *********************************************************************
 //
 // History: 
-// 02/02/00 Initial version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 2/02/00  hand-optimized
+// 4/04/00  Unwind support added
+// 8/15/00  Bundle added after call to __libm_error_support to properly
 //          set [the previously overwritten] GR_Parameter_RESULT.
-// 05/21/01 Removed logl and log10l, putting them in a separate file
-// 06/29/01 Improved speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-//          used data8 for long double table values
 //
-//*********************************************************************
+// *********************************************************************
 //
-//*********************************************************************
+// *********************************************************************
 //
-// Function:   log1pl(x) = ln(x+1), for double-extended precision x values
+// Function:   Combined logl(x), log1pl(x), and log10l(x) where
+//             logl(x)   = ln(x), for double-extended precision x values
+//             log1pl(x) = ln(x+1), for double-extended precision x values
+//             log10l(x) = log (x), for double-extended precision x values
+//                           10
 //
-//*********************************************************************
+// *********************************************************************
 //
 // Resources Used:
 //
 //    Floating-Point Registers: f8 (Input and Return Value)
-//                              f34-f82
+//                              f9,f33-f55,f99 
 //
 //    General Purpose Registers:
-//      r32-r56
-//      r53-r56 (Used to pass arguments to error handling routine)
+//      r32-r53
+//      r54-r57 (Used to pass arguments to error handling routine)
 //
-//    Predicate Registers:      p6-p13
+//    Predicate Registers:      p6-p15
 //
-//*********************************************************************
+// *********************************************************************
 //
 // IEEE Special Conditions:
 //
-//    Denormal fault raised on denormal inputs
+//    Denormal  fault raised on denormal inputs
 //    Overflow exceptions cannot occur  
 //    Underflow exceptions raised when appropriate for log1p 
+//    (Error Handling Routine called for underflow)
 //    Inexact raised when appropriate by algorithm
 //
+//    logl(inf) = inf
+//    logl(-inf) = QNaN 
+//    logl(+/-0) = -inf 
+//    logl(SNaN) = QNaN
+//    logl(QNaN) = QNaN
+//    logl(EM_special Values) = QNaN
 //    log1pl(inf) = inf
 //    log1pl(-inf) = QNaN 
 //    log1pl(+/-0) = +/-0 
@@ -85,37 +91,54 @@
 //    log1pl(SNaN) = QNaN
 //    log1pl(QNaN) = QNaN
 //    log1pl(EM_special Values) = QNaN
-//
-//*********************************************************************
-//
+//    log10l(inf) = inf
+//    log10l(-inf) = QNaN 
+//    log10l(+/-0) = -inf 
+//    log10l(SNaN) = QNaN
+//    log10l(QNaN) = QNaN
+//    log10l(EM_special Values) = QNaN
+//
+// *********************************************************************
+//
+// Computation is based on the following kernel.
+//
+// ker_log_64( in_FR    :  X,
+// 	    in_FR    :  E,
+// 	    in_FR    :  Em1,
+// 	    in_GR    :  Expo_Range,
+// 	    out_FR   :  Y_hi,
+// 	    out_FR   :  Y_lo,
+// 	    out_FR   :  Scale,
+// 	    out_PR   :  Safe  )
+// 
 // Overview
 //
 // The method consists of three cases.
 //
-// If      |X| < 2^(-80)	use case log1p_small;
-// else    |X| < 2^(-7)	        use case log_near1;
-// else      			use case log_regular;
+// If	|X+Em1| < 2^(-80)	use case log1pl_small;
+// elseif	|X+Em1| < 2^(-7)	use case log_near1;
+// else				use case log_regular;
 //
-// Case log1p_small:
+// Case log1pl_small:
 //
-//   log1pl( X ) = logl( X+1 ) can be approximated by X
+// logl( 1 + (X+Em1) ) can be approximated by (X+Em1).
 //
 // Case log_near1:
 //
-//   log1pl( X ) = log( X+1 ) can be approximated by a simple polynomial
-//   in W = X. This polynomial resembles the truncated Taylor
+//   logl( 1 + (X+Em1) ) can be approximated by a simple polynomial
+//   in W = X+Em1. This polynomial resembles the truncated Taylor
 //   series W - W^/2 + W^3/3 - ...
 // 
 // Case log_regular:
 //
 //   Here we use a table lookup method. The basic idea is that in
-//   order to compute logl(Arg) = log1pl (Arg-1) for an argument Arg in [1,2), 
-//   we construct a value G such that G*Arg is close to 1 and that
+//   order to compute logl(Arg) for an argument Arg in [1,2), we 
+//   construct a value G such that G*Arg is close to 1 and that
 //   logl(1/G) is obtainable easily from a table of values calculated
 //   beforehand. Thus
 //
-//      logl(Arg) = logl(1/G) + logl(G*Arg)
-//      	 = logl(1/G) + logl(1 + (G*Arg - 1))
+//	logl(Arg) = logl(1/G) + logl(G*Arg)
+//		 = logl(1/G) + logl(1 + (G*Arg - 1))
 //
 //   Because |G*Arg - 1| is small, the second term on the right hand
 //   side can be approximated by a short polynomial. We elaborate
@@ -123,9 +146,9 @@
 //
 //   Step 0: Initialization
 //
-//   We need to calculate logl( X+1 ). Obtain N, S_hi such that
+//   We need to calculate logl( E + X ). Obtain N, S_hi, S_lo such that
 //
-//      X+1 = 2^N * ( S_hi + S_lo )   exactly
+//	E + X = 2^N * ( S_hi + S_lo )	exactly
 //
 //   where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
 //   that |S_lo| <= ulp(S_hi).
@@ -134,8 +157,8 @@
 //
 //   Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
 //
-//      G := G_1 * G_2 * G_3
-//      r := (G * S_hi - 1) + G * S_lo
+//	G := G_1 * G_2 * G_3
+//	r := (G * S_hi - 1)  + G * S_lo
 //
 //   These G_j's have the property that the product is exactly 
 //   representable and that |r| < 2^(-12) as a result.
@@ -148,34 +171,61 @@
 //   Step 3: Reconstruction
 //
 //
-//   Finally, log1pl( X ) = logl( X+1 ) is given by
+//   Finally, logl( E + X ) is given by
 //
-//   logl( X+1 )   =   logl( 2^N * (S_hi + S_lo) )
+//   logl( E + X )   =   logl( 2^N * (S_hi + S_lo) )
 //                 ~=~  N*logl(2) + logl(1/G) + logl(1 + r)
 //                 ~=~  N*logl(2) + logl(1/G) + poly(r).
 //
 // **** Algorithm ****
 //
-// Case log1p_small:
-//
-// Although log1pl(X) is basically X, we would like to preserve the inexactness
-// nature as well as consistent behavior under different rounding modes.
-// We can do this by computing the result as 
-//    
-//     log1pl(X) = X - X*X
-//
+// Case log1pl_small:
+//
+// Although logl(1 + (X+Em1)) is basically X+Em1, we would like to 
+// preserve the inexactness nature as well as consistent behavior
+// under different rounding modes. Note that this case can only be
+// taken if E is set to be 1.0. In this case, Em1 is zero, and that
+// X can be very tiny and thus the final result can possibly underflow.
+// Thus, we compare X against a threshold that is dependent on the
+// input Expo_Range. If |X| is smaller than this threshold, we set
+// SAFE to be FALSE. 
+//
+// The result is returned as Y_hi, Y_lo, and in the case of SAFE 
+// is FALSE, an additional value Scale is also returned. 
+//
+//	W    := X + Em1
+//      Threshold := Threshold_Table( Expo_Range )
+//      Tiny      := Tiny_Table( Expo_Range )
+//
+//      If ( |W| > Threshold ) then
+//         Y_hi  := W
+//         Y_lo  := -W*W
+//      Else
+//         Y_hi  := W
+//         Y_lo  := -Tiny
+//         Scale := 2^(-100)
+//         Safe  := FALSE
+//      EndIf
+//
+//
+// One may think that Y_lo should be -W*W/2; however, it does not matter
+// as Y_lo will be rounded off completely except for the correct effect in 
+// directed rounding. Clearly -W*W is simplier to compute. Moreover,
+// because of the difference in exponent value, Y_hi + Y_lo or 
+// Y_hi + Scale*Y_lo is always inexact.
 //
 // Case log_near1:
 //
 // Here we compute a simple polynomial. To exploit parallelism, we split
 // the polynomial into two portions.
 // 
-//       W := X
-//       Wsq := W * W
-//       W4  := Wsq*Wsq
-//       W6  := W4*Wsq
-//       Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
-//       Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
+// 	W := X + Em1
+// 	Wsq := W * W
+// 	W4  := Wsq*Wsq
+// 	W6  := W4*Wsq
+// 	Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
+// 	Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
+//      set lsb(Y_lo) to be 1
 //
 // Case log_regular:
 //
@@ -184,87 +234,89 @@
 //   Step 0. Initialization
 //   ----------------------
 //
-//   Z := X + 1
+//   Z := X + E
 //   N := unbaised exponent of Z
 //   S_hi := 2^(-N) * Z
-//   S_lo := 2^(-N) * { (max(X,1)-Z) + min(X,1) }
+//   S_lo := 2^(-N) * { (max(X,E)-Z) + min(X,E) }
+//
+//   Note that S_lo is always 0 for the case E = 0.
 //
 //   Step 1. Argument Reduction
 //   --------------------------
 //
 //   Let
 //
-//      Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
+//	Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
 //
 //   We obtain G_1, G_2, G_3 by the following steps.
 //
 //
-//      Define		X_0 := 1.d_1 d_2 ... d_14. This is extracted
-//      		from S_hi.
+//	Define		X_0 := 1.d_1 d_2 ... d_14. This is extracted
+//			from S_hi.
 //
-//      Define		A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
-//      		to lsb = 2^(-4).
+//	Define		A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
+//			to lsb = 2^(-4).
 //
-//      Define		index_1 := [ d_1 d_2 d_3 d_4 ].
+//	Define		index_1 := [ d_1 d_2 d_3 d_4 ].
 //
-//      Fetch 		Z_1 := (1/A_1) rounded UP in fixed point with
-//      fixed point	lsb = 2^(-15).
-//      		Z_1 looks like z_0.z_1 z_2 ... z_15
-//      	        Note that the fetching is done using index_1.
-//      		A_1 is actually not needed in the implementation
-//      		and is used here only to explain how is the value
-//      		Z_1 defined.
+//	Fetch 		Z_1 := (1/A_1) rounded UP in fixed point with
+//	fixed point	lsb = 2^(-15).
+//			Z_1 looks like z_0.z_1 z_2 ... z_15
+//		        Note that the fetching is done using index_1.
+//			A_1 is actually not needed in the implementation
+//			and is used here only to explain how is the value
+//			Z_1 defined.
 //
-//      Fetch		G_1 := (1/A_1) truncated to 21 sig. bits.
-//      floating pt.	Again, fetching is done using index_1. A_1
-//      		explains how G_1 is defined.
+//	Fetch		G_1 := (1/A_1) truncated to 21 sig. bits.
+//	floating pt.	Again, fetching is done using index_1. A_1
+//			explains how G_1 is defined.
 //
-//      Calculate	X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
-//      		     = 1.0 0 0 0 d_5 ... d_14
-//      		This is accomplised by integer multiplication.
-//      		It is proved that X_1 indeed always begin
-//      		with 1.0000 in fixed point.
+//	Calculate	X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
+//			     = 1.0 0 0 0 d_5 ... d_14
+//			This is accomplised by integer multiplication.
+//			It is proved that X_1 indeed always begin
+//			with 1.0000 in fixed point.
 //
 //
-//      Define		A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1 
-//      		truncated to lsb = 2^(-8). Similar to A_1,
-//      		A_2 is not needed in actual implementation. It
-//      		helps explain how some of the values are defined.
+//	Define		A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1 
+//			truncated to lsb = 2^(-8). Similar to A_1,
+//			A_2 is not needed in actual implementation. It
+//			helps explain how some of the values are defined.
 //
-//      Define		index_2 := [ d_5 d_6 d_7 d_8 ].
+//	Define		index_2 := [ d_5 d_6 d_7 d_8 ].
 //
-//      Fetch 		Z_2 := (1/A_2) rounded UP in fixed point with
-//      fixed point	lsb = 2^(-15). Fetch done using index_2.
-//      		Z_2 looks like z_0.z_1 z_2 ... z_15
+//	Fetch 		Z_2 := (1/A_2) rounded UP in fixed point with
+//	fixed point	lsb = 2^(-15). Fetch done using index_2.
+//			Z_2 looks like z_0.z_1 z_2 ... z_15
 //
-//      Fetch		G_2 := (1/A_2) truncated to 21 sig. bits.
-//      floating pt.
+//	Fetch		G_2 := (1/A_2) truncated to 21 sig. bits.
+//	floating pt.
 //
-//      Calculate	X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
-//      		     = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
-//      		This is accomplised by integer multiplication.
-//      		It is proved that X_2 indeed always begin
-//      		with 1.00000000 in fixed point.
+//	Calculate	X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
+//			     = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
+//			This is accomplised by integer multiplication.
+//			It is proved that X_2 indeed always begin
+//			with 1.00000000 in fixed point.
 //
 //
-//      Define		A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
-//      		This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
+//	Define		A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
+//			This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
 //
-//      Define		index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
+//	Define		index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
 //
-//      Fetch		G_3 := (1/A_3) truncated to 21 sig. bits.
-//      floating pt.	Fetch is done using index_3.
+//	Fetch		G_3 := (1/A_3) truncated to 21 sig. bits.
+//	floating pt.	Fetch is done using index_3.
 //
-//      Compute		G := G_1 * G_2 * G_3. 
+//	Compute		G := G_1 * G_2 * G_3. 
 //
-//      This is done exactly since each of G_j only has 21 sig. bits.
+//	This is done exactly since each of G_j only has 21 sig. bits.
 //
-//      Compute   
+//	Compute   
 //
-//      	r := (G*S_hi - 1) + G*S_lo using 2 FMA operations.
+//		r := (G*S_hi - 1) + G*S_lo   using 2 FMA operations.
 //
-//      Thus r approximates G*(S_hi + S_lo) - 1 to within a couple of
-//      rounding errors.
+//	thus, r approximates G*(S_hi+S_lo) - 1 to within a couple of 
+//	rounding errors.
 //
 //
 //  Step 2. Approximation
@@ -274,879 +326,1258 @@
 //   reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
 //   thus logl(1+r) can be approximated by a short polynomial:
 //
-//      logl(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
+//	logl(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
 //
 //
 //  Step 3. Reconstruction
 //  ----------------------
 //
-//   This step computes the desired result of logl(X+1):
+//   This step computes the desired result of logl(X+E):
 //
-//      logl(X+1) =   logl( 2^N * (S_hi + S_lo) )
-//      	  =   N*logl(2) + logl( S_hi + S_lo) )
-//      	  =   N*logl(2) + logl(1/G) +
-//      	      logl(1 + G * ( S_hi + S_lo ) - 1 )
+//	logl(X+E)  =   logl( 2^N * (S_hi + S_lo) )
+//		  =   N*logl(2) + logl( S_hi + S_lo )
+//		  =   N*logl(2) + logl(1/G) +
+//		      logl(1 + C*(S_hi+S_lo) - 1 )
 //
 //   logl(2), logl(1/G_j) are stored as pairs of (single,double) numbers:
 //   log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
 //   single-precision numbers and the low parts are double precision
 //   numbers. These have the property that
 //
-//      N*log2_hi + SUM ( log1byGj_hi )
+//	N*log2_hi + SUM ( log1byGj_hi )
 //
 //   is computable exactly in double-extended precision (64 sig. bits).
 //   Finally
 //
-//      Y_hi := N*log2_hi + SUM ( log1byGj_hi )
-//      Y_lo := poly_hi + [ poly_lo + 
-//              ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
+//	Y_hi := N*log2_hi + SUM ( log1byGj_hi )
+//	Y_lo := poly_hi + [ poly_lo + 
+//	        ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
+//      set lsb(Y_lo) to be 1
 //
 
-RODATA
-.align 64
-
-// ************* DO NOT CHANGE THE ORDER OF THESE TABLES *************
+#include "libm_support.h"
 
-// P_8, P_7, P_6, P_5, P_4, P_3, P_2, and P_1 
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
 
-LOCAL_OBJECT_START(Constants_P)
-//data4  0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
-//data4  0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
-//data4  0x73282DB0,0x9249248C,0x00003FFC,0x00000000
-//data4  0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
-//data4  0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
-//data4  0x00067ED5,0x80000000,0x0000BFFD,0x00000000
-//data4  0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
-//data4  0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
-data8  0xE3936754EFD62B15,0x00003FFB
-data8  0x8003B271A5E56381,0x0000BFFC
-data8  0x9249248C73282DB0,0x00003FFC
-data8  0xAAAAAA9F47305052,0x0000BFFC
-data8  0xCCCCCCCCCCD17FC9,0x00003FFC
-data8  0x8000000000067ED5,0x0000BFFD
-data8  0xAAAAAAAAAAAAAAAA,0x00003FFD
-data8  0xFFFFFFFFFFFFFFFE,0x0000BFFD
-LOCAL_OBJECT_END(Constants_P)
+// P_7, P_6, P_5, P_4, P_3, P_2, and P_1 
 
+.align 64
+Constants_P:
+ASM_TYPE_DIRECTIVE(Constants_P,@object)
+data4  0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
+data4  0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
+data4  0x73282DB0,0x9249248C,0x00003FFC,0x00000000
+data4  0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
+data4  0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
+data4  0x00067ED5,0x80000000,0x0000BFFD,0x00000000
+data4  0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
+data4  0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_P)
+ 
 // log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1 
 
-LOCAL_OBJECT_START(Constants_Q)
-//data4  0x00000000,0xB1721800,0x00003FFE,0x00000000 
-//data4  0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
-//data4  0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
-//data4  0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
-//data4  0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
-//data4  0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000 
-data8  0xB172180000000000,0x00003FFE
-data8  0x82E308654361C4C6,0x0000BFE2
-data8  0xCCCCCAF2328833CB,0x00003FFC
-data8  0x80000077A9D4BAFB,0x0000BFFD
-data8  0xAAAAAAAAAAABE3D2,0x00003FFD
-data8  0xFFFFFFFFFFFFDAB7,0x0000BFFD
-LOCAL_OBJECT_END(Constants_Q)
-
-// 1/ln10_hi, 1/ln10_lo
-
-LOCAL_OBJECT_START(Constants_1_by_LN10)
-//data4  0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
-//data4  0xACCF70C8,0xD56EAABE,0x00003FBB,0x00000000
-data8  0xDE5BD8A937287195,0x00003FFD
-data8  0xD56EAABEACCF70C8,0x00003FBB
-LOCAL_OBJECT_END(Constants_1_by_LN10)
-
-
-// Z1 - 16 bit fixed
+.align 64
+Constants_Q:
+ASM_TYPE_DIRECTIVE(Constants_Q,@object)
+data4  0x00000000,0xB1721800,0x00003FFE,0x00000000 
+data4  0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
+data4  0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
+data4  0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
+data4  0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
+data4  0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Q)
  
-LOCAL_OBJECT_START(Constants_Z_1)
-data4  0x00008000
-data4  0x00007879
-data4  0x000071C8
-data4  0x00006BCB
-data4  0x00006667
-data4  0x00006187
-data4  0x00005D18
-data4  0x0000590C
-data4  0x00005556
-data4  0x000051EC
-data4  0x00004EC5
-data4  0x00004BDB
-data4  0x00004925
-data4  0x0000469F
-data4  0x00004445
-data4  0x00004211
-LOCAL_OBJECT_END(Constants_Z_1)
-
-// G1 and H1 - IEEE single and h1 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h1)
-data4  0x3F800000,0x00000000
-data8  0x0000000000000000
-data4  0x3F70F0F0,0x3D785196
-data8  0x3DA163A6617D741C
-data4  0x3F638E38,0x3DF13843
-data8  0x3E2C55E6CBD3D5BB
-data4  0x3F579430,0x3E2FF9A0
-data8  0xBE3EB0BFD86EA5E7
-data4  0x3F4CCCC8,0x3E647FD6
-data8  0x3E2E6A8C86B12760
-data4  0x3F430C30,0x3E8B3AE7
-data8  0x3E47574C5C0739BA
-data4  0x3F3A2E88,0x3EA30C68
-data8  0x3E20E30F13E8AF2F
-data4  0x3F321640,0x3EB9CEC8
-data8  0xBE42885BF2C630BD
-data4  0x3F2AAAA8,0x3ECF9927
-data8  0x3E497F3497E577C6
-data4  0x3F23D708,0x3EE47FC5
-data8  0x3E3E6A6EA6B0A5AB
-data4  0x3F1D89D8,0x3EF8947D
-data8  0xBDF43E3CD328D9BE
-data4  0x3F17B420,0x3F05F3A1
-data8  0x3E4094C30ADB090A
-data4  0x3F124920,0x3F0F4303
-data8  0xBE28FBB2FC1FE510
-data4  0x3F0D3DC8,0x3F183EBF
-data8  0x3E3A789510FDE3FA
-data4  0x3F088888,0x3F20EC80
-data8  0x3E508CE57CC8C98F
-data4  0x3F042108,0x3F29516A
-data8  0xBE534874A223106C
-LOCAL_OBJECT_END(Constants_G_H_h1)
-
-// Z2 - 16 bit fixed
-
-LOCAL_OBJECT_START(Constants_Z_2)
-data4  0x00008000
-data4  0x00007F81
-data4  0x00007F02
-data4  0x00007E85
-data4  0x00007E08
-data4  0x00007D8D
-data4  0x00007D12
-data4  0x00007C98
-data4  0x00007C20
-data4  0x00007BA8
-data4  0x00007B31
-data4  0x00007ABB
-data4  0x00007A45
-data4  0x000079D1
-data4  0x0000795D
-data4  0x000078EB
-LOCAL_OBJECT_END(Constants_Z_2)
-
-// G2 and H2 - IEEE single and h2 - IEEE double
-
-LOCAL_OBJECT_START(Constants_G_H_h2)
-data4  0x3F800000,0x00000000
-data8  0x0000000000000000
-data4  0x3F7F00F8,0x3B7F875D
-data8  0x3DB5A11622C42273
-data4  0x3F7E03F8,0x3BFF015B
-data8  0x3DE620CF21F86ED3
-data4  0x3F7D08E0,0x3C3EE393
-data8  0xBDAFA07E484F34ED
-data4  0x3F7C0FC0,0x3C7E0586
-data8  0xBDFE07F03860BCF6
-data4  0x3F7B1880,0x3C9E75D2
-data8  0x3DEA370FA78093D6
-data4  0x3F7A2328,0x3CBDC97A
-data8  0x3DFF579172A753D0
-data4  0x3F792FB0,0x3CDCFE47
-data8  0x3DFEBE6CA7EF896B
-data4  0x3F783E08,0x3CFC15D0
-data8  0x3E0CF156409ECB43
-data4  0x3F774E38,0x3D0D874D
-data8  0xBE0B6F97FFEF71DF
-data4  0x3F766038,0x3D1CF49B
-data8  0xBE0804835D59EEE8
-data4  0x3F757400,0x3D2C531D
-data8  0x3E1F91E9A9192A74
-data4  0x3F748988,0x3D3BA322
-data8  0xBE139A06BF72A8CD
-data4  0x3F73A0D0,0x3D4AE46F
-data8  0x3E1D9202F8FBA6CF
-data4  0x3F72B9D0,0x3D5A1756
-data8  0xBE1DCCC4BA796223
-data4  0x3F71D488,0x3D693B9D
-data8  0xBE049391B6B7C239
-LOCAL_OBJECT_END(Constants_G_H_h2)
-
-// G3 and H3 - IEEE single and h3 - IEEE double 
-
-LOCAL_OBJECT_START(Constants_G_H_h3)
-data4  0x3F7FFC00,0x38800100
-data8  0x3D355595562224CD
-data4  0x3F7FF400,0x39400480
-data8  0x3D8200A206136FF6
-data4  0x3F7FEC00,0x39A00640
-data8  0x3DA4D68DE8DE9AF0
-data4  0x3F7FE400,0x39E00C41
-data8  0xBD8B4291B10238DC
-data4  0x3F7FDC00,0x3A100A21
-data8  0xBD89CCB83B1952CA
-data4  0x3F7FD400,0x3A300F22
-data8  0xBDB107071DC46826
-data4  0x3F7FCC08,0x3A4FF51C
-data8  0x3DB6FCB9F43307DB
-data4  0x3F7FC408,0x3A6FFC1D
-data8  0xBD9B7C4762DC7872
-data4  0x3F7FBC10,0x3A87F20B
-data8  0xBDC3725E3F89154A
-data4  0x3F7FB410,0x3A97F68B
-data8  0xBD93519D62B9D392
-data4  0x3F7FAC18,0x3AA7EB86
-data8  0x3DC184410F21BD9D
-data4  0x3F7FA420,0x3AB7E101
-data8  0xBDA64B952245E0A6
-data4  0x3F7F9C20,0x3AC7E701
-data8  0x3DB4B0ECAABB34B8
-data4  0x3F7F9428,0x3AD7DD7B
-data8  0x3D9923376DC40A7E
-data4  0x3F7F8C30,0x3AE7D474
-data8  0x3DC6E17B4F2083D3
-data4  0x3F7F8438,0x3AF7CBED
-data8  0x3DAE314B811D4394
-data4  0x3F7F7C40,0x3B03E1F3
-data8  0xBDD46F21B08F2DB1
-data4  0x3F7F7448,0x3B0BDE2F
-data8  0xBDDC30A46D34522B
-data4  0x3F7F6C50,0x3B13DAAA
-data8  0x3DCB0070B1F473DB
-data4  0x3F7F6458,0x3B1BD766
-data8  0xBDD65DDC6AD282FD
-data4  0x3F7F5C68,0x3B23CC5C
-data8  0xBDCDAB83F153761A
-data4  0x3F7F5470,0x3B2BC997
-data8  0xBDDADA40341D0F8F
-data4  0x3F7F4C78,0x3B33C711
-data8  0x3DCD1BD7EBC394E8
-data4  0x3F7F4488,0x3B3BBCC6
-data8  0xBDC3532B52E3E695
-data4  0x3F7F3C90,0x3B43BAC0
-data8  0xBDA3961EE846B3DE
-data4  0x3F7F34A0,0x3B4BB0F4
-data8  0xBDDADF06785778D4
-data4  0x3F7F2CA8,0x3B53AF6D
-data8  0x3DCC3ED1E55CE212
-data4  0x3F7F24B8,0x3B5BA620
-data8  0xBDBA31039E382C15
-data4  0x3F7F1CC8,0x3B639D12
-data8  0x3D635A0B5C5AF197
-data4  0x3F7F14D8,0x3B6B9444
-data8  0xBDDCCB1971D34EFC
-data4  0x3F7F0CE0,0x3B7393BC
-data8  0x3DC7450252CD7ADA
-data4  0x3F7F04F0,0x3B7B8B6D
-data8  0xBDB68F177D7F2A42
-LOCAL_OBJECT_END(Constants_G_H_h3)
-
-
-// Floating Point Registers
-
-FR_Input_X      = f8 
-
-FR_Y_hi         = f34  
-FR_Y_lo         = f35
-
-FR_Scale        = f36
-FR_X_Prime      = f37 
-FR_S_hi         = f38  
-FR_W            = f39
-FR_G            = f40
-
-FR_H            = f41
-FR_wsq          = f42 
-FR_w4           = f43
-FR_h            = f44
-FR_w6           = f45  
-
-FR_G2           = f46
-FR_H2           = f47
-FR_poly_lo      = f48
-FR_P8           = f49  
-FR_poly_hi      = f50
-
-FR_P7           = f51  
-FR_h2           = f52 
-FR_rsq          = f53  
-FR_P6           = f54
-FR_r            = f55  
-
-FR_log2_hi      = f56  
-FR_log2_lo      = f57  
-FR_p87          = f58  
-FR_p876         = f58  
-FR_p8765        = f58  
-FR_float_N      = f59 
-FR_Q4           = f60 
+// Z1 - 16 bit fixed, G1 and H1 - IEEE single 
+ 
+.align 64
+Constants_Z_G_H_h1:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h1,@object)
+data4  0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4  0x00007879,0x3F70F0F0,0x3D785196,0x00000000,0x617D741C,0x3DA163A6
+data4  0x000071C8,0x3F638E38,0x3DF13843,0x00000000,0xCBD3D5BB,0x3E2C55E6
+data4  0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000,0xD86EA5E7,0xBE3EB0BF
+data4  0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000,0x86B12760,0x3E2E6A8C
+data4  0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000,0x5C0739BA,0x3E47574C
+data4  0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000,0x13E8AF2F,0x3E20E30F
+data4  0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000,0xF2C630BD,0xBE42885B
+data4  0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000,0x97E577C6,0x3E497F34
+data4  0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000,0xA6B0A5AB,0x3E3E6A6E
+data4  0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000,0xD328D9BE,0xBDF43E3C
+data4  0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000,0x0ADB090A,0x3E4094C3
+data4  0x00004925,0x3F124920,0x3F0F4303,0x00000000,0xFC1FE510,0xBE28FBB2
+data4  0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000,0x10FDE3FA,0x3E3A7895
+data4  0x00004445,0x3F088888,0x3F20EC80,0x00000000,0x7CC8C98F,0x3E508CE5
+data4  0x00004211,0x3F042108,0x3F29516A,0x00000000,0xA223106C,0xBE534874
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h1)
+ 
+// Z2 - 16 bit fixed, G2 and H2 - IEEE single 
+
+.align 64 
+Constants_Z_G_H_h2:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h2,@object)
+data4  0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4  0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000,0x22C42273,0x3DB5A116
+data4  0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000,0x21F86ED3,0x3DE620CF
+data4  0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000,0x484F34ED,0xBDAFA07E
+data4  0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000,0x3860BCF6,0xBDFE07F0
+data4  0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000,0xA78093D6,0x3DEA370F
+data4  0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000,0x72A753D0,0x3DFF5791
+data4  0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000,0xA7EF896B,0x3DFEBE6C
+data4  0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000,0x409ECB43,0x3E0CF156
+data4  0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000,0xFFEF71DF,0xBE0B6F97
+data4  0x00007B31,0x3F766038,0x3D1CF49B,0x00000000,0x5D59EEE8,0xBE080483
+data4  0x00007ABB,0x3F757400,0x3D2C531D,0x00000000,0xA9192A74,0x3E1F91E9
+data4  0x00007A45,0x3F748988,0x3D3BA322,0x00000000,0xBF72A8CD,0xBE139A06
+data4  0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000,0xF8FBA6CF,0x3E1D9202
+data4  0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000,0xBA796223,0xBE1DCCC4
+data4  0x000078EB,0x3F71D488,0x3D693B9D,0x00000000,0xB6B7C239,0xBE049391
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h2)
+ 
+// G3 and H3 - IEEE single and h3 -IEEE double 
+
+.align 64 
+Constants_Z_G_H_h3:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h3,@object)
+data4  0x3F7FFC00,0x38800100,0x562224CD,0x3D355595
+data4  0x3F7FF400,0x39400480,0x06136FF6,0x3D8200A2
+data4  0x3F7FEC00,0x39A00640,0xE8DE9AF0,0x3DA4D68D
+data4  0x3F7FE400,0x39E00C41,0xB10238DC,0xBD8B4291
+data4  0x3F7FDC00,0x3A100A21,0x3B1952CA,0xBD89CCB8
+data4  0x3F7FD400,0x3A300F22,0x1DC46826,0xBDB10707
+data4  0x3F7FCC08,0x3A4FF51C,0xF43307DB,0x3DB6FCB9
+data4  0x3F7FC408,0x3A6FFC1D,0x62DC7872,0xBD9B7C47
+data4  0x3F7FBC10,0x3A87F20B,0x3F89154A,0xBDC3725E
+data4  0x3F7FB410,0x3A97F68B,0x62B9D392,0xBD93519D
+data4  0x3F7FAC18,0x3AA7EB86,0x0F21BD9D,0x3DC18441
+data4  0x3F7FA420,0x3AB7E101,0x2245E0A6,0xBDA64B95
+data4  0x3F7F9C20,0x3AC7E701,0xAABB34B8,0x3DB4B0EC
+data4  0x3F7F9428,0x3AD7DD7B,0x6DC40A7E,0x3D992337
+data4  0x3F7F8C30,0x3AE7D474,0x4F2083D3,0x3DC6E17B
+data4  0x3F7F8438,0x3AF7CBED,0x811D4394,0x3DAE314B
+data4  0x3F7F7C40,0x3B03E1F3,0xB08F2DB1,0xBDD46F21
+data4  0x3F7F7448,0x3B0BDE2F,0x6D34522B,0xBDDC30A4
+data4  0x3F7F6C50,0x3B13DAAA,0xB1F473DB,0x3DCB0070
+data4  0x3F7F6458,0x3B1BD766,0x6AD282FD,0xBDD65DDC
+data4  0x3F7F5C68,0x3B23CC5C,0xF153761A,0xBDCDAB83
+data4  0x3F7F5470,0x3B2BC997,0x341D0F8F,0xBDDADA40
+data4  0x3F7F4C78,0x3B33C711,0xEBC394E8,0x3DCD1BD7
+data4  0x3F7F4488,0x3B3BBCC6,0x52E3E695,0xBDC3532B
+data4  0x3F7F3C90,0x3B43BAC0,0xE846B3DE,0xBDA3961E
+data4  0x3F7F34A0,0x3B4BB0F4,0x785778D4,0xBDDADF06
+data4  0x3F7F2CA8,0x3B53AF6D,0xE55CE212,0x3DCC3ED1
+data4  0x3F7F24B8,0x3B5BA620,0x9E382C15,0xBDBA3103
+data4  0x3F7F1CC8,0x3B639D12,0x5C5AF197,0x3D635A0B
+data4  0x3F7F14D8,0x3B6B9444,0x71D34EFC,0xBDDCCB19
+data4  0x3F7F0CE0,0x3B7393BC,0x52CD7ADA,0x3DC74502
+data4  0x3F7F04F0,0x3B7B8B6D,0x7D7F2A42,0xBDB68F17
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h3)
+ 
+// 
+//  Exponent Thresholds and Tiny Thresholds
+//  for 8, 11, 15, and 17 bit exponents
+// 
+//  Expo_Range             Value
+// 
+//  0 (8  bits)            2^(-126)
+//  1 (11 bits)            2^(-1022)
+//  2 (15 bits)            2^(-16382)
+//  3 (17 bits)            2^(-16382)
+// 
+//  Tiny_Table
+//  ----------
+//  Expo_Range             Value
+// 
+//  0 (8  bits)            2^(-16382)
+//  1 (11 bits)            2^(-16382)
+//  2 (15 bits)            2^(-16382)
+//  3 (17 bits)            2^(-16382)
+// 
 
-FR_p43          = f61  
-FR_p432         = f61  
-FR_p4321        = f61  
-FR_P4           = f62  
-FR_G3           = f63  
-FR_H3           = f64  
-FR_h3           = f65  
+.align 64 
+Constants_Threshold:
+ASM_TYPE_DIRECTIVE(Constants_Threshold,@object)
+data4  0x00000000,0x80000000,0x00003F81,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00003C01,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Threshold)
 
-FR_Q3           = f66  
-FR_P3           = f67  
-FR_Q2           = f68 
-FR_P2           = f69  
-FR_1LN10_hi     = f70 
+.align 64
+Constants_1_by_LN10:
+ASM_TYPE_DIRECTIVE(Constants_1_by_LN10,@object)
+data4  0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
+data4  0xACCF70C8,0xD56EAABE,0x00003FBB,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_1_by_LN10)
+
+FR_Input_X = f8 
+FR_Neg_One = f9
+FR_E       = f33
+FR_Em1     = f34
+FR_Y_hi    = f34  
+// Shared with Em1
+FR_Y_lo    = f35
+FR_Scale   = f36
+FR_X_Prime = f37 
+FR_Z       = f38 
+FR_S_hi    = f38  
+// Shared with Z  
+FR_W       = f39
+FR_G       = f40
+FR_wsq     = f40 
+// Shared with G 
+FR_H       = f41
+FR_w4      = f41
+// Shared with H  
+FR_h       = f42
+FR_w6      = f42  
+// Shared with h     
+FR_G_tmp   = f43
+FR_poly_lo = f43
+// Shared with G_tmp 
+FR_P8      = f43  
+// Shared with G_tmp 
+FR_H_tmp   = f44
+FR_poly_hi = f44
+  // Shared with H_tmp
+FR_P7      = f44  
+// Shared with H_tmp
+FR_h_tmp   = f45 
+FR_rsq     = f45  
+// Shared with h_tmp
+FR_P6      = f45
+// Shared with h_tmp
+FR_abs_W   = f46
+FR_r       = f46  
+// Shared with abs_W  
+FR_AA      = f47 
+FR_log2_hi = f47  
+// Shared with AA  
+FR_BB          = f48
+FR_log2_lo     = f48  
+// Shared with BB  
+FR_S_lo        = f49 
+FR_two_negN    = f50  
+FR_float_N     = f51 
+FR_Q4          = f52 
+FR_dummy       = f52  
+// Shared with Q4
+FR_P4          = f52  
+// Shared with Q4
+FR_Threshold    = f52
+// Shared with Q4
+FR_Q3          = f53  
+FR_P3          = f53  
+// Shared with Q3
+FR_Tiny        = f53  
+// Shared with Q3
+FR_Q2          = f54 
+FR_P2          = f54  
+// Shared with Q2
+FR_1LN10_hi     = f54 
+// Shared with Q2
+FR_Q1           = f55 
+FR_P1           = f55 
+// Shared with Q1 
+FR_1LN10_lo     = f55 
+// Shared with Q1 
+FR_P5           = f98 
+FR_SCALE        = f98 
+FR_Output_X_tmp = f99 
+
+GR_Expo_Range   = r32
+GR_Table_Base   = r34
+GR_Table_Base1  = r35
+GR_Table_ptr    = r36 
+GR_Index2       = r37 
+GR_signif       = r38 
+GR_X_0          = r39 
+GR_X_1          = r40 
+GR_X_2          = r41 
+GR_Z_1          = r42 
+GR_Z_2          = r43 
+GR_N            = r44 
+GR_Bias         = r45 
+GR_M            = r46 
+GR_ScaleN       = r47  
+GR_Index3       = r48 
+GR_Perturb      = r49 
+GR_Table_Scale  = r50 
 
-FR_Q1           = f71 
-FR_P1           = f72 
-FR_1LN10_lo     = f73 
-FR_P5           = f74 
-FR_rcub         = f75 
+//
+// Added for unwind support
+//
 
-FR_Output_X_tmp = f76 
-FR_Neg_One      = f77 
-FR_Z            = f78 
-FR_AA           = f79 
-FR_BB           = f80 
-FR_S_lo         = f81 
-FR_2_to_minus_N = f82 
+GR_SAVE_PFS         = r51
+GR_SAVE_B0          = r52
+GR_SAVE_GP          = r53
+GR_Parameter_X      = r54
+GR_Parameter_Y      = r55
+GR_Parameter_RESULT = r56
+GR_Parameter_TAG    = r57
 
 FR_X                = f8
 FR_Y                = f0
-FR_RESULT           = f76
-
+FR_RESULT           = f99
 
-// General Purpose Registers
+.section .text
+.proc logl#
+.global logl#
+.align 64 
+logl:
+#ifdef _LIBC
+.global __ieee754_logl
+__ieee754_logl:
+#endif 
+{ .mfi
+alloc r32 = ar.pfs,0,22,4,0
+(p0)  fnorm.s1 FR_X_Prime = FR_Input_X 
+(p0)  cmp.eq.unc  p7, p0 = r0, r0 
+}
+{ .mfi
+(p0)  cmp.ne.unc  p14, p0 = r0, r0 
+(p0)  fclass.m.unc p6, p0 =  FR_Input_X, 0x1E3 
+(p0)  cmp.ne.unc  p15, p0 = r0, r0 ;; 
+}
+{ .mfi
+ nop.m 0
+(p0)  fclass.nm.unc p10, p0 =  FR_Input_X, 0x1FF 
+ nop.i 0
+}
+{ .mfi
+nop.m 999
+(p0)  fcmp.eq.unc.s1 p8, p0 =  FR_Input_X, f0 
+ nop.i 0
+}
+{ .mfi
+	nop.m 999
+(p0)  fcmp.lt.unc.s1 p13, p0 =  FR_Input_X, f0 
+ nop.i 0
+}
+{ .mfi
+	nop.m 999
+(p0)  fcmp.eq.unc.s1 p9, p0 =  FR_Input_X, f1 
+	nop.i 999 ;;
+}
+{ .mfi
+	nop.m 999
+(p0)  fsub.s1 FR_Em1 = f0,f1 
+	nop.i 999
+}
+{ .mfb
+	nop.m 999
+(p0)  fadd FR_E = f0,f0 
+//     
+//    Create E = 0 and Em1 = -1 
+//    Check for X == 1, meaning logl(1)
+//    Check for X < 0, meaning logl(negative)
+//    Check for X == 0, meaning logl(0)
+//    Identify NatVals, NaNs, Infs. 
+//    Identify EM unsupporteds. 
+//    Identify Negative values - us S1 so as
+//    not to raise denormal operand exception 
+//    Set p15 to false for log
+//    Set p14 to false for log
+//    Set p7 true for log and log1p
+//    
+(p0)  br.cond.sptk L(LOGL_BEGIN) ;; 
+}
 
-GR_ad_p         = r33
-GR_Index1       = r34 
-GR_Index2       = r35 
-GR_signif       = r36 
-GR_X_0          = r37 
-GR_X_1          = r38 
-GR_X_2          = r39 
-GR_minus_N      = r39
-GR_Z_1          = r40 
-GR_Z_2          = r41 
-GR_N            = r42 
-GR_Bias         = r43 
-GR_M            = r44 
-GR_Index3       = r45 
-GR_exp_2tom80   = r45 
-GR_ad_p2        = r46
-GR_exp_mask     = r47 
-GR_exp_2tom7    = r48 
-GR_ad_ln10      = r49 
-GR_ad_tbl_1     = r50
-GR_ad_tbl_2     = r51
-GR_ad_tbl_3     = r52
-GR_ad_q         = r53
-GR_ad_z_1       = r54
-GR_ad_z_2       = r55
-GR_ad_z_3       = r56
-GR_minus_N      = r39
+.endp logl
+ASM_SIZE_DIRECTIVE(logl)
 
-//
-// Added for unwind support
-//
+.section .text
+.proc log10l#
+.global log10l#
+.align 64 
+log10l:
+#ifdef _LIBC
+.global __ieee754_log10l
+__ieee754_log10l:
+#endif
+{ .mfi
+alloc r32 = ar.pfs,0,22,4,0
+(p0)  fadd FR_E = f0,f0 
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p0)  fsub.s1 FR_Em1 = f0,f1 
+      nop.i 0
+}
+{ .mfi
+(p0)  cmp.ne.unc  p15, p0 = r0, r0 
+(p0)  fcmp.eq.unc.s1 p9, p0 =  FR_Input_X, f1 
+      nop.i 0
+}
+{ .mfi
+(p0)  cmp.eq.unc  p14, p0 = r0, r0 
+(p0)  fcmp.lt.unc.s1 p13, p0 =  FR_Input_X, f0 
+(p0)  cmp.ne.unc  p7, p0 = r0, r0 ;; 
+}
+{ .mfi
+	nop.m 999
+(p0)  fcmp.eq.unc.s1 p8, p0 =  FR_Input_X, f0 
+	nop.i 999
+}
+{ .mfi
+	nop.m 999
+(p0)  fclass.nm.unc p10, p0 =  FR_Input_X, 0x1FF 
+	nop.i 999 ;;
+}
+{ .mfi
+	nop.m 999
+(p0)  fclass.m.unc p6, p0 =  FR_Input_X, 0x1E3 
+	nop.i 999
+}
+{ .mfb
+	nop.m 999
+(p0)  fnorm.s1 FR_X_Prime = FR_Input_X 
+//     
+//    Create E = 0 and Em1 = -1 
+//    Check for X == 1, meaning logl(1)
+//    Check for X < 0, meaning logl(negative)
+//    Check for X == 0, meaning logl(0)
+//    Identify NatVals, NaNs, Infs. 
+//    Identify EM unsupporteds. 
+//    Identify Negative values - us S1 so as
+//    Identify Negative values - us S1 so as
+//    not to raise denormal operand exception 
+//    Set p15 to false for log10
+//    Set p14 to true for log10
+//    Set p7 to false for log10
+//    
+(p0)  br.cond.sptk L(LOGL_BEGIN) ;; 
+}
 
-GR_SAVE_PFS         = r50
-GR_SAVE_B0          = r51
-GR_SAVE_GP          = r52
-GR_Parameter_X      = r53
-GR_Parameter_Y      = r54
-GR_Parameter_RESULT = r55
-GR_Parameter_TAG    = r56
+.endp log10l
+ASM_SIZE_DIRECTIVE(log10l)
 
 .section .text
-GLOBAL_IEEE754_ENTRY(log1pl)
+.proc log1pl#
+.global log1pl#
+.align 64 
+log1pl:
+#ifdef _LIBC
+.global __log1pl
+__log1pl:
+#endif
 { .mfi
-      alloc r32 = ar.pfs,0,21,4,0
-      fclass.m p6, p0 =  FR_Input_X, 0x1E3  // Test for natval, nan, inf
-      nop.i 999
+alloc r32 = ar.pfs,0,22,4,0
+(p0)  fsub.s1 FR_Neg_One = f0,f1 
+(p0)  cmp.eq.unc  p7, p0 = r0, r0 
 }
 { .mfi
-      addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
-      fma.s1 FR_Z = FR_Input_X, f1, f1      // x+1
-      nop.i 999
+(p0)  cmp.ne.unc  p14, p0 = r0, r0 
+(p0)  fnorm.s1 FR_X_Prime = FR_Input_X 
+(p0)  cmp.eq.unc  p15, p0 = r0, r0 ;; 
+}
+{ .mfi
+      nop.m 0
+(p0)  fclass.m.unc p6, p0 =  FR_Input_X, 0x1E3 
+      nop.i 0
 }
-;;
-
 { .mfi
       nop.m 999
-      fmerge.ns FR_Neg_One = f1, f1         // Form -1.0
-      nop.i 999
+(p0)  fclass.nm.unc p10, p0 =  FR_Input_X, 0x1FF 
+      nop.i 0
 }
 { .mfi
       nop.m 999
-      fnorm.s1 FR_X_Prime = FR_Input_X      // Normalize x
-      nop.i 999
+(p0)  fcmp.eq.unc.s1 p9, p0 =  FR_Input_X, f0 
+      nop.i 0 
 }
-;;
-
 { .mfi
-      ld8    GR_ad_z_1 = [GR_ad_z_1]          // Get pointer to Constants_Z_1
-      nop.f 999
-      mov GR_exp_2tom7 = 0x0fff8              // Exponent of 2^-7
+      nop.m 999
+(p0)  fadd FR_Em1 = f0,f0 
+      nop.i 999 ;;
 }
-;;
-
-{ .mfb
-      getf.sig GR_signif = FR_Z               // Get significand of x+1
-      fcmp.eq.s1 p9, p0 =  FR_Input_X, f0     // Test for x=0
-(p6)  br.cond.spnt LOG1P_special              // Branch for nan, inf, natval
+{ .mfi
+	nop.m 999
+(p0)  fadd FR_E = f0,f1 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-      add   GR_ad_tbl_1 = 0x040, GR_ad_z_1    // Point to Constants_G_H_h1
-      fcmp.lt.s1 p13, p0 =  FR_X_Prime, FR_Neg_One // Test for x<-1
-      add   GR_ad_p = -0x100, GR_ad_z_1       // Point to Constants_P
+	nop.m 999
+(p0)  fcmp.eq.unc.s1 p8, p0 =  FR_Input_X, FR_Neg_One 
+	nop.i 999
 }
 { .mfi
-      add   GR_ad_z_2 = 0x140, GR_ad_z_1      // Point to Constants_Z_2
-      nop.f 999
-      add   GR_ad_tbl_2 = 0x180, GR_ad_z_1    // Point to Constants_G_H_h2
+	nop.m 999
+(p0)  fcmp.lt.unc.s1 p13, p0 =  FR_Input_X, FR_Neg_One 
+	nop.i 999
 }
-;;
-
+L(LOGL_BEGIN): 
 { .mfi
-      add   GR_ad_q = 0x080, GR_ad_p          // Point to Constants_Q
-      fcmp.eq.s1 p8, p0 =  FR_X_Prime, FR_Neg_One // Test for x=-1
-      extr.u GR_Index1 = GR_signif, 59, 4     // Get high 4 bits of signif
+	nop.m 999
+(p0)  fadd.s1 FR_Z = FR_X_Prime, FR_E 
+	nop.i 999
 }
-{ .mfb
-      add   GR_ad_tbl_3 = 0x280, GR_ad_z_1    // Point to Constants_G_H_h3
-      nop.f 999
-(p9)  br.ret.spnt  b0                         // Exit if x=0, return input
+{ .mlx
+	nop.m 999
+(p0)  movl GR_Table_Scale = 0x0000000000000018 ;; 
 }
-;;
-
-{ .mfi
-      shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1  // Point to Z_1
-      fclass.nm p10, p0 =  FR_Input_X, 0x1FF  // Test for unsupported
-      extr.u GR_X_0 = GR_signif, 49, 15       // Get high 15 bits of significand
+{ .mmi
+	nop.m 999
+	nop.m 999
+//     
+//    Create E = 1 and Em1 = 0 
+//    Check for X == 0, meaning logl(1+0)
+//    Check for X < -1, meaning logl(negative)
+//    Check for X == -1, meaning logl(0)
+//    Normalize x 
+//    Identify NatVals, NaNs, Infs. 
+//    Identify EM unsupporteds. 
+//    Identify Negative values - us S1 so as
+//    not to raise denormal operand exception 
+//    Set p15 to true for log1p
+//    Set p14 to false for log1p
+//    Set p7 true for log and log1p
+//    
+(p0)  addl GR_Table_Base = @ltoff(Constants_Z_G_H_h1#),gp
 }
 { .mfi
-      ldfe FR_P8 = [GR_ad_p],16               // Load P_8 for near1 path
-      fsub.s1 FR_W = FR_X_Prime, f0           // W = x
-      add   GR_ad_ln10 = 0x060, GR_ad_q       // Point to Constants_1_by_LN10
+      nop.m 999
+(p0)  fmax.s1 FR_AA = FR_X_Prime, FR_E 
+      nop.i 999 ;;
 }
-;;
-
 { .mfi
-      ld4 GR_Z_1 = [GR_ad_z_1]                // Load Z_1
-      fmax.s1  FR_AA = FR_X_Prime, f1         // For S_lo, form AA = max(X,1.0)
-      mov GR_exp_mask = 0x1FFFF               // Create exponent mask
+      ld8    GR_Table_Base = [GR_Table_Base]
+(p0)  fmin.s1 FR_BB = FR_X_Prime, FR_E 
+      nop.i 999
+}
+{ .mfb
+      nop.m 999
+(p0)  fadd.s1 FR_W = FR_X_Prime, FR_Em1 
+//     
+//    Begin load of constants base
+//    FR_Z = Z = |x| + E 
+//    FR_W = W = |x| + Em1
+//    AA = fmax(|x|,E)
+//    BB = fmin(|x|,E)
+//
+(p6)  br.cond.spnt L(LOGL_64_special) ;; 
 }
 { .mib
-      shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1  // Point to G_1
-      mov GR_Bias = 0x0FFFF                   // Create exponent bias
-(p13) br.cond.spnt LOG1P_LT_Minus_1           // Branch if x<-1
+	nop.m 999
+	nop.i 999
+(p10) br.cond.spnt L(LOGL_64_unsupported) ;; 
 }
-;;
-
-{ .mfb
-      ldfps  FR_G, FR_H = [GR_ad_tbl_1],8     // Load G_1, H_1
-      fmerge.se FR_S_hi =  f1,FR_Z            // Form |x+1|
-(p8)  br.cond.spnt LOG1P_EQ_Minus_1           // Branch if x=-1
+{ .mib
+	nop.m 999
+	nop.i 999
+(p13) br.cond.spnt L(LOGL_64_negative) ;; 
 }
-;;
-
-{ .mmb
-      getf.exp GR_N =  FR_Z                   // Get N = exponent of x+1
-      ldfd  FR_h = [GR_ad_tbl_1]              // Load h_1
-(p10) br.cond.spnt LOG1P_unsupported          // Branch for unsupported type
+{ .mib
+(p0)  getf.sig GR_signif = FR_Z 
+	nop.i 999
+(p9)  br.cond.spnt L(LOGL_64_one) ;; 
 }
-;;
-
-{ .mfi
-      ldfe FR_log2_hi = [GR_ad_q],16          // Load log2_hi
-      fcmp.eq.s0 p8, p0 =  FR_Input_X, f0     // Dummy op to flag denormals
-      pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15    // Get bits 30-15 of X_0 * Z_1
+{ .mib
+	nop.m 999
+	nop.i 999
+(p8)  br.cond.spnt L(LOGL_64_zero) ;; 
 }
-;;
-
+{ .mfi
+(p0)  getf.exp GR_N =  FR_Z 
+//   
+//    Raise possible denormal operand exception 
+//    Create Bias
+// 
+//    This function computes ln( x + e ) 
+//    Input  FR 1: FR_X   = FR_Input_X          
+//    Input  FR 2: FR_E   = FR_E
+//    Input  FR 3: FR_Em1 = FR_Em1 
+//    Input  GR 1: GR_Expo_Range = GR_Expo_Range = 1
+//    Output FR 4: FR_Y_hi  
+//    Output FR 5: FR_Y_lo  
+//    Output FR 6: FR_Scale  
+//    Output PR 7: PR_Safe  
 //
-//    For performance, don't use result of pmpyshr2.u for 4 cycles.
+(p0)  fsub.s1 FR_S_lo = FR_AA, FR_Z 
 //
+//    signif = getf.sig(Z)
+//    abs_W = fabs(w)
+//
+(p0)  extr.u GR_Table_ptr = GR_signif, 59, 4 ;; 
+}
+{ .mfi
+	nop.m 999
+(p0)  fmerge.se FR_S_hi =  f1,FR_Z 
+(p0)  extr.u GR_X_0 = GR_signif, 49, 15  
+}
 { .mmi
-      ldfe FR_log2_lo = [GR_ad_q],16          // Load log2_lo
-      sub GR_N = GR_N, GR_Bias 
-      mov GR_exp_2tom80 = 0x0ffaf             // Exponent of 2^-80
+       nop.m 999
+       nop.m 999
+(p0)  addl GR_Table_Base1 = @ltoff(Constants_Z_G_H_h2#),gp ;; 
+}
+{ .mlx
+      ld8    GR_Table_Base1 = [GR_Table_Base1]
+(p0)  movl GR_Bias = 0x000000000000FFFF ;; 
 }
-;;
-
 { .mfi
-      ldfe FR_Q4 = [GR_ad_q],16               // Load Q4
-      fms.s1  FR_S_lo = FR_AA, f1, FR_Z       // Form S_lo = AA - Z 
-      sub GR_minus_N = GR_Bias, GR_N          // Form exponent of 2^(-N)
+	nop.m 999
+(p0)  fabs FR_abs_W =  FR_W 
+(p0)  pmpyshr2.u GR_Table_ptr = GR_Table_ptr,GR_Table_Scale,0 
 }
-;;
-
-{ .mmf
-      ldfe FR_Q3 = [GR_ad_q],16               // Load Q3
-      setf.sig FR_float_N = GR_N   // Put integer N into rightmost significand
-      fmin.s1  FR_BB = FR_X_Prime, f1         // For S_lo, form BB = min(X,1.0)
+{ .mfi
+	nop.m 999
+//    
+//    Branch out for special input values 
+//    
+(p0)  fcmp.lt.unc.s0 p8, p0 =  FR_Input_X, f0 
+	nop.i 999 ;;
 }
-;;
-
+{ .mfi
+	nop.m 999
+//
+//    X_0 = extr.u(signif,49,15)
+//    Index1 = extr.u(signif,59,4)
+//
+(p0)  fadd.s1 FR_S_lo = FR_S_lo, FR_BB 
+	nop.i 999 ;;
+}
+{ .mii
+	nop.m 999
+	nop.i 999 ;;
+//
+//    Offset_to_Z1 = 24 * Index1
+//    For performance, don't use result
+//    for 3 or 4 cycles.
+//
+(p0)  add GR_Table_ptr = GR_Table_ptr, GR_Table_Base ;; 
+}
+//
+//    Add Base to Offset for Z1
+//    Create Bias
 { .mmi
-      getf.exp GR_M = FR_W                    // Get signexp of w = x
-      ldfe FR_Q2 = [GR_ad_q],16               // Load Q2
-      extr.u GR_Index2 = GR_X_1, 6, 4         // Extract bits 6-9 of X_1 
+(p0)  ld4 GR_Z_1 = [GR_Table_ptr],4 ;; 
+(p0)  ldfs  FR_G = [GR_Table_ptr],4 
+	nop.i 999 ;;
 }
-;;
-
 { .mmi
-      ldfe FR_Q1 = [GR_ad_q]                  // Load Q1
-      shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2  // Point to Z_2
-      add GR_ad_p2  = 0x30,GR_ad_p            // Point to P_4
+(p0)  ldfs  FR_H = [GR_Table_ptr],8 ;; 
+(p0)  ldfd  FR_h = [GR_Table_ptr],0 
+(p0)  pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 
+}
+//
+//    Load Z_1 
+//    Get Base of Table2 
+//
+{ .mfi
+(p0)  getf.exp GR_M = FR_abs_W 
+	nop.f 999
+	nop.i 999 ;;
+}
+{ .mii
+	nop.m 999
+	nop.i 999 ;;
+//
+//    M = getf.exp(abs_W)
+//    S_lo = AA - Z
+//    X_1 = pmpyshr2(X_0,Z_1,15)
+//
+(p0)  sub GR_M = GR_M, GR_Bias ;; 
+}
+//     
+//    M = M - Bias
+//    Load G1
+//    N = getf.exp(Z)
+//
+{ .mii
+(p0)  cmp.gt.unc  p11, p0 =  -80, GR_M 
+(p0)  cmp.gt.unc  p12, p0 =  -7, GR_M ;; 
+(p0)  extr.u GR_Index2 = GR_X_1, 6, 4 ;; 
+}
+{ .mib
+	nop.m 999
+//
+//    if -80 > M, set p11
+//    Index2 = extr.u(X_1,6,4)
+//    if -7  > M, set p12
+//    Load H1
+//
+(p0)  pmpyshr2.u GR_Index2 = GR_Index2,GR_Table_Scale,0 
+(p11) br.cond.spnt L(log1pl_small) ;; 
+}
+{ .mib
+      nop.m 999
+	nop.i 999
+(p12) br.cond.spnt L(log1pl_near) ;; 
+}
+{ .mii
+(p0)  sub GR_N = GR_N, GR_Bias 
+//
+//    poly_lo = r * poly_lo 
+//
+(p0)  add GR_Perturb = 0x1, r0 ;; 
+(p0)  sub GR_ScaleN = GR_Bias, GR_N  
+}
+{ .mii
+(p0)  setf.sig FR_float_N = GR_N 
+	nop.i 999 ;;
+//
+//    Prepare Index2 - pmpyshr2.u(X_1,Z_2,15)
+//    Load h1
+//    S_lo = S_lo + BB 
+//    Branch for -80 > M
+//   
+(p0)  add GR_Index2 = GR_Index2, GR_Table_Base1
 }
-;;
-
 { .mmi
-      ld4 GR_Z_2 = [GR_ad_z_2]                // Load Z_2
-      shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2  // Point to G_2
-      and GR_M = GR_exp_mask, GR_M            // Get exponent of w = x
+(p0)  setf.exp FR_two_negN = GR_ScaleN 
+      nop.m 999
+(p0)  addl GR_Table_Base = @ltoff(Constants_Z_G_H_h3#),gp ;; 
 }
-;;
-
+//
+//    Index2 points to Z2
+//    Branch for -7 > M
+//
+{ .mmb
+(p0)  ld4 GR_Z_2 = [GR_Index2],4 
+(p0)  ld8 GR_Table_Base = [GR_Table_Base] 
+	nop.b 999 ;;
+}
+(p0)  nop.i 999
+//
+//    Load Z_2
+//    N = N - Bias
+//    Tablebase points to Table3
+//
 { .mmi
-      ldfps  FR_G2, FR_H2 = [GR_ad_tbl_2],8   // Load G_2, H_2
-      cmp.lt  p8, p9 =  GR_M, GR_exp_2tom7    // Test |x| < 2^-7
-      cmp.lt  p7, p0 =  GR_M, GR_exp_2tom80   // Test |x| < 2^-80
+(p0)  ldfs  FR_G_tmp = [GR_Index2],4 ;; 
+//
+//    Load G_2
+//    pmpyshr2  X_2= (X_1,Z_2,15)
+//    float_N = setf.sig(N)
+//    ScaleN = Bias - N
+//
+(p0)  ldfs  FR_H_tmp = [GR_Index2],8 
+	nop.i 999 ;;
 }
-;;
-
-// Small path is separate code
-//  p7 is for the small path: |x| < 2^-80
-// near1 and regular paths are merged.
-//  p8 is for the near1 path: |x| < 2^-7
-//  p9 is for regular path:   |x| >= 2^-7
-
+//
+//    Load H_2
+//    two_negN = setf.exp(scaleN)
+//    G = G_1 * G_2
+//
 { .mfi
-      ldfd  FR_h2 = [GR_ad_tbl_2]             // Load h_2
-      nop.f 999
-      nop.i 999
+(p0)  ldfd  FR_h_tmp = [GR_Index2],0 
+	nop.f 999
+(p0)  pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 ;; 
 }
-{ .mfb
-(p9)  setf.exp FR_2_to_minus_N = GR_minus_N   // Form 2^(-N)
-(p7)  fnma.s0  f8 = FR_X_Prime, FR_X_Prime, FR_X_Prime // Result x - x*x
-(p7)  br.ret.spnt  b0                         // Branch if |x| < 2^-80
+{ .mii
+	nop.m 999
+(p0)  extr.u GR_Index3 = GR_X_2, 1, 5 ;; 
+//
+//    Load h_2
+//    H = H_1 + H_2 
+//    h = h_1 + h_2 
+//    Index3 = extr.u(X_2,1,5)
+//
+(p0)  shladd GR_Index3 = GR_Index3,4,GR_Table_Base 
 }
-;;
-
 { .mmi
-(p8)  ldfe FR_P7 = [GR_ad_p],16               // Load P_7 for near1 path
-(p8)  ldfe FR_P4 = [GR_ad_p2],16              // Load P_4 for near1 path
-(p9)  pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15    // Get bits 30-15 of X_1 * Z_2
+	nop.m 999
+	nop.m 999
+//
+//    float_N = fcvt.xf(float_N)
+//    load G3
+//
+(p0)  addl GR_Table_Base = @ltoff(Constants_Q#),gp ;; 
 }
-;;
+{ .mmi
+      nop.m 999
+      ld8    GR_Table_Base = [GR_Table_Base]
+      nop.i 999
+};;
 
+{ .mfi
+(p0)  ldfe FR_log2_hi = [GR_Table_Base],16 
+(p0)  fmpy.s1 FR_S_lo = FR_S_lo, FR_two_negN 
+	nop.i 999 ;;
+}
+{ .mmf
+	nop.m 999
 //
-//    For performance, don't use result of pmpyshr2.u for 4 cycles.
+//    G = G3 * G
+//    Load h3
+//    Load log2_hi
+//    H = H + H3
 //
+(p0)  ldfe FR_log2_lo = [GR_Table_Base],16 
+(p0)  fmpy.s1 FR_G = FR_G, FR_G_tmp ;; 
+}
 { .mmf
-(p8)  ldfe FR_P6 = [GR_ad_p],16               // Load P_6 for near1 path
-(p8)  ldfe FR_P3 = [GR_ad_p2],16              // Load P_3 for near1 path
-(p9)  fma.s1  FR_S_lo = FR_S_lo, f1, FR_BB    // S_lo = S_lo + BB
+(p0)  ldfs  FR_G_tmp = [GR_Index3],4 
+//
+//    h = h + h3
+//    r = G * S_hi + 1 
+//    Load log2_lo
+//
+(p0)  ldfe FR_Q4 = [GR_Table_Base],16 
+(p0)  fadd.s1 FR_h = FR_h, FR_h_tmp ;; 
+}
+{ .mfi
+(p0)  ldfe FR_Q3 = [GR_Table_Base],16 
+(p0)  fadd.s1 FR_H = FR_H, FR_H_tmp 
+	nop.i 999 ;;
 }
-;;
-
 { .mmf
-(p8)  ldfe FR_P5 = [GR_ad_p],16               // Load P_5 for near1 path
-(p8)  ldfe FR_P2 = [GR_ad_p2],16              // Load P_2 for near1 path
-(p8)  fmpy.s1 FR_wsq = FR_W, FR_W             // wsq = w * w for near1 path
+(p0)  ldfs  FR_H_tmp = [GR_Index3],4 
+(p0)  ldfe FR_Q2 = [GR_Table_Base],16 
+//
+//    Comput Index for Table3
+//    S_lo = S_lo * two_negN
+//
+(p0)  fcvt.xf FR_float_N = FR_float_N ;; 
 }
-;;
-
-{ .mmi
-(p8)  ldfe FR_P1 = [GR_ad_p2],16 ;;           // Load P_1 for near1 path
-      nop.m 999
-(p9)  extr.u GR_Index3 = GR_X_2, 1, 5         // Extract bits 1-5 of X_2
+//
+//    If S_lo == 0, set p8 false
+//    Load H3
+//    Load ptr to table of polynomial coeff.
+//
+{ .mmf
+(p0)  ldfd  FR_h_tmp = [GR_Index3],0 
+(p0)  ldfe FR_Q1 = [GR_Table_Base],0 
+(p0)  fcmp.eq.unc.s1 p0, p8 =  FR_S_lo, f0 ;; 
 }
-;;
-
 { .mfi
-(p9)  shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3  // Point to G_3
-(p9)  fcvt.xf FR_float_N = FR_float_N
-      nop.i 999
+	nop.m 999
+(p0)  fmpy.s1 FR_G = FR_G, FR_G_tmp 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-(p9)  ldfps  FR_G3, FR_H3 = [GR_ad_tbl_3],8   // Load G_3, H_3
-      nop.f 999
-      nop.i 999
+	nop.m 999
+(p0)  fadd.s1 FR_H = FR_H, FR_H_tmp 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-(p9)  ldfd  FR_h3 = [GR_ad_tbl_3]             // Load h_3
-(p9)  fmpy.s1 FR_G = FR_G, FR_G2              // G = G_1 * G_2
-      nop.i 999
+	nop.m 999
+(p0)  fms.s1 FR_r = FR_G, FR_S_hi, f1 
+	nop.i 999
 }
 { .mfi
-      nop.m 999
-(p9)  fadd.s1 FR_H = FR_H, FR_H2              // H = H_1 + H_2
-      nop.i 999
+	nop.m 999
+(p0)  fadd.s1 FR_h = FR_h, FR_h_tmp 
+	nop.i 999 ;;
 }
-;;
-
-{ .mmf
-      nop.m 999
-      nop.m 999
-(p9)  fadd.s1 FR_h = FR_h, FR_h2              // h = h_1 + h_2
+{ .mfi
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-      nop.m 999
-(p8)  fmpy.s1 FR_w4 = FR_wsq, FR_wsq          // w4 = w^4 for near1 path
-      nop.i 999
+	nop.m 999
+//
+//    Load Q4 
+//    Load Q3 
+//    Load Q2 
+//    Load Q1 
+//
+(p8) fma.s1 FR_r = FR_G, FR_S_lo, FR_r 
+	nop.i 999
 }
 { .mfi
-      nop.m 999
-(p8)  fma.s1 FR_p87 = FR_W, FR_P8, FR_P7      // p87 = w * P8 + P7
-      nop.i 999
+	nop.m 999
+//
+//    poly_lo = r * Q4 + Q3
+//    rsq = r* r
+//
+(p0)  fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-      nop.m 999
-(p9)  fma.s1  FR_S_lo = FR_S_lo, FR_2_to_minus_N, f0 // S_lo = S_lo * 2^(-N)
-      nop.i 999
+	nop.m 999
+//
+//    If (S_lo!=0) r = s_lo * G + r
+//
+(p0)  fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 
+	nop.i 999
 }
+//
+//    Create a 0x00000....01
+//    poly_lo = poly_lo * rsq + h
+//
 { .mfi
-      nop.m 999
-(p8)  fma.s1 FR_p43 = FR_W, FR_P4, FR_P3      // p43 = w * P4 + P3
-      nop.i 999
+(p0)  setf.sig FR_dummy = GR_Perturb 
+(p0)  fmpy.s1 FR_rsq = FR_r, FR_r 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-      nop.m 999
-(p9)  fmpy.s1 FR_G = FR_G, FR_G3              // G = (G_1 * G_2) * G_3
-      nop.i 999
+	nop.m 999
+//
+//    h = N * log2_lo + h 
+//    Y_hi = n * log2_hi + H 
+//
+(p0)  fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 
+	nop.i 999
 }
 { .mfi
-      nop.m 999
-(p9)  fadd.s1 FR_H = FR_H, FR_H3              // H = (H_1 + H_2) + H_3
-      nop.i 999
+	nop.m 999
+(p0)  fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-      nop.m 999
-(p9)  fadd.s1 FR_h = FR_h, FR_h3              // h = (h_1 + h_2) + h_3
-      nop.i 999
+	nop.m 999
+//
+//    poly_lo = r * poly_o + Q2 
+//    poly_hi = Q1 * rsq + r 
+//
+(p0)  fmpy.s1 FR_poly_lo = FR_poly_lo, FR_r 
+	nop.i 999 ;;
 }
 { .mfi
+	nop.m 999
+(p0)  fma.s1 FR_poly_lo = FR_poly_lo, FR_rsq, FR_h 
+	nop.i 999 ;;
+}
+{ .mfb
+	nop.m 999
+(p0)  fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo 
+//
+//    Create the FR for a binary "or"
+//    Y_lo = poly_hi + poly_lo
+//
+// (p0)  for FR_dummy = FR_Y_lo,FR_dummy ;;
+//
+//    Turn the lsb of Y_lo ON
+//
+// (p0)  fmerge.se FR_Y_lo =  FR_Y_lo,FR_dummy ;;
+//
+//    Merge the new lsb into Y_lo, for alone doesn't
+//
+(p0)  br.cond.sptk LOGL_main ;; 
+}
+L(log1pl_near): 
+{ .mmi
+	nop.m 999
+	nop.m 999
+//    /*******************************************************/
+//    /*********** Branch log1pl_near  ************************/
+//    /*******************************************************/
+(p0)  addl GR_Table_Base = @ltoff(Constants_P#),gp ;; 
+}
+{ .mmi
       nop.m 999
-(p8)  fmpy.s1 FR_w6 = FR_w4, FR_wsq           // w6 = w^6 for near1 path
+      ld8    GR_Table_Base = [GR_Table_Base]
       nop.i 999
+};;
+//
+//    Load base address of poly. coeff.
+//
+{ .mmb
+(p0)  add GR_Table_ptr = 0x40,GR_Table_Base  
+//
+//    Address tables with separate pointers 
+//
+(p0)  ldfe FR_P8 = [GR_Table_Base],16 
+	nop.b 999 ;;
+}
+{ .mmb
+(p0)  ldfe FR_P4 = [GR_Table_ptr],16 
+//
+//    Load P4
+//    Load P8
+//
+(p0)  ldfe FR_P7 = [GR_Table_Base],16 
+	nop.b 999 ;;
+}
+{ .mmf
+(p0)  ldfe FR_P3 = [GR_Table_ptr],16 
+//
+//    Load P3
+//    Load P7
+//
+(p0)  ldfe FR_P6 = [GR_Table_Base],16 
+(p0)  fmpy.s1 FR_wsq = FR_W, FR_W ;; 
 }
-;;
-
 { .mfi
-      nop.m 999
-(p8)  fma.s1 FR_p432 = FR_W, FR_p43, FR_P2    // p432 = w * p43 + P2
-      nop.i 999
+(p0)  ldfe FR_P2 = [GR_Table_ptr],16 
+	nop.f 999
+	nop.i 999 ;;
 }
 { .mfi
-      nop.m 999
-(p8)  fma.s1 FR_p876 = FR_W, FR_p87, FR_P6    // p876 = w * p87 + P6
-      nop.i 999
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_W, FR_P4, FR_P3 
+	nop.i 999
 }
-;;
-
+//
+//    Load P2
+//    Load P6
+//    Wsq = w * w
+//    Y_hi = p4 * w + p3
+//
 { .mfi
-      nop.m 999
-(p9)  fms.s1 FR_r = FR_G, FR_S_hi, f1         // r = G * S_hi - 1
-      nop.i 999
+(p0)  ldfe FR_P5 = [GR_Table_Base],16 
+(p0)  fma.s1 FR_Y_lo = FR_W, FR_P8, FR_P7 
+	nop.i 999 ;;
 }
 { .mfi
-      nop.m 999
-(p9)  fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi = N * log2_hi + H
-      nop.i 999
+(p0)  ldfe FR_P1 = [GR_Table_ptr],16 
+//
+//    Load P1
+//    Load P5
+//    Y_lo = p8 * w + P7
+//
+(p0)  fmpy.s1 FR_w4 = FR_wsq, FR_wsq 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-      nop.m 999
-(p9)  fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h  // h = N * log2_lo + h
-      nop.i 999
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P2 
+	nop.i 999
 }
-;;
-
 { .mfi
-      nop.m 999
-(p9)  fma.s1 FR_r = FR_G, FR_S_lo, FR_r        // r = G * S_lo + (G * S_hi - 1)
-      nop.i 999
+	nop.m 999
+(p0)  fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P6 
+(p0)  add GR_Perturb = 0x1, r0 ;; 
 }
-;;
-
 { .mfi
-      nop.m 999
-(p8)  fma.s1 FR_p4321 = FR_W, FR_p432, FR_P1      // p4321 = w * p432 + P1
-      nop.i 999
+	nop.m 999
+//
+//    w4 = w2 * w2 
+//    Y_hi = y_hi * w + p2 
+//    Y_lo = y_lo * w + p6 
+//    Create perturbation bit
+//
+(p0)  fmpy.s1 FR_w6 = FR_w4, FR_wsq 
+	nop.i 999 ;;
 }
 { .mfi
-      nop.m 999
-(p8)  fma.s1 FR_p8765 = FR_W, FR_p876, FR_P5      // p8765 = w * p876 + P5
-      nop.i 999
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P1 
+	nop.i 999
 }
-;;
-
+//
+//    Y_hi = y_hi * w + p1 
+//    w6 = w4 * w2 
+//
 { .mfi
-      nop.m 999
-(p9)  fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3      // poly_lo = r * Q4 + Q3
-      nop.i 999
+(p0)  setf.sig FR_Q4 = GR_Perturb 
+(p0)  fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P5 
+	nop.i 999 ;;
 }
 { .mfi
-      nop.m 999
-(p9)  fmpy.s1 FR_rsq = FR_r, FR_r                 // rsq = r * r
-      nop.i 999
+	nop.m 999
+(p0)  fma.s1 FR_dummy = FR_wsq,FR_Y_hi, f0 
+	nop.i 999
 }
-;;
-
 { .mfi
-      nop.m 999
-(p8)  fma.s1 FR_Y_lo = FR_wsq, FR_p4321, f0       // Y_lo = wsq * p4321
-      nop.i 999
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_W,f1,f0 
+	nop.i 999
+};;
+{ .mfb
+	nop.m 999
+//
+//    Y_hi = w 
+//    Y_lo = y_lo * w + p5 
+//
+(p0)  fma.s1 FR_Y_lo = FR_w6, FR_Y_lo,FR_dummy 
+//
+//    Y_lo = y_lo * w6   + y_high order part. 
+//
+//    performance
+//
+(p0)  br.cond.sptk LOGL_main ;; 
+}
+L(log1pl_small): 
+{ .mmi
+	nop.m 999
+//  /*******************************************************/
+//  /*********** Branch log1pl_small  ***********************/
+//  /*******************************************************/
+(p0)  addl GR_Table_Base = @ltoff(Constants_Threshold#),gp
 }
 { .mfi
       nop.m 999
-(p8)  fma.s1 FR_Y_hi = FR_W, f1, f0               // Y_hi = w for near1 path
-      nop.i 999
+(p0)  mov FR_Em1 = FR_W 
+(p0)  cmp.eq.unc  p7, p0 = r0, r0 ;; 
+}
+{ .mlx
+      ld8    GR_Table_Base = [GR_Table_Base]
+(p0)  movl GR_Expo_Range = 0x0000000000000004 ;; 
+}
+//
+//    Set Safe to true
+//    Set Expo_Range = 0 for single
+//    Set Expo_Range = 2 for double 
+//    Set Expo_Range = 4 for double-extended 
+//
+{ .mmi
+(p0)  shladd GR_Table_Base = GR_Expo_Range,4,GR_Table_Base ;; 
+(p0)  ldfe FR_Threshold = [GR_Table_Base],16 
+	nop.i 999
+}
+{ .mlx
+	nop.m 999
+(p0)  movl GR_Bias = 0x000000000000FF9B ;; 
 }
-;;
-
 { .mfi
-      nop.m 999
-(p9)  fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo = poly_lo * r + Q2
-      nop.i 999
+(p0)  ldfe FR_Tiny = [GR_Table_Base],0 
+	nop.f 999
+	nop.i 999 ;;
 }
 { .mfi
-      nop.m 999
-(p9)  fma.s1 FR_rcub = FR_rsq, FR_r, f0           // rcub = r^3
-      nop.i 999
+	nop.m 999
+(p0)  fcmp.gt.unc.s1 p13, p12 =  FR_abs_W, FR_Threshold 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-      nop.m 999
-(p8)  fma.s1 FR_Y_lo = FR_w6, FR_p8765,FR_Y_lo // Y_lo = w6 * p8765 + w2 * p4321
-      nop.i 999
+	nop.m 999
+(p13) fnmpy.s1 FR_Y_lo = FR_W, FR_W 
+	nop.i 999
 }
-;;
-
 { .mfi
-      nop.m 999
-(p9)  fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r     // poly_hi = Q1 * rsq + r
-      nop.i 999
+	nop.m 999
+(p13) fadd FR_SCALE = f0, f1 
+	nop.i 999 ;;
 }
-;;
-
 { .mfi
-      nop.m 999
-(p9)  fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h // poly_lo = poly_lo*r^3 + h
-      nop.i 999
+	nop.m 999
+(p12) fsub.s1 FR_Y_lo = f0, FR_Tiny 
+(p12) cmp.ne.unc  p7, p0 = r0, r0 
 }
-;;
-
 { .mfi
-      nop.m 999
-(p9)  fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo    // Y_lo = poly_hi + poly_lo 
-      nop.i 999
+(p12) setf.exp FR_SCALE = GR_Bias 
+	nop.f 999
+	nop.i 999 ;;
 }
-;;
-
-// Remainder of code is common for near1 and regular paths
 { .mfb
-      nop.m 999
-      fadd.s0  f8 = FR_Y_lo,FR_Y_hi               // Result=Y_lo+Y_hi
-      br.ret.sptk   b0                       // Common exit for 2^-80 < x < inf
+	nop.m 999
+//
+//    Set p7 to SAFE = FALSE
+//    Set Scale = 2^-100 
+//
+(p0)  fma.s0 f8 = FR_Y_lo,FR_SCALE,FR_Y_hi
+(p0)  br.ret.sptk   b0 ;; 
 }
-;;
-
-
-// Here if x=-1
-LOG1P_EQ_Minus_1: 
+L(LOGL_64_one): 
+{ .mfb
+	nop.m 999
+(p0)  fmpy.s0 f8 = FR_Input_X, f0 
+(p0)  br.ret.sptk   b0 ;; 
+}
+//    
+//    Raise divide by zero for +/-0 input.
+//    
+L(LOGL_64_zero): 
+{ .mfi
+(p0)  mov   GR_Parameter_TAG = 0
 //
-//    If x=-1 raise divide by zero and return -inf
+//    If we have logl(1), log10l(1) or log1pl(0), return 0.
 //  
-{ .mfi
-      mov   GR_Parameter_TAG = 138
-      fsub.s1 FR_Output_X_tmp = f0, f1 
-      nop.i 999
+(p0)  fsub.s0 FR_Output_X_tmp = f0, f1 
+	nop.i 999 ;;
+}
+{ .mii
+(p14) mov   GR_Parameter_TAG = 6 
+	nop.i 999 ;;
+(p15) mov   GR_Parameter_TAG = 138 ;; 
 }
-;;
-
 { .mfb
-      nop.m 999
-      frcpa.s0 FR_Output_X_tmp, p8 =  FR_Output_X_tmp, f0 
-      br.cond.sptk __libm_error_region
+	nop.m 999
+(p0)  frcpa.s0 FR_Output_X_tmp, p8 =  FR_Output_X_tmp, f0 
+(p0)  br.cond.sptk __libm_error_region ;; 
+}
+{ .mfb
+	nop.m 999
+//     
+//    Report that logl(0) computed
+//     { .mfb
+(p0)  mov   FR_Input_X     = FR_Output_X_tmp
+(p0)  br.ret.sptk   b0 ;;
 }
-;;
 
-LOG1P_special: 
+L(LOGL_64_special): 
 { .mfi
-      nop.m 999
-      fclass.m.unc p8, p0 =  FR_Input_X, 0x1E1  // Test for natval, nan, +inf
-      nop.i 999
+	nop.m 999
+//    
+//    Return -Inf or value from handler.
+//    
+(p0)  fclass.m.unc p7, p0 =  FR_Input_X, 0x1E1 
+	nop.i 999 ;;
 }
-;;
-
+{ .mfb
+	nop.m 999
+//     
+//    Check for Natval, QNan, SNaN, +Inf   
+//    
+(p7)  fmpy.s0 f8 =  FR_Input_X, f1 
 //     
 //    For SNaN raise invalid and return QNaN.
 //    For QNaN raise invalid and return QNaN.
 //    For +Inf return +Inf.
 //    
-{ .mfb
-      nop.m 999
-(p8)  fmpy.s0 f8 =  FR_Input_X, f1 
-(p8)  br.ret.sptk   b0                          // Return for natval, nan, +inf
+(p7)  br.ret.sptk   b0 ;;
 }
-;;
-
 //    
 //    For -Inf raise invalid and return QNaN.
 //    
+{ .mii
+(p0)  mov   GR_Parameter_TAG = 1
+	nop.i 999 ;;
+(p14) mov   GR_Parameter_TAG = 7 ;;
+}
+{ .mfi
+(p15) mov   GR_Parameter_TAG = 139 
+	nop.f 999
+	nop.i 999 ;;
+}
 { .mfb
-      mov   GR_Parameter_TAG = 139
-      fmpy.s0 FR_Output_X_tmp =  FR_Input_X, f0 
-      br.cond.sptk __libm_error_region
+	nop.m 999
+(p0)  fmpy.s0 FR_Output_X_tmp =  FR_Input_X, f0 
+(p0)  br.cond.sptk __libm_error_region ;; 
 }
-;;
-
-
-LOG1P_unsupported: 
+//     
+//    Report that logl(-Inf) computed
+//    Report that log10l(-Inf) computed
+//    Report that log1p(-Inf) computed
+//     
+{ .mfb
+      nop.m 0
+(p0)  mov   FR_Input_X     = FR_Output_X_tmp
+(p0)  br.ret.sptk   b0 ;;
+}
+L(LOGL_64_unsupported): 
+{ .mfb
+	nop.m 999
 //    
-//    Return generated NaN or other value.
+//    Return generated NaN or other value .
 //    
-{ .mfb
-      nop.m 999
-      fmpy.s0 f8 = FR_Input_X, f0 
-      br.ret.sptk   b0
+(p0)  fmpy.s0 f8 = FR_Input_X, f0 
+(p0)  br.ret.sptk   b0 ;;
 }
-;;
-
-// Here if -inf < x < -1
-LOG1P_LT_Minus_1: 
+L(LOGL_64_negative): 
+{ .mfi
+	nop.m 999
+//     
+//    Deal with x < 0 in a special way 
+//    
+(p0)  frcpa.s0 FR_Output_X_tmp, p8 =  f0, f0 
 //     
-//    Deal with x < -1 in a special way - raise
+//    Deal with x < 0 in a special way - raise
 //    invalid and produce QNaN indefinite.
 //    
-{ .mfb
-      mov   GR_Parameter_TAG = 139
-      frcpa.s0 FR_Output_X_tmp, p8 =  f0, f0
-      br.cond.sptk __libm_error_region
+(p0)  mov   GR_Parameter_TAG = 1 ;; 
 }
-;;
-
-
-GLOBAL_IEEE754_END(log1pl)
+{ .mii
+(p14) mov   GR_Parameter_TAG = 7
+	nop.i 999 ;;
+(p15) mov   GR_Parameter_TAG = 139
+}
+.endp log1pl
+ASM_SIZE_DIRECTIVE(log1pl) 
 
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
 .prologue
 { .mfi
         add   GR_Parameter_Y=-32,sp             // Parameter 2 value
@@ -1178,8 +1609,8 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
         br.call.sptk b0=__libm_error_support#  // Call error handling function
 };;
 { .mmi
-        nop.m 999
-        nop.m 999
+        nop.m 0
+        nop.m 0
         add   GR_Parameter_RESULT = 48,sp
 };;
 { .mmi
@@ -1194,7 +1625,52 @@ LOCAL_LIBM_ENTRY(__libm_error_region)
         br.ret.sptk     b0                     // Return
 };;
 
-LOCAL_LIBM_END(__libm_error_region#)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.proc LOGL_main 
+LOGL_main: 
+{ .mfi
+	nop.m 999
+//
+//    kernel_log_64 computes ln(X + E)
+//
+(p7)  fadd.s0 FR_Input_X = FR_Y_lo,FR_Y_hi
+      nop.i 0
+}
+{ .mmi
+      nop.m 999
+      nop.m 999
+(p14) addl GR_Table_Base = @ltoff(Constants_1_by_LN10#),gp ;; 
+}
+{ .mmi
+      nop.m 999
+(p14) ld8    GR_Table_Base = [GR_Table_Base]
+      nop.i 999
+};;
+
+{ .mmi
+(p14) ldfe FR_1LN10_hi = [GR_Table_Base],16 ;; 
+(p14) ldfe FR_1LN10_lo = [GR_Table_Base]
+	nop.i 999 ;;
+}
+{ .mfi
+	nop.m 999
+(p14) fmpy.s1 FR_Output_X_tmp = FR_Y_lo,FR_1LN10_hi
+	nop.i 999 ;;
+}
+{ .mfi
+	nop.m 999
+(p14) fma.s1  FR_Output_X_tmp = FR_Y_hi,FR_1LN10_lo,FR_Output_X_tmp
+	nop.i 999 ;;
+}
+{ .mfb
+	nop.m 999
+(p14) fma.s0 FR_Input_X = FR_Y_hi,FR_1LN10_hi,FR_Output_X_tmp
+(p0)  br.ret.sptk   b0 ;; 
+}
+.endp LOGL_main
+ASM_SIZE_DIRECTIVE(LOGL_main) 
 
 .type   __libm_error_support#,@function
 .global __libm_error_support#