about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/s_log1p.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/s_log1p.S')
-rw-r--r--sysdeps/ia64/fpu/s_log1p.S1614
1 files changed, 1614 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/s_log1p.S b/sysdeps/ia64/fpu/s_log1p.S
new file mode 100644
index 0000000000..a49a183ce3
--- /dev/null
+++ b/sysdeps/ia64/fpu/s_log1p.S
@@ -0,0 +1,1614 @@
+.file "log1p.s" 
+
+// Copyright (c) 2000, 2001, Intel Corporation
+// All rights reserved.
+// 
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+// 
+// WARRANTY DISCLAIMER
+// 
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
+// 
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at 
+// http://developer.intel.com/opensource.
+//
+// History
+//==============================================================
+// 2/02/00  Initial version
+// 4/04/00  Unwind support added
+// 8/15/00  Bundle added after call to __libm_error_support to properly
+//          set [the previously overwritten] GR_Parameter_RESULT.
+//
+// *********************************************************************
+//
+// Function:   log1p(x) = ln(x+1), for double precision x values
+//
+// *********************************************************************
+//
+// Accuracy:   Very accurate for double precision values
+//
+// *********************************************************************
+//
+// Resources Used:
+//
+//    Floating-Point Registers: f8 (Input and Return Value)
+//                              f9,f33-f55,f99 
+//
+//    General Purpose Registers:
+//      r32-r53
+//      r54-r57 (Used to pass arguments to error handling routine)
+//
+//    Predicate Registers:      p6-p15
+//
+// *********************************************************************
+//
+// IEEE Special Conditions:
+//
+//    Denormal  fault raised on denormal inputs
+//    Overflow exceptions cannot occur  
+//    Underflow exceptions raised when appropriate for log1p 
+//    (Error Handling Routine called for underflow)
+//    Inexact raised when appropriate by algorithm
+//
+//    log1p(inf) = inf
+//    log1p(-inf) = QNaN 
+//    log1p(+/-0) = +/-0 
+//    log1p(-1) =  -inf 
+//    log1p(SNaN) = QNaN
+//    log1p(QNaN) = QNaN
+//    log1p(EM_special Values) = QNaN
+//
+// *********************************************************************
+//
+// Computation is based on the following kernel.
+//
+// ker_log_64( in_FR    :  X,
+// 	    in_FR    :  E,
+// 	    in_FR    :  Em1,
+// 	    in_GR    :  Expo_Range,
+// 	    out_FR   :  Y_hi,
+// 	    out_FR   :  Y_lo,
+// 	    out_FR   :  Scale,
+// 	    out_PR   :  Safe  )
+// 
+// Overview
+//
+// The method consists of three cases.
+//
+// If	|X+Em1| < 2^(-80)	use case log1p_small;
+// elseif	|X+Em1| < 2^(-7)	use case log_near1;
+// else				use case log_regular;
+//
+// Case log1p_small:
+//
+// log( 1 + (X+Em1) ) can be approximated by (X+Em1).
+//
+// Case log_near1:
+//
+//   log( 1 + (X+Em1) ) can be approximated by a simple polynomial
+//   in W = X+Em1. This polynomial resembles the truncated Taylor
+//   series W - W^/2 + W^3/3 - ...
+// 
+// Case log_regular:
+//
+//   Here we use a table lookup method. The basic idea is that in
+//   order to compute log(Arg) for an argument Arg in [1,2), we 
+//   construct a value G such that G*Arg is close to 1 and that
+//   log(1/G) is obtainable easily from a table of values calculated
+//   beforehand. Thus
+//
+//	log(Arg) = log(1/G) + log(G*Arg)
+//		 = log(1/G) + log(1 + (G*Arg - 1))
+//
+//   Because |G*Arg - 1| is small, the second term on the right hand
+//   side can be approximated by a short polynomial. We elaborate
+//   this method in four steps.
+//
+//   Step 0: Initialization
+//
+//   We need to calculate log( E + X ). Obtain N, S_hi, S_lo such that
+//
+//	E + X = 2^N * ( S_hi + S_lo )	exactly
+//
+//   where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
+//   that |S_lo| <= ulp(S_hi).
+//
+//   Step 1: Argument Reduction
+//
+//   Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
+//
+//	G := G_1 * G_2 * G_3
+//	r := (G * S_hi - 1)  + G * S_lo
+//
+//   These G_j's have the property that the product is exactly 
+//   representable and that |r| < 2^(-12) as a result.
+//
+//   Step 2: Approximation
+//
+//
+//   log(1 + r) is approximated by a short polynomial poly(r).
+//
+//   Step 3: Reconstruction
+//
+//
+//   Finally, log( E + X ) is given by
+//
+//   log( E + X )   =   log( 2^N * (S_hi + S_lo) )
+//                 ~=~  N*log(2) + log(1/G) + log(1 + r)
+//                 ~=~  N*log(2) + log(1/G) + poly(r).
+//
+// **** Algorithm ****
+//
+// Case log1p_small:
+//
+// Although log(1 + (X+Em1)) is basically X+Em1, we would like to 
+// preserve the inexactness nature as well as consistent behavior
+// under different rounding modes. Note that this case can only be
+// taken if E is set to be 1.0. In this case, Em1 is zero, and that
+// X can be very tiny and thus the final result can possibly underflow.
+// Thus, we compare X against a threshold that is dependent on the
+// input Expo_Range. If |X| is smaller than this threshold, we set
+// SAFE to be FALSE. 
+//
+// The result is returned as Y_hi, Y_lo, and in the case of SAFE 
+// is FALSE, an additional value Scale is also returned. 
+//
+//	W    := X + Em1
+//      Threshold := Threshold_Table( Expo_Range )
+//      Tiny      := Tiny_Table( Expo_Range )
+//
+//      If ( |W| > Threshold ) then
+//         Y_hi  := W
+//         Y_lo  := -W*W
+//      Else
+//         Y_hi  := W
+//         Y_lo  := -Tiny
+//         Scale := 2^(-100)
+//         Safe  := FALSE
+//      EndIf
+//
+//
+// One may think that Y_lo should be -W*W/2; however, it does not matter
+// as Y_lo will be rounded off completely except for the correct effect in 
+// directed rounding. Clearly -W*W is simplier to compute. Moreover,
+// because of the difference in exponent value, Y_hi + Y_lo or 
+// Y_hi + Scale*Y_lo is always inexact.
+//
+// Case log_near1:
+//
+// Here we compute a simple polynomial. To exploit parallelism, we split
+// the polynomial into two portions.
+// 
+// 	W := X + Em1
+// 	Wsq := W * W
+// 	W4  := Wsq*Wsq
+// 	W6  := W4*Wsq
+// 	Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
+// 	Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
+//      set lsb(Y_lo) to be 1
+//
+// Case log_regular:
+//
+// We present the algorithm in four steps.
+//
+//   Step 0. Initialization
+//   ----------------------
+//
+//   Z := X + E
+//   N := unbaised exponent of Z
+//   S_hi := 2^(-N) * Z
+//   S_lo := 2^(-N) * { (max(X,E)-Z) + min(X,E) }
+//
+//   Note that S_lo is always 0 for the case E = 0.
+//
+//   Step 1. Argument Reduction
+//   --------------------------
+//
+//   Let
+//
+//	Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
+//
+//   We obtain G_1, G_2, G_3 by the following steps.
+//
+//
+//	Define		X_0 := 1.d_1 d_2 ... d_14. This is extracted
+//			from S_hi.
+//
+//	Define		A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
+//			to lsb = 2^(-4).
+//
+//	Define		index_1 := [ d_1 d_2 d_3 d_4 ].
+//
+//	Fetch 		Z_1 := (1/A_1) rounded UP in fixed point with
+//	fixed point	lsb = 2^(-15).
+//			Z_1 looks like z_0.z_1 z_2 ... z_15
+//		        Note that the fetching is done using index_1.
+//			A_1 is actually not needed in the implementation
+//			and is used here only to explain how is the value
+//			Z_1 defined.
+//
+//	Fetch		G_1 := (1/A_1) truncated to 21 sig. bits.
+//	floating pt.	Again, fetching is done using index_1. A_1
+//			explains how G_1 is defined.
+//
+//	Calculate	X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
+//			     = 1.0 0 0 0 d_5 ... d_14
+//			This is accomplised by integer multiplication.
+//			It is proved that X_1 indeed always begin
+//			with 1.0000 in fixed point.
+//
+//
+//	Define		A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1 
+//			truncated to lsb = 2^(-8). Similar to A_1,
+//			A_2 is not needed in actual implementation. It
+//			helps explain how some of the values are defined.
+//
+//	Define		index_2 := [ d_5 d_6 d_7 d_8 ].
+//
+//	Fetch 		Z_2 := (1/A_2) rounded UP in fixed point with
+//	fixed point	lsb = 2^(-15). Fetch done using index_2.
+//			Z_2 looks like z_0.z_1 z_2 ... z_15
+//
+//	Fetch		G_2 := (1/A_2) truncated to 21 sig. bits.
+//	floating pt.
+//
+//	Calculate	X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
+//			     = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
+//			This is accomplised by integer multiplication.
+//			It is proved that X_2 indeed always begin
+//			with 1.00000000 in fixed point.
+//
+//
+//	Define		A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
+//			This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
+//
+//	Define		index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
+//
+//	Fetch		G_3 := (1/A_3) truncated to 21 sig. bits.
+//	floating pt.	Fetch is done using index_3.
+//
+//	Compute		G := G_1 * G_2 * G_3. 
+//
+//	This is done exactly since each of G_j only has 21 sig. bits.
+//
+//	Compute   
+//
+//		r := (G*S_hi - 1) + G*S_lo   using 2 FMA operations.
+//
+//	thus, r approximates G*(S_hi+S_lo) - 1 to within a couple of 
+//	rounding errors.
+//
+//
+//  Step 2. Approximation
+//  ---------------------
+//
+//   This step computes an approximation to log( 1 + r ) where r is the
+//   reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
+//   thus log(1+r) can be approximated by a short polynomial:
+//
+//	log(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
+//
+//
+//  Step 3. Reconstruction
+//  ----------------------
+//
+//   This step computes the desired result of log(X+E):
+//
+//	log(X+E)  =   log( 2^N * (S_hi + S_lo) )
+//		  =   N*log(2) + log( S_hi + S_lo )
+//		  =   N*log(2) + log(1/G) +
+//		      log(1 + C*(S_hi+S_lo) - 1 )
+//
+//   log(2), log(1/G_j) are stored as pairs of (single,double) numbers:
+//   log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
+//   single-precision numbers and the low parts are double precision
+//   numbers. These have the property that
+//
+//	N*log2_hi + SUM ( log1byGj_hi )
+//
+//   is computable exactly in double-extended precision (64 sig. bits).
+//   Finally
+//
+//	Y_hi := N*log2_hi + SUM ( log1byGj_hi )
+//	Y_lo := poly_hi + [ poly_lo + 
+//	        ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
+//      set lsb(Y_lo) to be 1
+//
+
+#include "libm_support.h"
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
+// P_7, P_6, P_5, P_4, P_3, P_2, and P_1 
+
+.align 64
+Constants_P:
+ASM_TYPE_DIRECTIVE(Constants_P,@object)
+data4  0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
+data4  0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
+data4  0x73282DB0,0x9249248C,0x00003FFC,0x00000000
+data4  0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
+data4  0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
+data4  0x00067ED5,0x80000000,0x0000BFFD,0x00000000
+data4  0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
+data4  0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_P)
+ 
+// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1 
+
+.align 64
+Constants_Q:
+ASM_TYPE_DIRECTIVE(Constants_Q,@object)
+data4  0x00000000,0xB1721800,0x00003FFE,0x00000000 
+data4  0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
+data4  0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
+data4  0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
+data4  0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
+data4  0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Q)
+ 
+// Z1 - 16 bit fixed, G1 and H1 - IEEE single 
+ 
+.align 64
+Constants_Z_G_H_h1:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h1,@object)
+data4  0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4  0x00007879,0x3F70F0F0,0x3D785196,0x00000000,0x617D741C,0x3DA163A6
+data4  0x000071C8,0x3F638E38,0x3DF13843,0x00000000,0xCBD3D5BB,0x3E2C55E6
+data4  0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000,0xD86EA5E7,0xBE3EB0BF
+data4  0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000,0x86B12760,0x3E2E6A8C
+data4  0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000,0x5C0739BA,0x3E47574C
+data4  0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000,0x13E8AF2F,0x3E20E30F
+data4  0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000,0xF2C630BD,0xBE42885B
+data4  0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000,0x97E577C6,0x3E497F34
+data4  0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000,0xA6B0A5AB,0x3E3E6A6E
+data4  0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000,0xD328D9BE,0xBDF43E3C
+data4  0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000,0x0ADB090A,0x3E4094C3
+data4  0x00004925,0x3F124920,0x3F0F4303,0x00000000,0xFC1FE510,0xBE28FBB2
+data4  0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000,0x10FDE3FA,0x3E3A7895
+data4  0x00004445,0x3F088888,0x3F20EC80,0x00000000,0x7CC8C98F,0x3E508CE5
+data4  0x00004211,0x3F042108,0x3F29516A,0x00000000,0xA223106C,0xBE534874
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h1)
+ 
+// Z2 - 16 bit fixed, G2 and H2 - IEEE single 
+
+.align 64 
+Constants_Z_G_H_h2:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h2,@object)
+data4  0x00008000,0x3F800000,0x00000000,0x00000000,0x00000000,0x00000000
+data4  0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000,0x22C42273,0x3DB5A116
+data4  0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000,0x21F86ED3,0x3DE620CF
+data4  0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000,0x484F34ED,0xBDAFA07E
+data4  0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000,0x3860BCF6,0xBDFE07F0
+data4  0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000,0xA78093D6,0x3DEA370F
+data4  0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000,0x72A753D0,0x3DFF5791
+data4  0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000,0xA7EF896B,0x3DFEBE6C
+data4  0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000,0x409ECB43,0x3E0CF156
+data4  0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000,0xFFEF71DF,0xBE0B6F97
+data4  0x00007B31,0x3F766038,0x3D1CF49B,0x00000000,0x5D59EEE8,0xBE080483
+data4  0x00007ABB,0x3F757400,0x3D2C531D,0x00000000,0xA9192A74,0x3E1F91E9
+data4  0x00007A45,0x3F748988,0x3D3BA322,0x00000000,0xBF72A8CD,0xBE139A06
+data4  0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000,0xF8FBA6CF,0x3E1D9202
+data4  0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000,0xBA796223,0xBE1DCCC4
+data4  0x000078EB,0x3F71D488,0x3D693B9D,0x00000000,0xB6B7C239,0xBE049391
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h2)
+ 
+// G3 and H3 - IEEE single and h3 -IEEE double 
+
+.align 64 
+Constants_Z_G_H_h3:
+ASM_TYPE_DIRECTIVE(Constants_Z_G_H_h3,@object)
+data4  0x3F7FFC00,0x38800100,0x562224CD,0x3D355595
+data4  0x3F7FF400,0x39400480,0x06136FF6,0x3D8200A2
+data4  0x3F7FEC00,0x39A00640,0xE8DE9AF0,0x3DA4D68D
+data4  0x3F7FE400,0x39E00C41,0xB10238DC,0xBD8B4291
+data4  0x3F7FDC00,0x3A100A21,0x3B1952CA,0xBD89CCB8
+data4  0x3F7FD400,0x3A300F22,0x1DC46826,0xBDB10707
+data4  0x3F7FCC08,0x3A4FF51C,0xF43307DB,0x3DB6FCB9
+data4  0x3F7FC408,0x3A6FFC1D,0x62DC7872,0xBD9B7C47
+data4  0x3F7FBC10,0x3A87F20B,0x3F89154A,0xBDC3725E
+data4  0x3F7FB410,0x3A97F68B,0x62B9D392,0xBD93519D
+data4  0x3F7FAC18,0x3AA7EB86,0x0F21BD9D,0x3DC18441
+data4  0x3F7FA420,0x3AB7E101,0x2245E0A6,0xBDA64B95
+data4  0x3F7F9C20,0x3AC7E701,0xAABB34B8,0x3DB4B0EC
+data4  0x3F7F9428,0x3AD7DD7B,0x6DC40A7E,0x3D992337
+data4  0x3F7F8C30,0x3AE7D474,0x4F2083D3,0x3DC6E17B
+data4  0x3F7F8438,0x3AF7CBED,0x811D4394,0x3DAE314B
+data4  0x3F7F7C40,0x3B03E1F3,0xB08F2DB1,0xBDD46F21
+data4  0x3F7F7448,0x3B0BDE2F,0x6D34522B,0xBDDC30A4
+data4  0x3F7F6C50,0x3B13DAAA,0xB1F473DB,0x3DCB0070
+data4  0x3F7F6458,0x3B1BD766,0x6AD282FD,0xBDD65DDC
+data4  0x3F7F5C68,0x3B23CC5C,0xF153761A,0xBDCDAB83
+data4  0x3F7F5470,0x3B2BC997,0x341D0F8F,0xBDDADA40
+data4  0x3F7F4C78,0x3B33C711,0xEBC394E8,0x3DCD1BD7
+data4  0x3F7F4488,0x3B3BBCC6,0x52E3E695,0xBDC3532B
+data4  0x3F7F3C90,0x3B43BAC0,0xE846B3DE,0xBDA3961E
+data4  0x3F7F34A0,0x3B4BB0F4,0x785778D4,0xBDDADF06
+data4  0x3F7F2CA8,0x3B53AF6D,0xE55CE212,0x3DCC3ED1
+data4  0x3F7F24B8,0x3B5BA620,0x9E382C15,0xBDBA3103
+data4  0x3F7F1CC8,0x3B639D12,0x5C5AF197,0x3D635A0B
+data4  0x3F7F14D8,0x3B6B9444,0x71D34EFC,0xBDDCCB19
+data4  0x3F7F0CE0,0x3B7393BC,0x52CD7ADA,0x3DC74502
+data4  0x3F7F04F0,0x3B7B8B6D,0x7D7F2A42,0xBDB68F17
+ASM_SIZE_DIRECTIVE(Constants_Z_G_H_h3)
+ 
+// 
+//  Exponent Thresholds and Tiny Thresholds
+//  for 8, 11, 15, and 17 bit exponents
+// 
+//  Expo_Range             Value
+// 
+//  0 (8  bits)            2^(-126)
+//  1 (11 bits)            2^(-1022)
+//  2 (15 bits)            2^(-16382)
+//  3 (17 bits)            2^(-16382)
+// 
+//  Tiny_Table
+//  ----------
+//  Expo_Range             Value
+// 
+//  0 (8  bits)            2^(-16382)
+//  1 (11 bits)            2^(-16382)
+//  2 (15 bits)            2^(-16382)
+//  3 (17 bits)            2^(-16382)
+// 
+
+.align 64 
+Constants_Threshold:
+ASM_TYPE_DIRECTIVE(Constants_Threshold,@object)
+data4  0x00000000,0x80000000,0x00003F81,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00003C01,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+data4  0x00000000,0x80000000,0x00000001,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_Threshold)
+
+.align 64
+Constants_1_by_LN10:
+ASM_TYPE_DIRECTIVE(Constants_1_by_LN10,@object)
+data4  0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
+data4  0xACCF70C8,0xD56EAABE,0x00003FBD,0x00000000
+ASM_SIZE_DIRECTIVE(Constants_1_by_LN10)
+
+FR_Input_X = f8 
+FR_Neg_One = f9
+FR_E       = f33
+FR_Em1     = f34
+FR_Y_hi    = f34  
+// Shared with Em1
+FR_Y_lo    = f35
+FR_Scale   = f36
+FR_X_Prime = f37 
+FR_Z       = f38 
+FR_S_hi    = f38  
+// Shared with Z  
+FR_W       = f39
+FR_G       = f40
+FR_wsq     = f40 
+// Shared with G 
+FR_H       = f41
+FR_w4      = f41
+// Shared with H  
+FR_h       = f42
+FR_w6      = f42  
+// Shared with h     
+FR_G_tmp   = f43
+FR_poly_lo = f43
+// Shared with G_tmp 
+FR_P8      = f43  
+// Shared with G_tmp 
+FR_H_tmp   = f44
+FR_poly_hi = f44
+  // Shared with H_tmp
+FR_P7      = f44  
+// Shared with H_tmp
+FR_h_tmp   = f45 
+FR_rsq     = f45  
+// Shared with h_tmp
+FR_P6      = f45
+// Shared with h_tmp
+FR_abs_W   = f46
+FR_r       = f46  
+// Shared with abs_W  
+FR_AA      = f47 
+FR_log2_hi = f47  
+// Shared with AA  
+FR_BB          = f48
+FR_log2_lo     = f48  
+// Shared with BB  
+FR_S_lo        = f49 
+FR_two_negN    = f50  
+FR_float_N     = f51 
+FR_Q4          = f52 
+FR_dummy       = f52  
+// Shared with Q4
+FR_P4          = f52  
+// Shared with Q4
+FR_Threshold    = f52
+// Shared with Q4
+FR_Q3          = f53  
+FR_P3          = f53  
+// Shared with Q3
+FR_Tiny        = f53  
+// Shared with Q3
+FR_Q2          = f54 
+FR_P2          = f54  
+// Shared with Q2
+FR_1LN10_hi     = f54 
+// Shared with Q2
+FR_Q1           = f55 
+FR_P1           = f55 
+// Shared with Q1 
+FR_1LN10_lo     = f55 
+// Shared with Q1 
+FR_P5           = f98 
+FR_SCALE        = f98 
+FR_Output_X_tmp = f99 
+
+GR_Expo_Range   = r32
+GR_Table_Base   = r34
+GR_Table_Base1  = r35
+GR_Table_ptr    = r36 
+GR_Index2       = r37 
+GR_signif       = r38 
+GR_X_0          = r39 
+GR_X_1          = r40 
+GR_X_2          = r41 
+GR_Z_1          = r42 
+GR_Z_2          = r43 
+GR_N            = r44 
+GR_Bias         = r45 
+GR_M            = r46 
+GR_ScaleN       = r47  
+GR_Index3       = r48 
+GR_Perturb      = r49 
+GR_Table_Scale  = r50 
+
+
+GR_SAVE_PFS     = r51
+GR_SAVE_B0      = r52
+GR_SAVE_GP      = r53
+
+GR_Parameter_X       = r54
+GR_Parameter_Y       = r55
+GR_Parameter_RESULT  = r56
+
+GR_Parameter_TAG = r57 
+
+
+.section .text
+.proc log1p#
+.global log1p#
+.align 64 
+log1p:
+#ifdef _LIBC
+.global __log1p
+__log1p:
+#endif
+
+{ .mfi
+alloc r32 = ar.pfs,0,22,4,0
+(p0)  fsub.s1 FR_Neg_One = f0,f1 
+(p0)  cmp.eq.unc  p7, p0 = r0, r0 
+}
+
+{ .mfi
+(p0)  cmp.ne.unc  p14, p0 = r0, r0 
+(p0)  fnorm.s1 FR_X_Prime = FR_Input_X 
+(p0)  cmp.eq.unc  p15, p0 = r0, r0 ;; 
+}
+
+{ .mfi
+      nop.m 999
+(p0)  fclass.m.unc p6, p0 =  FR_Input_X, 0x1E3 
+      nop.i 999
+}
+;;
+
+{ .mfi
+	nop.m 999
+(p0)  fclass.nm.unc p10, p0 =  FR_Input_X, 0x1FF 
+      nop.i 999
+}
+;;
+
+{ .mfi
+	nop.m 999
+(p0)  fcmp.eq.unc.s1 p9, p0 =  FR_Input_X, f0 
+      nop.i 999
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fadd FR_Em1 = f0,f0 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fadd FR_E = f0,f1 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fcmp.eq.unc.s1 p8, p0 =  FR_Input_X, FR_Neg_One 
+	nop.i 999
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fcmp.lt.unc.s1 p13, p0 =  FR_Input_X, FR_Neg_One 
+	nop.i 999
+}
+
+
+L(LOG_BEGIN): 
+
+{ .mfi
+	nop.m 999
+(p0)  fadd.s1 FR_Z = FR_X_Prime, FR_E 
+	nop.i 999
+}
+
+{ .mlx
+	nop.m 999
+(p0)  movl GR_Table_Scale = 0x0000000000000018 ;; 
+}
+
+{ .mmi
+	nop.m 999
+//     
+//    Create E = 1 and Em1 = 0 
+//    Check for X == 0, meaning log(1+0)
+//    Check for X < -1, meaning log(negative)
+//    Check for X == -1, meaning log(0)
+//    Normalize x 
+//    Identify NatVals, NaNs, Infs. 
+//    Identify EM unsupporteds. 
+//    Identify Negative values - us S1 so as
+//    not to raise denormal operand exception 
+//    Set p15 to true for log1p
+//    Set p14 to false for log1p
+//    Set p7 true for log and log1p
+//    
+(p0)  addl GR_Table_Base = @ltoff(Constants_Z_G_H_h1#),gp
+      nop.i  999
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fmax.s1 FR_AA = FR_X_Prime, FR_E 
+	nop.i 999 ;;
+}
+
+{ .mfi
+      ld8    GR_Table_Base = [GR_Table_Base]
+(p0)  fmin.s1 FR_BB = FR_X_Prime, FR_E 
+	nop.i 999
+}
+
+{ .mfb
+	nop.m 999
+(p0)  fadd.s1 FR_W = FR_X_Prime, FR_Em1 
+//     
+//    Begin load of constants base
+//    FR_Z = Z = |x| + E 
+//    FR_W = W = |x| + Em1
+//    AA = fmax(|x|,E)
+//    BB = fmin(|x|,E)
+//
+(p6)  br.cond.spnt L(LOG_64_special) ;; 
+}
+
+{ .mib
+	nop.m 999
+	nop.i 999
+(p10) br.cond.spnt L(LOG_64_unsupported) ;; 
+}
+
+{ .mib
+	nop.m 999
+	nop.i 999
+(p13) br.cond.spnt L(LOG_64_negative) ;; 
+}
+
+{ .mib
+(p0)  getf.sig GR_signif = FR_Z 
+	nop.i 999
+(p9)  br.cond.spnt L(LOG_64_one) ;; 
+}
+
+{ .mib
+	nop.m 999
+	nop.i 999
+(p8)  br.cond.spnt L(LOG_64_zero) ;; 
+}
+
+{ .mfi
+(p0)  getf.exp GR_N =  FR_Z 
+//   
+//    Raise possible denormal operand exception 
+//    Create Bias
+// 
+//    This function computes ln( x + e ) 
+//    Input  FR 1: FR_X   = FR_Input_X          
+//    Input  FR 2: FR_E   = FR_E
+//    Input  FR 3: FR_Em1 = FR_Em1 
+//    Input  GR 1: GR_Expo_Range = GR_Expo_Range = 1
+//    Output FR 4: FR_Y_hi  
+//    Output FR 5: FR_Y_lo  
+//    Output FR 6: FR_Scale  
+//    Output PR 7: PR_Safe  
+//
+(p0)  fsub.s1 FR_S_lo = FR_AA, FR_Z 
+//
+//    signif = getf.sig(Z)
+//    abs_W = fabs(w)
+//
+(p0)  extr.u GR_Table_ptr = GR_signif, 59, 4 ;; 
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fmerge.se FR_S_hi =  f1,FR_Z 
+(p0)  extr.u GR_X_0 = GR_signif, 49, 15  
+}
+
+{ .mmi
+      nop.m 999
+(p0)  addl GR_Table_Base1 = @ltoff(Constants_Z_G_H_h2#),gp  
+      nop.i 999
+}
+;;
+
+{ .mlx
+      ld8    GR_Table_Base1 = [GR_Table_Base1]
+(p0)  movl GR_Bias = 0x000000000000FFFF ;; 
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fabs FR_abs_W =  FR_W 
+(p0)  pmpyshr2.u GR_Table_ptr = GR_Table_ptr,GR_Table_Scale,0 
+}
+
+{ .mfi
+	nop.m 999
+//    
+//    Branch out for special input values 
+//    
+(p0)  fcmp.lt.unc.s0 p8, p0 =  FR_Input_X, f0 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+//
+//    X_0 = extr.u(signif,49,15)
+//    Index1 = extr.u(signif,59,4)
+//
+(p0)  fadd.s1 FR_S_lo = FR_S_lo, FR_BB 
+	nop.i 999 ;;
+}
+
+{ .mii
+	nop.m 999
+	nop.i 999 ;;
+//
+//    Offset_to_Z1 = 24 * Index1
+//    For performance, don't use result
+//    for 3 or 4 cycles.
+//
+(p0)  add GR_Table_ptr = GR_Table_ptr, GR_Table_Base ;; 
+}
+//
+//    Add Base to Offset for Z1
+//    Create Bias
+
+{ .mmi
+(p0)  ld4 GR_Z_1 = [GR_Table_ptr],4 ;; 
+(p0)  ldfs  FR_G = [GR_Table_ptr],4 
+	nop.i 999 ;;
+}
+
+{ .mmi
+(p0)  ldfs  FR_H = [GR_Table_ptr],8 ;; 
+(p0)  ldfd  FR_h = [GR_Table_ptr],0 
+(p0)  pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 
+}
+//
+//    Load Z_1 
+//    Get Base of Table2 
+//
+
+{ .mfi
+(p0)  getf.exp GR_M = FR_abs_W 
+	nop.f 999
+	nop.i 999 ;;
+}
+
+{ .mii
+	nop.m 999
+	nop.i 999 ;;
+//
+//    M = getf.exp(abs_W)
+//    S_lo = AA - Z
+//    X_1 = pmpyshr2(X_0,Z_1,15)
+//
+(p0)  sub GR_M = GR_M, GR_Bias ;; 
+}
+//     
+//    M = M - Bias
+//    Load G1
+//    N = getf.exp(Z)
+//
+
+{ .mii
+(p0)  cmp.gt.unc  p11, p0 =  -80, GR_M 
+(p0)  cmp.gt.unc  p12, p0 =  -7, GR_M ;; 
+(p0)  extr.u GR_Index2 = GR_X_1, 6, 4 ;; 
+}
+
+{ .mib
+	nop.m 999
+//
+//    if -80 > M, set p11
+//    Index2 = extr.u(X_1,6,4)
+//    if -7  > M, set p12
+//    Load H1
+//
+(p0)  pmpyshr2.u GR_Index2 = GR_Index2,GR_Table_Scale,0 
+(p11) br.cond.spnt L(log1p_small) ;; 
+}
+
+{ .mib
+      nop.m 999
+	nop.i 999
+(p12) br.cond.spnt L(log1p_near) ;; 
+}
+
+{ .mii
+(p0)  sub GR_N = GR_N, GR_Bias 
+//
+//    poly_lo = r * poly_lo 
+//
+(p0)  add GR_Perturb = 0x1, r0 ;; 
+(p0)  sub GR_ScaleN = GR_Bias, GR_N  
+}
+
+{ .mii
+(p0)  setf.sig FR_float_N = GR_N 
+	nop.i 999 ;;
+//
+//    Prepare Index2 - pmpyshr2.u(X_1,Z_2,15)
+//    Load h1
+//    S_lo = S_lo + BB 
+//    Branch for -80 > M
+//   
+(p0)  add GR_Index2 = GR_Index2, GR_Table_Base1
+}
+
+{ .mmi
+(p0)  setf.exp FR_two_negN = GR_ScaleN 
+      nop.m 999
+(p0)  addl GR_Table_Base = @ltoff(Constants_Z_G_H_h3#),gp  
+};;
+
+//
+//    Index2 points to Z2
+//    Branch for -7 > M
+//
+
+{ .mmb
+(p0)  ld4 GR_Z_2 = [GR_Index2],4 
+      ld8 GR_Table_Base = [GR_Table_Base]
+      nop.b 999 ;;
+}
+(p0)  nop.i 999
+//
+//    Load Z_2
+//    N = N - Bias
+//    Tablebase points to Table3
+//
+
+{ .mmi
+(p0)  ldfs  FR_G_tmp = [GR_Index2],4 ;; 
+//
+//    Load G_2
+//    pmpyshr2  X_2= (X_1,Z_2,15)
+//    float_N = setf.sig(N)
+//    ScaleN = Bias - N
+//
+(p0)  ldfs  FR_H_tmp = [GR_Index2],8 
+	nop.i 999 ;;
+}
+//
+//    Load H_2
+//    two_negN = setf.exp(scaleN)
+//    G = G_1 * G_2
+//
+
+{ .mfi
+(p0)  ldfd  FR_h_tmp = [GR_Index2],0 
+	nop.f 999
+(p0)  pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 ;; 
+}
+
+{ .mii
+	nop.m 999
+(p0)  extr.u GR_Index3 = GR_X_2, 1, 5 ;; 
+//
+//    Load h_2
+//    H = H_1 + H_2 
+//    h = h_1 + h_2 
+//    Index3 = extr.u(X_2,1,5)
+//
+(p0)  shladd GR_Index3 = GR_Index3,4,GR_Table_Base 
+}
+
+{ .mmi
+	nop.m 999
+	nop.m 999
+//
+//    float_N = fcvt.xf(float_N)
+//    load G3
+//
+(p0)  addl GR_Table_Base = @ltoff(Constants_Q#),gp ;; 
+}
+
+{ .mfi
+ld8    GR_Table_Base = [GR_Table_Base]
+nop.f 999
+nop.i 999
+} ;;
+
+{ .mfi
+(p0)  ldfe FR_log2_hi = [GR_Table_Base],16 
+(p0)  fmpy.s1 FR_S_lo = FR_S_lo, FR_two_negN 
+	nop.i 999 ;;
+}
+
+{ .mmf
+	nop.m 999
+//
+//    G = G3 * G
+//    Load h3
+//    Load log2_hi
+//    H = H + H3
+//
+(p0)  ldfe FR_log2_lo = [GR_Table_Base],16 
+(p0)  fmpy.s1 FR_G = FR_G, FR_G_tmp ;; 
+}
+
+{ .mmf
+(p0)  ldfs  FR_G_tmp = [GR_Index3],4 
+//
+//    h = h + h3
+//    r = G * S_hi + 1 
+//    Load log2_lo
+//
+(p0)  ldfe FR_Q4 = [GR_Table_Base],16 
+(p0)  fadd.s1 FR_h = FR_h, FR_h_tmp ;; 
+}
+
+{ .mfi
+(p0)  ldfe FR_Q3 = [GR_Table_Base],16 
+(p0)  fadd.s1 FR_H = FR_H, FR_H_tmp 
+	nop.i 999 ;;
+}
+
+{ .mmf
+(p0)  ldfs  FR_H_tmp = [GR_Index3],4 
+(p0)  ldfe FR_Q2 = [GR_Table_Base],16 
+//
+//    Comput Index for Table3
+//    S_lo = S_lo * two_negN
+//
+(p0)  fcvt.xf FR_float_N = FR_float_N ;; 
+}
+//
+//    If S_lo == 0, set p8 false
+//    Load H3
+//    Load ptr to table of polynomial coeff.
+//
+
+{ .mmf
+(p0)  ldfd  FR_h_tmp = [GR_Index3],0 
+(p0)  ldfe FR_Q1 = [GR_Table_Base],0 
+(p0)  fcmp.eq.unc.s1 p0, p8 =  FR_S_lo, f0 ;; 
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fmpy.s1 FR_G = FR_G, FR_G_tmp 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fadd.s1 FR_H = FR_H, FR_H_tmp 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fms.s1 FR_r = FR_G, FR_S_hi, f1 
+	nop.i 999
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fadd.s1 FR_h = FR_h, FR_h_tmp 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+//
+//    Load Q4 
+//    Load Q3 
+//    Load Q2 
+//    Load Q1 
+//
+(p8) fma.s1 FR_r = FR_G, FR_S_lo, FR_r 
+	nop.i 999
+}
+
+{ .mfi
+	nop.m 999
+//
+//    poly_lo = r * Q4 + Q3
+//    rsq = r* r
+//
+(p0)  fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+//
+//    If (S_lo!=0) r = s_lo * G + r
+//
+(p0)  fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 
+	nop.i 999
+}
+//
+//    Create a 0x00000....01
+//    poly_lo = poly_lo * rsq + h
+//
+
+{ .mfi
+(p0)  setf.sig FR_dummy = GR_Perturb 
+(p0)  fmpy.s1 FR_rsq = FR_r, FR_r 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+//
+//    h = N * log2_lo + h 
+//    Y_hi = n * log2_hi + H 
+//
+(p0)  fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 
+	nop.i 999
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+//
+//    poly_lo = r * poly_o + Q2 
+//    poly_hi = Q1 * rsq + r 
+//
+(p0)  fmpy.s1 FR_poly_lo = FR_poly_lo, FR_r 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fma.s1 FR_poly_lo = FR_poly_lo, FR_rsq, FR_h 
+	nop.i 999 ;;
+}
+
+{ .mfb
+	nop.m 999
+(p0)  fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo 
+//
+//    Create the FR for a binary "or"
+//    Y_lo = poly_hi + poly_lo
+//
+// (p0)  for FR_dummy = FR_Y_lo,FR_dummy ;;
+//
+//    Turn the lsb of Y_lo ON
+//
+// (p0)  fmerge.se FR_Y_lo =  FR_Y_lo,FR_dummy ;;
+//
+//    Merge the new lsb into Y_lo, for alone doesn't
+//
+(p0)  br.cond.sptk L(LOG_main) ;; 
+}
+
+
+L(log1p_near): 
+
+{ .mmi
+	nop.m 999
+	nop.m 999
+//    /*******************************************************/
+//    /*********** Branch log1p_near  ************************/
+//    /*******************************************************/
+(p0)  addl GR_Table_Base = @ltoff(Constants_P#),gp ;; 
+}
+//
+//    Load base address of poly. coeff.
+//
+{.mmi
+      nop.m 999
+      ld8    GR_Table_Base = [GR_Table_Base]
+      nop.i 999
+};;
+
+{ .mmb
+(p0)  add GR_Table_ptr = 0x40,GR_Table_Base  
+//
+//    Address tables with separate pointers 
+//
+(p0)  ldfe FR_P8 = [GR_Table_Base],16 
+	nop.b 999 ;;
+}
+
+{ .mmb
+(p0)  ldfe FR_P4 = [GR_Table_ptr],16 
+//
+//    Load P4
+//    Load P8
+//
+(p0)  ldfe FR_P7 = [GR_Table_Base],16 
+	nop.b 999 ;;
+}
+
+{ .mmf
+(p0)  ldfe FR_P3 = [GR_Table_ptr],16 
+//
+//    Load P3
+//    Load P7
+//
+(p0)  ldfe FR_P6 = [GR_Table_Base],16 
+(p0)  fmpy.s1 FR_wsq = FR_W, FR_W ;; 
+}
+
+{ .mfi
+(p0)  ldfe FR_P2 = [GR_Table_ptr],16 
+	nop.f 999
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_W, FR_P4, FR_P3 
+	nop.i 999
+}
+//
+//    Load P2
+//    Load P6
+//    Wsq = w * w
+//    Y_hi = p4 * w + p3
+//
+
+{ .mfi
+(p0)  ldfe FR_P5 = [GR_Table_Base],16 
+(p0)  fma.s1 FR_Y_lo = FR_W, FR_P8, FR_P7 
+	nop.i 999 ;;
+}
+
+{ .mfi
+(p0)  ldfe FR_P1 = [GR_Table_ptr],16 
+//
+//    Load P1
+//    Load P5
+//    Y_lo = p8 * w + P7
+//
+(p0)  fmpy.s1 FR_w4 = FR_wsq, FR_wsq 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P2 
+	nop.i 999
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P6 
+(p0)  add GR_Perturb = 0x1, r0 ;; 
+}
+
+{ .mfi
+	nop.m 999
+//
+//    w4 = w2 * w2 
+//    Y_hi = y_hi * w + p2 
+//    Y_lo = y_lo * w + p6 
+//    Create perturbation bit
+//
+(p0)  fmpy.s1 FR_w6 = FR_w4, FR_wsq 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_W, FR_Y_hi, FR_P1 
+	nop.i 999
+}
+//
+//    Y_hi = y_hi * w + p1 
+//    w6 = w4 * w2 
+//
+
+{ .mfi
+(p0)  setf.sig FR_Q4 = GR_Perturb 
+(p0)  fma.s1 FR_Y_lo = FR_W, FR_Y_lo, FR_P5 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fma.s1 FR_Y_hi = FR_wsq,FR_Y_hi, FR_W 
+	nop.i 999
+}
+
+{ .mfb
+	nop.m 999
+//
+//    Y_hi = y_hi * wsq + w 
+//    Y_lo = y_lo * w + p5 
+//
+(p0)  fmpy.s1 FR_Y_lo = FR_w6, FR_Y_lo 
+//
+//    Y_lo = y_lo * w6  
+//
+// (p0)  for FR_dummy = FR_Y_lo,FR_dummy ;;
+//
+//    Set lsb on: Taken out to improve performance 
+//
+// (p0)  fmerge.se FR_Y_lo =  FR_Y_lo,FR_dummy ;;
+//
+//    Make sure it's on in Y_lo also.  Taken out to improve
+//    performance
+//
+(p0)  br.cond.sptk L(LOG_main) ;; 
+}
+
+
+L(log1p_small): 
+
+{ .mmi
+	nop.m 999
+	nop.m 999
+//  /*******************************************************/
+//  /*********** Branch log1p_small  ***********************/
+//  /*******************************************************/
+(p0)  addl GR_Table_Base = @ltoff(Constants_Threshold#),gp 
+}
+
+{ .mfi
+	nop.m 999
+(p0)  mov FR_Em1 = FR_W 
+(p0)  cmp.eq.unc  p7, p0 = r0, r0 ;; 
+}
+
+{ .mlx
+      ld8    GR_Table_Base = [GR_Table_Base]
+(p0)  movl GR_Expo_Range = 0x0000000000000002 ;; 
+}
+//
+//    Set Safe to true
+//    Set Expo_Range = 0 for single
+//    Set Expo_Range = 2 for double 
+//    Set Expo_Range = 4 for double-extended 
+//
+
+{ .mmi
+(p0)  shladd GR_Table_Base = GR_Expo_Range,4,GR_Table_Base ;; 
+(p0)  ldfe FR_Threshold = [GR_Table_Base],16 
+	nop.i 999
+}
+
+{ .mlx
+	nop.m 999
+(p0)  movl GR_Bias = 0x000000000000FF9B ;; 
+}
+
+{ .mfi
+(p0)  ldfe FR_Tiny = [GR_Table_Base],0 
+	nop.f 999
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p0)  fcmp.gt.unc.s1 p13, p12 =  FR_abs_W, FR_Threshold 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p13) fnmpy.s1 FR_Y_lo = FR_W, FR_W 
+	nop.i 999
+}
+
+{ .mfi
+	nop.m 999
+(p13) fadd FR_SCALE = f0, f1 
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p12) fsub.s1 FR_Y_lo = f0, FR_Tiny 
+(p12) cmp.ne.unc  p7, p0 = r0, r0 
+}
+
+{ .mfi
+(p12) setf.exp FR_SCALE = GR_Bias 
+	nop.f 999
+	nop.i 999 ;;
+}
+
+//
+//    Set p7 to SAFE = FALSE
+//    Set Scale = 2^-100 
+//
+{ .mfb
+	nop.m 999
+(p0)  fma.d.s0 FR_Input_X = FR_Y_lo,FR_SCALE,FR_Y_hi
+(p0)  br.ret.sptk   b0
+}
+;;
+
+L(LOG_64_one): 
+
+{ .mfb
+	nop.m 999
+(p0)  fmpy.d.s0 FR_Input_X = FR_Input_X, f0 
+(p0)  br.ret.sptk   b0
+}
+;;
+
+//    
+//    Raise divide by zero for +/-0 input.
+//    
+L(LOG_64_zero): 
+
+{ .mfi
+(p0)  mov   GR_Parameter_TAG = 140
+//
+//    If we have log1p(0), return -Inf.
+//  
+(p0)  fsub.s0 FR_Output_X_tmp = f0, f1 
+      nop.i 999 ;;
+}
+{ .mfb
+      nop.m 999
+(p0)  frcpa.s0 FR_Output_X_tmp, p8 =  FR_Output_X_tmp, f0 
+(p0)  br.cond.sptk L(LOG_ERROR_Support) ;; 
+}
+
+L(LOG_64_special): 
+
+{ .mfi
+      nop.m 999
+//    
+//    Return -Inf or value from handler.
+//    
+(p0)  fclass.m.unc p7, p0 =  FR_Input_X, 0x1E1 
+      nop.i 999 ;;
+}
+{ .mfb
+      nop.m 999
+//     
+//    Check for Natval, QNan, SNaN, +Inf   
+//    
+(p7)  fmpy.d.s0  f8 =  FR_Input_X, f1 
+//     
+//    For SNaN raise invalid and return QNaN.
+//    For QNaN raise invalid and return QNaN.
+//    For +Inf return +Inf.
+//    
+(p7)  br.ret.sptk   b0
+}
+;;
+
+//    
+//    For -Inf raise invalid and return QNaN.
+//    
+
+{ .mfb
+(p0)  mov   GR_Parameter_TAG = 141 
+(p0)  fmpy.d.s0  FR_Output_X_tmp =  FR_Input_X, f0 
+(p0)  br.cond.sptk L(LOG_ERROR_Support) ;; 
+}
+
+//     
+//    Report that log1p(-Inf) computed
+//     
+
+L(LOG_64_unsupported): 
+
+//    
+//    Return generated NaN or other value .
+//    
+
+{ .mfb
+      nop.m 999
+(p0)  fmpy.d.s0 FR_Input_X = FR_Input_X, f0 
+(p0)  br.ret.sptk   b0 ;;
+}
+
+L(LOG_64_negative): 
+
+{ .mfi
+      nop.m 999
+//     
+//    Deal with x < 0 in a special way 
+//    
+(p0)  frcpa.s0 FR_Output_X_tmp, p8 =  f0, f0 
+//     
+//    Deal with x < 0 in a special way - raise
+//    invalid and produce QNaN indefinite.
+//    
+(p0)  mov   GR_Parameter_TAG = 141
+}
+
+.endp log1p#
+ASM_SIZE_DIRECTIVE(log1p)
+
+.proc __libm_error_region
+__libm_error_region:
+L(LOG_ERROR_Support): 
+.prologue
+
+// (1)
+{ .mfi
+        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
+        nop.f 0
+.save   ar.pfs,GR_SAVE_PFS
+        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+        add sp=-64,sp                          // Create new stack
+        nop.f 0
+        mov GR_SAVE_GP=gp                      // Save gp
+};;
+
+
+// (2)
+{ .mmi
+        stfd [GR_Parameter_Y] = f0,16         // STORE Parameter 2 on stack
+        add GR_Parameter_X = 16,sp            // Parameter 1 address
+.save   b0, GR_SAVE_B0
+        mov GR_SAVE_B0=b0                     // Save b0
+};;
+
+.body
+// (3)
+{ .mib
+        stfd [GR_Parameter_X] =FR_Input_X               // STORE Parameter 1 on stack
+        add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
+        nop.b 0                                      
+}
+{ .mib
+        stfd [GR_Parameter_Y] = FR_Output_X_tmp         // STORE Parameter 3 on stack
+        add   GR_Parameter_Y = -16,GR_Parameter_Y
+        br.call.sptk b0=__libm_error_support#           // Call error handling function
+};;
+{ .mmi
+        nop.m 0
+        nop.m 0
+        add   GR_Parameter_RESULT = 48,sp
+};;
+
+// (4)
+{ .mmi
+        ldfd  FR_Input_X = [GR_Parameter_RESULT]       // Get return result off stack
+.restore sp
+        add   sp = 64,sp                       // Restore stack pointer
+        mov   b0 = GR_SAVE_B0                  // Restore return address
+};;
+{ .mib
+        mov   gp = GR_SAVE_GP                  // Restore gp
+        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
+        br.ret.sptk   b0 
+};;
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+.proc __libm_LOG_main 
+__libm_LOG_main:
+L(LOG_main): 
+
+//
+//    kernel_log_64 computes ln(X + E)
+//
+
+{ .mfi
+	nop.m 999
+(p7)  fadd.d.s0 FR_Input_X = FR_Y_lo,FR_Y_hi
+        nop.i 999
+}
+
+{ .mmi
+	nop.m 999
+	nop.m 999
+(p14) addl GR_Table_Base = @ltoff(Constants_1_by_LN10#),gp ;; 
+}
+
+{ .mmi
+      nop.m 999
+(p14) ld8    GR_Table_Base = [GR_Table_Base]
+      nop.i 999
+};;
+
+{ .mmi
+(p14) ldfe FR_1LN10_hi = [GR_Table_Base],16 ;; 
+(p14) ldfe FR_1LN10_lo = [GR_Table_Base]
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p14) fmpy.s1 FR_Output_X_tmp = FR_Y_lo,FR_1LN10_hi
+	nop.i 999 ;;
+}
+
+{ .mfi
+	nop.m 999
+(p14) fma.s1  FR_Output_X_tmp = FR_Y_hi,FR_1LN10_lo,FR_Output_X_tmp
+	nop.i 999 ;;
+}
+
+{ .mfb
+	nop.m 999
+(p14) fma.d.s0 FR_Input_X = FR_Y_hi,FR_1LN10_hi,FR_Output_X_tmp
+(p0)  br.ret.sptk   b0 ;; 
+}
+.endp __libm_LOG_main
+ASM_SIZE_DIRECTIVE(__libm_LOG_main)
+
+
+.type   __libm_error_support#,@function
+.global __libm_error_support#