diff options
Diffstat (limited to 'sysdeps/ia64/fpu/s_expm1.S')
-rw-r--r-- | sysdeps/ia64/fpu/s_expm1.S | 886 |
1 files changed, 0 insertions, 886 deletions
diff --git a/sysdeps/ia64/fpu/s_expm1.S b/sysdeps/ia64/fpu/s_expm1.S deleted file mode 100644 index 09a22bbbdd..0000000000 --- a/sysdeps/ia64/fpu/s_expm1.S +++ /dev/null @@ -1,886 +0,0 @@ -.file "exp_m1.s" - - -// Copyright (c) 2000 - 2005, Intel Corporation -// All rights reserved. -// -// Contributed 2000 by the Intel Numerics Group, Intel Corporation -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// -// * The name of Intel Corporation may not be used to endorse or promote -// products derived from this software without specific prior written -// permission. - -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS -// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY -// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING -// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// Intel Corporation is the author of this code, and requests that all -// problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. -// -// History -//============================================================== -// 02/02/00 Initial Version -// 04/04/00 Unwind support added -// 08/15/00 Bundle added after call to __libm_error_support to properly -// set [the previously overwritten] GR_Parameter_RESULT. -// 07/07/01 Improved speed of all paths -// 05/20/02 Cleaned up namespace and sf0 syntax -// 11/20/02 Improved speed, algorithm based on exp -// 03/31/05 Reformatted delimiters between data tables - -// API -//============================================================== -// double expm1(double) - -// Overview of operation -//============================================================== -// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths -// -// 2. |x| < 2^-60 -// Result = x, computed by x + x*x to handle appropriate flags and rounding -// -// 3. 2^-60 <= |x| < 2^-2 -// Result determined by 13th order Taylor series polynomial -// expm1f(x) = x + Q2*x^2 + ... + Q13*x^13 -// -// 4. x < -48.0 -// Here we know result is essentially -1 + eps, where eps only affects -// rounded result. Set I. -// -// 5. x >= 709.7827 -// Result overflows. Set I, O, and call error support -// -// 6. 2^-2 <= x < 709.7827 or -48.0 <= x < -2^-2 -// This is the main path. The algorithm is described below: - -// Take the input x. w is "how many log2/128 in x?" -// w = x * 128/log2 -// n = int(w) -// x = n log2/128 + r + delta - -// n = 128M + index_1 + 2^4 index_2 -// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta - -// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta) -// Construct 2^M -// Get 2^(index_1/128) from table_1; -// Get 2^(index_2/8) from table_2; -// Calculate exp(r) by series by 5th order polynomial -// r = x - n (log2/128)_high -// delta = - n (log2/128)_low -// Calculate exp(delta) as 1 + delta - - -// Special values -//============================================================== -// expm1(+0) = +0.0 -// expm1(-0) = -0.0 - -// expm1(+qnan) = +qnan -// expm1(-qnan) = -qnan -// expm1(+snan) = +qnan -// expm1(-snan) = -qnan - -// expm1(-inf) = -1.0 -// expm1(+inf) = +inf - -// Overflow and Underflow -//======================= -// expm1(x) = largest double normal when -// x = 709.7827 = 40862e42fefa39ef -// -// Underflow is handled as described in case 2 above. - - -// Registers used -//============================================================== -// Floating Point registers used: -// f8, input -// f9 -> f15, f32 -> f75 - -// General registers used: -// r14 -> r40 - -// Predicate registers used: -// p6 -> p15 - -// Assembly macros -//============================================================== - -rRshf = r14 -rAD_TB1 = r15 -rAD_T1 = r15 -rAD_TB2 = r16 -rAD_T2 = r16 -rAD_Ln2_lo = r17 -rAD_P = r17 - -rN = r18 -rIndex_1 = r19 -rIndex_2_16 = r20 - -rM = r21 -rBiased_M = r21 -rIndex_1_16 = r22 -rSignexp_x = r23 -rExp_x = r24 -rSig_inv_ln2 = r25 - -rAD_Q1 = r26 -rAD_Q2 = r27 -rTmp = r27 -rExp_bias = r28 -rExp_mask = r29 -rRshf_2to56 = r30 - -rGt_ln = r31 -rExp_2tom56 = r31 - - -GR_SAVE_B0 = r33 -GR_SAVE_PFS = r34 -GR_SAVE_GP = r35 -GR_SAVE_SP = r36 - -GR_Parameter_X = r37 -GR_Parameter_Y = r38 -GR_Parameter_RESULT = r39 -GR_Parameter_TAG = r40 - - -FR_X = f10 -FR_Y = f1 -FR_RESULT = f8 - -fRSHF_2TO56 = f6 -fINV_LN2_2TO63 = f7 -fW_2TO56_RSH = f9 -f2TOM56 = f11 -fP5 = f12 -fP54 = f50 -fP5432 = f50 -fP4 = f13 -fP3 = f14 -fP32 = f14 -fP2 = f15 - -fLn2_by_128_hi = f33 -fLn2_by_128_lo = f34 - -fRSHF = f35 -fNfloat = f36 -fW = f37 -fR = f38 -fF = f39 - -fRsq = f40 -fRcube = f41 - -f2M = f42 -fS1 = f43 -fT1 = f44 - -fMIN_DBL_OFLOW_ARG = f45 -fMAX_DBL_MINUS_1_ARG = f46 -fMAX_DBL_NORM_ARG = f47 -fP_lo = f51 -fP_hi = f52 -fP = f53 -fS = f54 - -fNormX = f56 - -fWre_urm_f8 = f57 - -fGt_pln = f58 -fTmp = f58 - -fS2 = f59 -fT2 = f60 -fSm1 = f61 - -fXsq = f62 -fX6 = f63 -fX4 = f63 -fQ7 = f64 -fQ76 = f64 -fQ7654 = f64 -fQ765432 = f64 -fQ6 = f65 -fQ5 = f66 -fQ54 = f66 -fQ4 = f67 -fQ3 = f68 -fQ32 = f68 -fQ2 = f69 -fQD = f70 -fQDC = f70 -fQDCBA = f70 -fQDCBA98 = f70 -fQDCBA98765432 = f70 -fQC = f71 -fQB = f72 -fQBA = f72 -fQA = f73 -fQ9 = f74 -fQ98 = f74 -fQ8 = f75 - -// Data tables -//============================================================== - -RODATA -.align 16 - -// ************* DO NOT CHANGE ORDER OF THESE TABLES ******************** - -// double-extended 1/ln(2) -// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88 -// 3fff b8aa 3b29 5c17 f0bc -// For speed the significand will be loaded directly with a movl and setf.sig -// and the exponent will be bias+63 instead of bias+0. Thus subsequent -// computations need to scale appropriately. -// The constant 128/ln(2) is needed for the computation of w. This is also -// obtained by scaling the computations. -// -// Two shifting constants are loaded directly with movl and setf.d. -// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7) -// This constant is added to x*1/ln2 to shift the integer part of -// x*128/ln2 into the rightmost bits of the significand. -// The result of this fma is fW_2TO56_RSH. -// 2. fRSHF = 1.1000..00 * 2^(63) -// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give -// the integer part of w, n, as a floating-point number. -// The result of this fms is fNfloat. - - -LOCAL_OBJECT_START(exp_Table_1) -data8 0x40862e42fefa39f0 // smallest dbl overflow arg -data8 0xc048000000000000 // approx largest arg for minus one result -data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result -data8 0x0 // pad -data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi -data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo -// -// Table 1 is 2^(index_1/128) where -// index_1 goes from 0 to 15 -// -data8 0x8000000000000000 , 0x00003FFF -data8 0x80B1ED4FD999AB6C , 0x00003FFF -data8 0x8164D1F3BC030773 , 0x00003FFF -data8 0x8218AF4373FC25EC , 0x00003FFF -data8 0x82CD8698AC2BA1D7 , 0x00003FFF -data8 0x8383594EEFB6EE37 , 0x00003FFF -data8 0x843A28C3ACDE4046 , 0x00003FFF -data8 0x84F1F656379C1A29 , 0x00003FFF -data8 0x85AAC367CC487B15 , 0x00003FFF -data8 0x8664915B923FBA04 , 0x00003FFF -data8 0x871F61969E8D1010 , 0x00003FFF -data8 0x87DB357FF698D792 , 0x00003FFF -data8 0x88980E8092DA8527 , 0x00003FFF -data8 0x8955EE03618E5FDD , 0x00003FFF -data8 0x8A14D575496EFD9A , 0x00003FFF -data8 0x8AD4C6452C728924 , 0x00003FFF -LOCAL_OBJECT_END(exp_Table_1) - -// Table 2 is 2^(index_1/8) where -// index_2 goes from 0 to 7 -LOCAL_OBJECT_START(exp_Table_2) -data8 0x8000000000000000 , 0x00003FFF -data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF -data8 0x9837F0518DB8A96F , 0x00003FFF -data8 0xA5FED6A9B15138EA , 0x00003FFF -data8 0xB504F333F9DE6484 , 0x00003FFF -data8 0xC5672A115506DADD , 0x00003FFF -data8 0xD744FCCAD69D6AF4 , 0x00003FFF -data8 0xEAC0C6E7DD24392F , 0x00003FFF -LOCAL_OBJECT_END(exp_Table_2) - - -LOCAL_OBJECT_START(exp_p_table) -data8 0x3f8111116da21757 //P5 -data8 0x3fa55555d787761c //P4 -data8 0x3fc5555555555414 //P3 -data8 0x3fdffffffffffd6a //P2 -LOCAL_OBJECT_END(exp_p_table) - -LOCAL_OBJECT_START(exp_Q1_table) -data8 0x3de6124613a86d09 // QD = 1/13! -data8 0x3e21eed8eff8d898 // QC = 1/12! -data8 0x3ec71de3a556c734 // Q9 = 1/9! -data8 0x3efa01a01a01a01a // Q8 = 1/8! -data8 0x8888888888888889,0x3ff8 // Q5 = 1/5! -data8 0xaaaaaaaaaaaaaaab,0x3ffc // Q3 = 1/3! -data8 0x0,0x0 // Pad to avoid bank conflicts -LOCAL_OBJECT_END(exp_Q1_table) - -LOCAL_OBJECT_START(exp_Q2_table) -data8 0x3e5ae64567f544e4 // QB = 1/11! -data8 0x3e927e4fb7789f5c // QA = 1/10! -data8 0x3f2a01a01a01a01a // Q7 = 1/7! -data8 0x3f56c16c16c16c17 // Q6 = 1/6! -data8 0xaaaaaaaaaaaaaaab,0x3ffa // Q4 = 1/4! -data8 0x8000000000000000,0x3ffe // Q2 = 1/2! -LOCAL_OBJECT_END(exp_Q2_table) - - -.section .text -GLOBAL_IEEE754_ENTRY(expm1) - -{ .mlx - getf.exp rSignexp_x = f8 // Must recompute if x unorm - movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // signif of 1/ln2 -} -{ .mlx - addl rAD_TB1 = @ltoff(exp_Table_1), gp - movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56) -} -;; - -// We do this fnorm right at the beginning to normalize -// any input unnormals so that SWA is not taken. -{ .mfi - ld8 rAD_TB1 = [rAD_TB1] - fclass.m p6,p0 = f8,0x0b // Test for x=unorm - mov rExp_mask = 0x1ffff -} -{ .mfi - mov rExp_bias = 0xffff - fnorm.s1 fNormX = f8 - mov rExp_2tom56 = 0xffff-56 -} -;; - -// Form two constants we need -// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128 -// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand - -{ .mfi - setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63 - fclass.m p8,p0 = f8,0x07 // Test for x=0 - nop.i 0 -} -{ .mlx - setf.d fRSHF_2TO56 = rRshf_2to56 // Form 1.100 * 2^(63+56) - movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for rshift -} -;; - -{ .mfi - setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat - fclass.m p9,p0 = f8,0x22 // Test for x=-inf - add rAD_TB2 = 0x140, rAD_TB1 // Point to Table 2 -} -{ .mib - add rAD_Q1 = 0x1e0, rAD_TB1 // Point to Q table for small path - add rAD_Ln2_lo = 0x30, rAD_TB1 // Point to ln2_by_128_lo -(p6) br.cond.spnt EXPM1_UNORM // Branch if x unorm -} -;; - -EXPM1_COMMON: -{ .mfi - ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_MINUS_1_ARG = [rAD_TB1],16 - fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, NaN, NaT - add rAD_Q2 = 0x50, rAD_Q1 // Point to Q table for small path -} -{ .mfb - nop.m 0 - nop.f 0 -(p8) br.ret.spnt b0 // Exit for x=0, return x -} -;; - -{ .mfi - ldfd fMAX_DBL_NORM_ARG = [rAD_TB1],16 - nop.f 0 - and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x -} -{ .mfb - setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63 -(p9) fms.d.s0 f8 = f0,f0,f1 // quick exit for x=-inf -(p9) br.ret.spnt b0 -} -;; - -{ .mfi - ldfpd fQD, fQC = [rAD_Q1], 16 // Load coeff for small path - nop.f 0 - sub rExp_x = rExp_x, rExp_bias // True exponent of x -} -{ .mfb - ldfpd fQB, fQA = [rAD_Q2], 16 // Load coeff for small path -(p10) fma.d.s0 f8 = f8, f1, f0 // For x=+inf, NaN, NaT -(p10) br.ret.spnt b0 // Exit for x=+inf, NaN, NaT -} -;; - -{ .mfi - ldfpd fQ9, fQ8 = [rAD_Q1], 16 // Load coeff for small path - fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path - cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2) -} -{ .mfi - ldfpd fQ7, fQ6 = [rAD_Q2], 16 // Load coeff for small path - nop.f 0 - nop.i 0 -} -;; - -{ .mfi - ldfe fQ5 = [rAD_Q1], 16 // Load coeff for small path - nop.f 0 - nop.i 0 -} -{ .mib - ldfe fQ4 = [rAD_Q2], 16 // Load coeff for small path -(p7) cmp.gt.unc p6, p7 = -60, rExp_x // Test |x| < 2^(-60) -(p7) br.cond.spnt EXPM1_SMALL // Branch if 2^-60 <= |x| < 2^-2 -} -;; - -// W = X * Inv_log2_by_128 -// By adding 1.10...0*2^63 we shift and get round_int(W) in significand. -// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing. - -{ .mfi - ldfe fLn2_by_128_hi = [rAD_TB1],32 - fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56 - nop.i 0 -} -{ .mfb - ldfe fLn2_by_128_lo = [rAD_Ln2_lo] -(p6) fma.d.s0 f8 = f8, f8, f8 // If x < 2^-60, result=x+x*x -(p6) br.ret.spnt b0 // Exit if x < 2^-60 -} -;; - -// Divide arguments into the following categories: -// Certain minus one p11 - -inf < x <= MAX_DBL_MINUS_1_ARG -// Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG -// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf -// -// If the input is really a double arg, then there will never be "Possible -// Overflow" arguments. -// - -// After that last load, rAD_TB1 points to the beginning of table 1 - -{ .mfi - nop.m 0 - fcmp.ge.s1 p15,p14 = fNormX,fMIN_DBL_OFLOW_ARG - nop.i 0 -} -;; - -{ .mfi - add rAD_P = 0x80, rAD_TB2 - fcmp.le.s1 p11,p0 = fNormX,fMAX_DBL_MINUS_1_ARG - nop.i 0 -} -;; - -{ .mfb - ldfpd fP5, fP4 = [rAD_P] ,16 -(p14) fcmp.gt.unc.s1 p14,p0 = fNormX,fMAX_DBL_NORM_ARG -(p15) br.cond.spnt EXPM1_CERTAIN_OVERFLOW -} -;; - -// Nfloat = round_int(W) -// The signficand of fW_2TO56_RSH contains the rounded integer part of W, -// as a twos complement number in the lower bits (that is, it may be negative). -// That twos complement number (called N) is put into rN. - -// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56 -// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat. -// Thus, fNfloat contains the floating point version of N - -{ .mfb - ldfpd fP3, fP2 = [rAD_P] - fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF -(p11) br.cond.spnt EXPM1_CERTAIN_MINUS_ONE -} -;; - -{ .mfi - getf.sig rN = fW_2TO56_RSH - nop.f 0 - nop.i 0 -} -;; - -// rIndex_1 has index_1 -// rIndex_2_16 has index_2 * 16 -// rBiased_M has M -// rIndex_1_16 has index_1 * 16 - -// r = x - Nfloat * ln2_by_128_hi -// f = 1 - Nfloat * ln2_by_128_lo -{ .mfi - and rIndex_1 = 0x0f, rN - fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX - shr rM = rN, 0x7 -} -{ .mfi - and rIndex_2_16 = 0x70, rN - fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1 - nop.i 0 -} -;; - -// rAD_T1 has address of T1 -// rAD_T2 has address if T2 - -{ .mmi - add rBiased_M = rExp_bias, rM - add rAD_T2 = rAD_TB2, rIndex_2_16 - shladd rAD_T1 = rIndex_1, 4, rAD_TB1 -} -;; - -// Create Scale = 2^M -// Load T1 and T2 -{ .mmi - setf.exp f2M = rBiased_M - ldfe fT2 = [rAD_T2] - nop.i 0 -} -;; - -{ .mfi - ldfe fT1 = [rAD_T1] - fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fP54 = fR, fP5, fP4 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fP32 = fR, fP3, fP2 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fRsq = fR, fR, f0 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fP5432 = fRsq, fP54, fP32 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fS2 = fF,fT2,f0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fS1 = f2M,fT1,f0 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fP = fRsq, fP5432, fR - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fms.s1 fSm1 = fS1,fS2,f1 // S - 1.0 - nop.i 0 -} -{ .mfb - nop.m 0 - fma.s1 fS = fS1,fS2,f0 -(p14) br.cond.spnt EXPM1_POSSIBLE_OVERFLOW -} -;; - -{ .mfb - nop.m 0 - fma.d.s0 f8 = fS, fP, fSm1 - br.ret.sptk b0 // Normal path exit -} -;; - -// Here if 2^-60 <= |x| <2^-2 -// Compute 13th order polynomial -EXPM1_SMALL: -{ .mmf - ldfe fQ3 = [rAD_Q1], 16 - ldfe fQ2 = [rAD_Q2], 16 - fma.s1 fX4 = fXsq, fXsq, f0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fQDC = fQD, fNormX, fQC - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fQBA = fQB, fNormX, fQA - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fQ98 = fQ9, fNormX, fQ8 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fQ76= fQ7, fNormX, fQ6 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fQ54 = fQ5, fNormX, fQ4 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fX6 = fX4, fXsq, f0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fQ32= fQ3, fNormX, fQ2 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fQDCBA = fQDC, fXsq, fQBA - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fQ7654 = fQ76, fXsq, fQ54 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fQDCBA98 = fQDCBA, fXsq, fQ98 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fQ765432 = fQ7654, fXsq, fQ32 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fQDCBA98765432 = fQDCBA98, fX6, fQ765432 - nop.i 0 -} -;; - -{ .mfb - nop.m 0 - fma.d.s0 f8 = fQDCBA98765432, fXsq, fNormX - br.ret.sptk b0 // Exit small branch -} -;; - - -EXPM1_POSSIBLE_OVERFLOW: - -// Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG -// This cannot happen if input is a double, only if input higher precision. -// Overflow is a possibility, not a certainty. - -// Recompute result using status field 2 with user's rounding mode, -// and wre set. If result is larger than largest double, then we have -// overflow - -{ .mfi - mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp - fsetc.s2 0x7F,0x42 // Get user's round mode, set wre - nop.i 0 -} -;; - -{ .mfi - setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp - fma.d.s2 fWre_urm_f8 = fS, fP, fSm1 // Result with wre set - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fsetc.s2 0x7F,0x40 // Turn off wre in sf2 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow - nop.i 0 -} -;; - -{ .mfb - nop.m 0 - nop.f 0 -(p6) br.cond.spnt EXPM1_CERTAIN_OVERFLOW // Branch if overflow -} -;; - -{ .mfb - nop.m 0 - fma.d.s0 f8 = fS, fP, fSm1 - br.ret.sptk b0 // Exit if really no overflow -} -;; - -EXPM1_CERTAIN_OVERFLOW: -{ .mmi - sub rTmp = rExp_mask, r0, 1 -;; - setf.exp fTmp = rTmp - nop.i 0 -} -;; - -{ .mfi - alloc r32=ar.pfs,1,4,4,0 - fmerge.s FR_X = f8,f8 - nop.i 0 -} -{ .mfb - mov GR_Parameter_TAG = 41 - fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result - br.cond.sptk __libm_error_region -} -;; - -// Here if x unorm -EXPM1_UNORM: -{ .mfb - getf.exp rSignexp_x = fNormX // Must recompute if x unorm - fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag - br.cond.sptk EXPM1_COMMON -} -;; - -// here if result will be -1 and inexact, x <= -48.0 -EXPM1_CERTAIN_MINUS_ONE: -{ .mmi - mov rTmp = 1 -;; - setf.exp fTmp = rTmp - nop.i 0 -} -;; - -{ .mfb - nop.m 0 - fms.d.s0 FR_RESULT = fTmp, fTmp, f1 // Set I, rounded -1+eps result - br.ret.sptk b0 -} -;; - -GLOBAL_IEEE754_END(expm1) - - -LOCAL_LIBM_ENTRY(__libm_error_region) -.prologue -{ .mfi - add GR_Parameter_Y=-32,sp // Parameter 2 value - nop.f 0 -.save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS=ar.pfs // Save ar.pfs -} -{ .mfi -.fframe 64 - add sp=-64,sp // Create new stack - nop.f 0 - mov GR_SAVE_GP=gp // Save gp -};; -{ .mmi - stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack - add GR_Parameter_X = 16,sp // Parameter 1 address -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0=b0 // Save b0 -};; -.body -{ .mib - stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack - add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address - nop.b 0 -} -{ .mib - stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack - add GR_Parameter_Y = -16,GR_Parameter_Y - br.call.sptk b0=__libm_error_support# // Call error handling function -};; -{ .mmi - add GR_Parameter_RESULT = 48,sp - nop.m 0 - nop.i 0 -};; -{ .mmi - ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack -.restore sp - add sp = 64,sp // Restore stack pointer - mov b0 = GR_SAVE_B0 // Restore return address -};; -{ .mib - mov gp = GR_SAVE_GP // Restore gp - mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs - br.ret.sptk b0 // Return -};; - -LOCAL_LIBM_END(__libm_error_region) -.type __libm_error_support#,@function -.global __libm_error_support# |