diff options
Diffstat (limited to 'sysdeps/ia64/fpu/s_cosf.S')
-rw-r--r-- | sysdeps/ia64/fpu/s_cosf.S | 1182 |
1 files changed, 582 insertions, 600 deletions
diff --git a/sysdeps/ia64/fpu/s_cosf.S b/sysdeps/ia64/fpu/s_cosf.S index bcdf1b0c02..0e47255b3f 100644 --- a/sysdeps/ia64/fpu/s_cosf.S +++ b/sysdeps/ia64/fpu/s_cosf.S @@ -1,10 +1,12 @@ + .file "sincosf.s" -// Copyright (c) 2000 - 2005, Intel Corporation +// Copyright (C) 2000, 2001, Intel Corporation // All rights reserved. // -// Contributed 2000 by the Intel Numerics Group, Intel Corporation +// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, +// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are @@ -20,7 +22,7 @@ // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. - +// // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR @@ -35,683 +37,663 @@ // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. -// +// http://developer.intel.com/opensource. + + // History //============================================================== -// 02/02/00 Initial version -// 04/02/00 Unwind support added. -// 06/16/00 Updated tables to enforce symmetry -// 08/31/00 Saved 2 cycles in main path, and 9 in other paths. -// 09/20/00 The updated tables regressed to an old version, so reinstated them -// 10/18/00 Changed one table entry to ensure symmetry -// 01/03/01 Improved speed, fixed flag settings for small arguments. -// 02/18/02 Large arguments processing routine excluded -// 05/20/02 Cleaned up namespace and sf0 syntax -// 06/03/02 Insure inexact flag set for large arg result -// 09/05/02 Single precision version is made using double precision one as base -// 02/10/03 Reordered header: .section, .global, .proc, .align -// 03/31/05 Reformatted delimiters between data tables +// 2/02/00 Initial revision +// 4/02/00 Unwind support added. +// 5/10/00 Improved speed with new algorithm. +// 8/08/00 Improved speed by avoiding SIR flush. +// 8/17/00 Changed predicate register macro-usage to direct predicate +// names due to an assembler bug. +// 8/30/00 Put sin_of_r before sin_tbl_S_cos_of_r to gain a cycle +// 1/02/00 Fixed flag settings, improved speed. // // API //============================================================== // float sinf( float x); // float cosf( float x); // -// Overview of operation -//============================================================== -// -// Step 1 -// ====== -// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4 -// divide x by pi/2^k. -// Multiply by 2^k/pi. -// nfloat = Round result to integer (round-to-nearest) -// -// r = x - nfloat * pi/2^k -// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) - -// for increased accuracy. -// pi/2^k is stored as two numbers that when added make pi/2^k. -// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k) -// HIGH part is rounded to zero, LOW - to nearest -// -// x = (nfloat * pi/2^k) + r -// r is small enough that we can use a polynomial approximation -// and is referred to as the reduced argument. -// -// Step 3 -// ====== -// Take the unreduced part and remove the multiples of 2pi. -// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits -// -// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1) -// N * 2^(k+1) -// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k -// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k -// nfloat * pi/2^k = N2pi + M * pi/2^k -// -// -// Sin(x) = Sin((nfloat * pi/2^k) + r) -// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r) -// -// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k) -// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k) -// = Sin(Mpi/2^k) -// -// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k) -// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k) -// = Cos(Mpi/2^k) -// -// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) -// -// -// Step 4 -// ====== -// 0 <= M < 2^(k+1) -// There are 2^(k+1) Sin entries in a table. -// There are 2^(k+1) Cos entries in a table. -// -// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup. -// -// -// Step 5 -// ====== -// Calculate Cos(r) and Sin(r) by polynomial approximation. -// -// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos -// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin -// -// and the coefficients q1, q2 and p1, p2 are stored in a table -// -// -// Calculate -// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) -// -// as follows -// -// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k) -// rsq = r*r -// -// -// P = P1 + r^2*P2 -// Q = Q1 + r^2*Q2 -// -// rcub = r * rsq -// Sin(r) = r + rcub * P -// = r + r^3p1 + r^5p2 = Sin(r) -// -// The coefficients are not exactly these values, but almost. -// -// p1 = -1/6 = -1/3! -// p2 = 1/120 = 1/5! -// p3 = -1/5040 = -1/7! -// p4 = 1/362889 = 1/9! -// -// P = r + r^3 * P -// -// Answer = S[m] Cos(r) + C[m] P -// -// Cos(r) = 1 + rsq Q -// Cos(r) = 1 + r^2 Q -// Cos(r) = 1 + r^2 (q1 + r^2q2) -// Cos(r) = 1 + r^2q1 + r^4q2 -// -// S[m] Cos(r) = S[m](1 + rsq Q) -// S[m] Cos(r) = S[m] + S[m] rsq Q -// S[m] Cos(r) = S[m] + s_rsq Q -// Q = S[m] + s_rsq Q -// -// Then, -// -// Answer = Q + C[m] P - - -// Registers used -//============================================================== -// general input registers: -// r14 -> r19 -// r32 -> r45 - -// predicate registers used: -// p6 -> p14 - -// floating-point registers used -// f9 -> f15 -// f32 -> f61 +#include "libm_support.h" + // Assembly macros //============================================================== -sincosf_NORM_f8 = f9 -sincosf_W = f10 -sincosf_int_Nfloat = f11 -sincosf_Nfloat = f12 - -sincosf_r = f13 -sincosf_rsq = f14 -sincosf_rcub = f15 -sincosf_save_tmp = f15 -sincosf_Inv_Pi_by_16 = f32 -sincosf_Pi_by_16_1 = f33 -sincosf_Pi_by_16_2 = f34 +// SIN_Sin_Flag = p6 +// SIN_Cos_Flag = p7 + +// integer registers used + + SIN_AD_PQ_1 = r33 + SIN_AD_PQ_2 = r33 + sin_GR_sincos_flag = r34 + sin_GR_Mint = r35 + + sin_GR_index = r36 + gr_tmp = r37 + + GR_SAVE_B0 = r37 + GR_SAVE_GP = r38 + GR_SAVE_PFS = r39 + + +// floating point registers used + + sin_coeff_P1 = f32 + sin_coeff_P2 = f33 + sin_coeff_Q1 = f34 + sin_coeff_Q2 = f35 + sin_coeff_P4 = f36 + sin_coeff_P5 = f37 + sin_coeff_Q3 = f38 + sin_coeff_Q4 = f39 + sin_Mx = f40 + sin_Mfloat = f41 + sin_tbl_S = f42 + sin_tbl_C = f43 + sin_r = f44 + sin_rcube = f45 + sin_tsq = f46 + sin_r7 = f47 + sin_t = f48 + sin_poly_p2 = f49 + sin_poly_p1 = f50 + fp_tmp = f51 + sin_poly_p3 = f52 + sin_poly_p4 = f53 + sin_of_r = f54 + sin_S_t = f55 + sin_poly_q2 = f56 + sin_poly_q1 = f57 + sin_S_tcube = f58 + sin_poly_q3 = f59 + sin_poly_q4 = f60 + sin_tbl_S_tcube = f61 + sin_tbl_S_cos_of_r = f62 + + sin_coeff_Q5 = f63 + sin_coeff_Q6 = f64 + sin_coeff_P3 = f65 + + sin_poly_q5 = f66 + sin_poly_q12 = f67 + sin_poly_q3456 = f68 + fp_tmp2 = f69 + SIN_NORM_f8 = f70 + + +#ifdef _LIBC +.rodata +#else +.data +#endif -sincosf_Inv_Pi_by_64 = f35 - -sincosf_Pi_by_16_3 = f36 +.align 16 -sincosf_r_exact = f37 +sin_coeff_1_table: +ASM_TYPE_DIRECTIVE(sin_coeff_1_table,@object) +data8 0xBF56C16C16BF6462 // q3 +data8 0x3EFA01A0128B9EBC // q4 +data8 0xBE927E42FDF33FFE // q5 +data8 0x3E21DA5C72A446F3 // q6 +data8 0x3EC71DD1D5E421A4 // p4 +data8 0xBE5AC5C9D0ACF95A // p5 +data8 0xBFC55555555554CA // p1 +data8 0x3F811111110F2395 // p2 +data8 0xBFE0000000000000 // q1 +data8 0x3FA55555555554EF // q2 +data8 0xBF2A01A011232913 // p3 +data8 0x0000000000000000 // pad + + +///////////////////////////////////////// + +data8 0xBFE1A54991426566 //sin(-32) +data8 0x3FEAB1F5305DE8E5 //cos(-32) +data8 0x3FD9DBC0B640FC81 //sin(-31) +data8 0x3FED4591C3E12A20 //cos(-31) +data8 0x3FEF9DF47F1C903D //sin(-30) +data8 0x3FC3BE82F2505A52 //cos(-30) +data8 0x3FE53C7D20A6C9E7 //sin(-29) +data8 0xBFE7F01658314E47 //cos(-29) +data8 0xBFD156853B4514D6 //sin(-28) +data8 0xBFEECDAAD1582500 //cos(-28) +data8 0xBFEE9AA1B0E5BA30 //sin(-27) +data8 0xBFD2B266F959DED5 //cos(-27) +data8 0xBFE866E0FAC32583 //sin(-26) +data8 0x3FE4B3902691A9ED //cos(-26) +data8 0x3FC0F0E6F31E809D //sin(-25) +data8 0x3FEFB7EEF59504FF //cos(-25) +data8 0x3FECFA7F7919140F //sin(-24) +data8 0x3FDB25BFB50A609A //cos(-24) +data8 0x3FEB143CD0247D02 //sin(-23) +data8 0xBFE10CF7D591F272 //cos(-23) +data8 0x3F8220A29F6EB9F4 //sin(-22) +data8 0xBFEFFFADD8D4ACDA //cos(-22) +data8 0xBFEAC5E20BB0D7ED //sin(-21) +data8 0xBFE186FF83773759 //cos(-21) +data8 0xBFED36D8F55D3CE0 //sin(-20) +data8 0x3FDA1E043964A83F //cos(-20) +data8 0xBFC32F2D28F584CF //sin(-19) +data8 0x3FEFA377DE108258 //cos(-19) +data8 0x3FE8081668131E26 //sin(-18) +data8 0x3FE52150815D2470 //cos(-18) +data8 0x3FEEC3C4AC42882B //sin(-17) +data8 0xBFD19C46B07F58E7 //cos(-17) +data8 0x3FD26D02085F20F8 //sin(-16) +data8 0xBFEEA5257E962F74 //cos(-16) +data8 0xBFE4CF2871CEC2E8 //sin(-15) +data8 0xBFE84F5D069CA4F3 //cos(-15) +data8 0xBFEFB30E327C5E45 //sin(-14) +data8 0x3FC1809AEC2CA0ED //cos(-14) +data8 0xBFDAE4044881C506 //sin(-13) +data8 0x3FED09CDD5260CB7 //cos(-13) +data8 0x3FE12B9AF7D765A5 //sin(-12) +data8 0x3FEB00DA046B65E3 //cos(-12) +data8 0x3FEFFFEB762E93EB //sin(-11) +data8 0x3F7220AE41EE2FDF //cos(-11) +data8 0x3FE1689EF5F34F52 //sin(-10) +data8 0xBFEAD9AC890C6B1F //cos(-10) +data8 0xBFDA6026360C2F91 //sin( -9) +data8 0xBFED27FAA6A6196B //cos( -9) +data8 0xBFEFA8D2A028CF7B //sin( -8) +data8 0xBFC29FBEBF632F94 //cos( -8) +data8 0xBFE50608C26D0A08 //sin( -7) +data8 0x3FE81FF79ED92017 //cos( -7) +data8 0x3FD1E1F18AB0A2C0 //sin( -6) +data8 0x3FEEB9B7097822F5 //cos( -6) +data8 0x3FEEAF81F5E09933 //sin( -5) +data8 0x3FD22785706B4AD9 //cos( -5) +data8 0x3FE837B9DDDC1EAE //sin( -4) +data8 0xBFE4EAA606DB24C1 //cos( -4) +data8 0xBFC210386DB6D55B //sin( -3) +data8 0xBFEFAE04BE85E5D2 //cos( -3) +data8 0xBFED18F6EAD1B446 //sin( -2) +data8 0xBFDAA22657537205 //cos( -2) +data8 0xBFEAED548F090CEE //sin( -1) +data8 0x3FE14A280FB5068C //cos( -1) +data8 0x0000000000000000 //sin( 0) +data8 0x3FF0000000000000 //cos( 0) +data8 0x3FEAED548F090CEE //sin( 1) +data8 0x3FE14A280FB5068C //cos( 1) +data8 0x3FED18F6EAD1B446 //sin( 2) +data8 0xBFDAA22657537205 //cos( 2) +data8 0x3FC210386DB6D55B //sin( 3) +data8 0xBFEFAE04BE85E5D2 //cos( 3) +data8 0xBFE837B9DDDC1EAE //sin( 4) +data8 0xBFE4EAA606DB24C1 //cos( 4) +data8 0xBFEEAF81F5E09933 //sin( 5) +data8 0x3FD22785706B4AD9 //cos( 5) +data8 0xBFD1E1F18AB0A2C0 //sin( 6) +data8 0x3FEEB9B7097822F5 //cos( 6) +data8 0x3FE50608C26D0A08 //sin( 7) +data8 0x3FE81FF79ED92017 //cos( 7) +data8 0x3FEFA8D2A028CF7B //sin( 8) +data8 0xBFC29FBEBF632F94 //cos( 8) +data8 0x3FDA6026360C2F91 //sin( 9) +data8 0xBFED27FAA6A6196B //cos( 9) +data8 0xBFE1689EF5F34F52 //sin( 10) +data8 0xBFEAD9AC890C6B1F //cos( 10) +data8 0xBFEFFFEB762E93EB //sin( 11) +data8 0x3F7220AE41EE2FDF //cos( 11) +data8 0xBFE12B9AF7D765A5 //sin( 12) +data8 0x3FEB00DA046B65E3 //cos( 12) +data8 0x3FDAE4044881C506 //sin( 13) +data8 0x3FED09CDD5260CB7 //cos( 13) +data8 0x3FEFB30E327C5E45 //sin( 14) +data8 0x3FC1809AEC2CA0ED //cos( 14) +data8 0x3FE4CF2871CEC2E8 //sin( 15) +data8 0xBFE84F5D069CA4F3 //cos( 15) +data8 0xBFD26D02085F20F8 //sin( 16) +data8 0xBFEEA5257E962F74 //cos( 16) +data8 0xBFEEC3C4AC42882B //sin( 17) +data8 0xBFD19C46B07F58E7 //cos( 17) +data8 0xBFE8081668131E26 //sin( 18) +data8 0x3FE52150815D2470 //cos( 18) +data8 0x3FC32F2D28F584CF //sin( 19) +data8 0x3FEFA377DE108258 //cos( 19) +data8 0x3FED36D8F55D3CE0 //sin( 20) +data8 0x3FDA1E043964A83F //cos( 20) +data8 0x3FEAC5E20BB0D7ED //sin( 21) +data8 0xBFE186FF83773759 //cos( 21) +data8 0xBF8220A29F6EB9F4 //sin( 22) +data8 0xBFEFFFADD8D4ACDA //cos( 22) +data8 0xBFEB143CD0247D02 //sin( 23) +data8 0xBFE10CF7D591F272 //cos( 23) +data8 0xBFECFA7F7919140F //sin( 24) +data8 0x3FDB25BFB50A609A //cos( 24) +data8 0xBFC0F0E6F31E809D //sin( 25) +data8 0x3FEFB7EEF59504FF //cos( 25) +data8 0x3FE866E0FAC32583 //sin( 26) +data8 0x3FE4B3902691A9ED //cos( 26) +data8 0x3FEE9AA1B0E5BA30 //sin( 27) +data8 0xBFD2B266F959DED5 //cos( 27) +data8 0x3FD156853B4514D6 //sin( 28) +data8 0xBFEECDAAD1582500 //cos( 28) +data8 0xBFE53C7D20A6C9E7 //sin( 29) +data8 0xBFE7F01658314E47 //cos( 29) +data8 0xBFEF9DF47F1C903D //sin( 30) +data8 0x3FC3BE82F2505A52 //cos( 30) +data8 0xBFD9DBC0B640FC81 //sin( 31) +data8 0x3FED4591C3E12A20 //cos( 31) +data8 0x3FE1A54991426566 //sin( 32) +data8 0x3FEAB1F5305DE8E5 //cos( 32) +ASM_SIZE_DIRECTIVE(sin_coeff_1_table) + +////////////////////////////////////////// + + +.global sinf +.global cosf +#ifdef _LIBC +.global __sinf +.global __cosf +#endif + +.text +.proc cosf +#ifdef _LIBC +.proc __cosf +#endif +.align 32 + + +cosf: +#ifdef _LIBC +__cosf: +#endif +{ .mfi + alloc r32 = ar.pfs,1,7,0,0 + fcvt.fx.s1 sin_Mx = f8 + cmp.ne p6,p7 = r0,r0 // p7 set if cos +} +{ .mfi + addl SIN_AD_PQ_1 = @ltoff(sin_coeff_1_table),gp + fnorm.s0 SIN_NORM_f8 = f8 // Sets denormal or invalid + mov sin_GR_sincos_flag = 0x0 +} +;; -sincosf_Sm = f38 -sincosf_Cm = f39 +{ .mfi + ld8 SIN_AD_PQ_1 = [SIN_AD_PQ_1] + fclass.m.unc p9,p0 = f8, 0x07 + cmp.ne p8,p0 = r0,r0 +} +{ .mfb + nop.m 999 + nop.f 999 + br.sptk L(SINCOSF_COMMON) +} +;; -sincosf_P1 = f40 -sincosf_Q1 = f41 -sincosf_P2 = f42 -sincosf_Q2 = f43 -sincosf_P3 = f44 -sincosf_Q3 = f45 -sincosf_P4 = f46 -sincosf_Q4 = f47 +.endp cosf +ASM_SIZE_DIRECTIVE(cosf) -sincosf_P_temp1 = f48 -sincosf_P_temp2 = f49 -sincosf_Q_temp1 = f50 -sincosf_Q_temp2 = f51 +.text +.proc sinf +#ifdef _LIBC +.proc __sinf +#endif +.align 32 -sincosf_P = f52 -sincosf_Q = f53 +sinf: +#ifdef _LIBC +__sinf: +#endif +{ .mfi + alloc r32 = ar.pfs,1,7,0,0 + fcvt.fx.s1 sin_Mx = f8 + cmp.eq p6,p7 = r0,r0 // p6 set if sin +} +{ .mfi + addl SIN_AD_PQ_1 = @ltoff(sin_coeff_1_table),gp + fnorm.s0 SIN_NORM_f8 = f8 // Sets denormal or invalid + mov sin_GR_sincos_flag = 0x1 +} +;; -sincosf_srsq = f54 +{ .mfi + ld8 SIN_AD_PQ_1 = [SIN_AD_PQ_1] + fclass.m.unc p8,p0 = f8, 0x07 + cmp.ne p9,p0 = r0,r0 +} +{ .mfb + nop.m 999 + nop.f 999 + br.sptk L(SINCOSF_COMMON) +} +;; -sincosf_SIG_INV_PI_BY_16_2TO61 = f55 -sincosf_RSHF_2TO61 = f56 -sincosf_RSHF = f57 -sincosf_2TOM61 = f58 -sincosf_NFLOAT = f59 -sincosf_W_2TO61_RSH = f60 -fp_tmp = f61 +L(SINCOSF_COMMON): -///////////////////////////////////////////////////////////// +// Here with p6 if sin, p7 if cos, p8 if sin(0), p9 if cos(0) -sincosf_AD_1 = r33 -sincosf_AD_2 = r34 -sincosf_exp_limit = r35 -sincosf_r_signexp = r36 -sincosf_AD_beta_table = r37 -sincosf_r_sincos = r38 -sincosf_r_exp = r39 -sincosf_r_17_ones = r40 +{ .mmf + ldfpd sin_coeff_Q3, sin_coeff_Q4 = [SIN_AD_PQ_1], 16 + nop.m 999 + fclass.m.unc p11,p0 = f8, 0x23 // Test for x=inf +} +;; -sincosf_GR_sig_inv_pi_by_16 = r14 -sincosf_GR_rshf_2to61 = r15 -sincosf_GR_rshf = r16 -sincosf_GR_exp_2tom61 = r17 -sincosf_GR_n = r18 -sincosf_GR_m = r19 -sincosf_GR_32m = r19 -sincosf_GR_all_ones = r19 +{ .mfb + ldfpd sin_coeff_Q5, sin_coeff_Q6 = [SIN_AD_PQ_1], 16 + fclass.m.unc p10,p0 = f8, 0xc3 // Test for x=nan +(p8) br.ret.spnt b0 // Exit for sin(0) +} +{ .mfb + nop.m 999 +(p9) fma.s f8 = f1,f1,f0 +(p9) br.ret.spnt b0 // Exit for cos(0) +} +;; -gr_tmp = r41 -GR_SAVE_PFS = r41 -GR_SAVE_B0 = r42 -GR_SAVE_GP = r43 +{ .mmf + ldfpd sin_coeff_P4, sin_coeff_P5 = [SIN_AD_PQ_1], 16 + addl gr_tmp = -1,r0 + fcvt.xf sin_Mfloat = sin_Mx +} +;; -RODATA -.align 16 +{ .mfi + getf.sig sin_GR_Mint = sin_Mx +(p11) frcpa.s0 f8,p13 = f0,f0 // qnan indef if x=inf + nop.i 999 +} +{ .mfb + ldfpd sin_coeff_P1, sin_coeff_P2 = [SIN_AD_PQ_1], 16 + nop.f 999 +(p11) br.ret.spnt b0 // Exit for x=inf +} +;; -// Pi/16 parts -LOCAL_OBJECT_START(double_sincosf_pi) - data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part - data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part -LOCAL_OBJECT_END(double_sincosf_pi) - -// Coefficients for polynomials -LOCAL_OBJECT_START(double_sincosf_pq_k4) - data8 0x3F810FABB668E9A2 // P2 - data8 0x3FA552E3D6DE75C9 // Q2 - data8 0xBFC555554447BC7F // P1 - data8 0xBFDFFFFFC447610A // Q1 -LOCAL_OBJECT_END(double_sincosf_pq_k4) - -// Sincos table (S[m], C[m]) -LOCAL_OBJECT_START(double_sin_cos_beta_k4) - data8 0x0000000000000000 // sin ( 0 Pi / 16 ) - data8 0x3FF0000000000000 // cos ( 0 Pi / 16 ) -// - data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 ) - data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 ) -// - data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 ) - data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 ) -// - data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 ) - data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 ) -// - data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 ) - data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 ) -// - data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 ) - data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 ) -// - data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 ) - data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 ) -// - data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 ) - data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 ) -// - data8 0x3FF0000000000000 // sin ( 8 Pi / 16 ) - data8 0x0000000000000000 // cos ( 8 Pi / 16 ) -// - data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 ) - data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 ) -// - data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 ) - data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 ) -// - data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 ) - data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 ) -// - data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 ) - data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 ) -// - data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 ) - data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 ) -// - data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 ) - data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 ) -// - data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 ) - data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 ) -// - data8 0x0000000000000000 // sin ( 16 Pi / 16 ) - data8 0xBFF0000000000000 // cos ( 16 Pi / 16 ) -// - data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 ) - data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 ) -// - data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 ) - data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 ) -// - data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 ) - data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 ) -// - data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 ) - data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 ) -// - data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 ) - data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 ) -// - data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 ) - data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 ) -// - data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 ) - data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 ) -// - data8 0xBFF0000000000000 // sin ( 24 Pi / 16 ) - data8 0x0000000000000000 // cos ( 24 Pi / 16 ) -// - data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 ) - data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 ) -// - data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 ) - data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 ) -// - data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 ) - data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 ) -// - data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 ) - data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 ) -// - data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 ) - data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 ) -// - data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 ) - data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 ) -// - data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 ) - data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 ) -// - data8 0x0000000000000000 // sin ( 32 Pi / 16 ) - data8 0x3FF0000000000000 // cos ( 32 Pi / 16 ) -LOCAL_OBJECT_END(double_sin_cos_beta_k4) +{ .mfi + ldfpd sin_coeff_Q1, sin_coeff_Q2 = [SIN_AD_PQ_1], 16 + nop.f 999 + cmp.ge p8,p9 = -33,sin_GR_Mint +} +{ .mfb + add sin_GR_index = 32,sin_GR_Mint +(p10) fma.s f8 = f8,f1,f0 // Force qnan if x=nan +(p10) br.ret.spnt b0 // Exit for x=nan +} +;; -.section .text +{ .mmi + ldfd sin_coeff_P3 = [SIN_AD_PQ_1], 16 +(p9) cmp.le p8,p0 = 33, sin_GR_Mint + shl sin_GR_index = sin_GR_index,4 +} +;; -//////////////////////////////////////////////////////// -// There are two entry points: sin and cos -// If from sin, p8 is true -// If from cos, p9 is true -GLOBAL_IEEE754_ENTRY(sinf) +{ .mfi + setf.sig fp_tmp = gr_tmp // Create constant such that fmpy sets inexact + fnma.s1 sin_r = f1,sin_Mfloat,SIN_NORM_f8 +(p8) cmp.eq.unc p11,p12=sin_GR_sincos_flag,r0 // p11 if must call dbl cos + // p12 if must call dbl sin +} +{ .mbb + add SIN_AD_PQ_2 = sin_GR_index,SIN_AD_PQ_1 +(p11) br.cond.spnt COS_DOUBLE +(p12) br.cond.spnt SIN_DOUBLE +} +;; -{ .mlx - alloc r32 = ar.pfs,1,13,0,0 - movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi +.pred.rel "mutex",p6,p7 //SIN_Sin_Flag, SIN_Cos_Flag +{ .mmi +(p6) ldfpd sin_tbl_S,sin_tbl_C = [SIN_AD_PQ_2] +(p7) ldfpd sin_tbl_C,sin_tbl_S = [SIN_AD_PQ_2] + nop.i 999 } -{ .mlx - addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp - movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2) -};; +;; -{ .mfi - ld8 sincosf_AD_1 = [sincosf_AD_1] - fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument - cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin +{ .mfi + nop.m 999 +(p6) fclass.m.unc p8,p0 = f8, 0x0b // If sin, note denormal input to set uflow + nop.i 999 } -{ .mib - mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61 - mov sincosf_r_sincos = 0x0 // 0 for sin - br.cond.sptk _SINCOSF_COMMON // go to common part -};; +{ .mfi + nop.m 999 + fma.s1 sin_t = sin_r,sin_r,f0 + nop.i 999 +} +;; -GLOBAL_IEEE754_END(sinf) +{ .mfi + nop.m 999 + fma.s1 sin_rcube = sin_t,sin_r,f0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 sin_tsq = sin_t,sin_t,f0 + nop.i 999 +} +;; -GLOBAL_IEEE754_ENTRY(cosf) +{ .mfi + nop.m 999 + fma.s1 sin_poly_q3 = sin_t,sin_coeff_Q4,sin_coeff_Q3 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 sin_poly_q5 = sin_t,sin_coeff_Q6,sin_coeff_Q5 + nop.i 999 +} +;; -{ .mlx - alloc r32 = ar.pfs,1,13,0,0 - movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi +{ .mfi + nop.m 999 + fma.s1 sin_poly_p1 = sin_t,sin_coeff_P5,sin_coeff_P4 + nop.i 999 } -{ .mlx - addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp - movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2) -};; +{ .mfi + nop.m 999 + fma.s1 sin_poly_p2 = sin_t,sin_coeff_P2,sin_coeff_P1 + nop.i 999 +} +;; -{ .mfi - ld8 sincosf_AD_1 = [sincosf_AD_1] - fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument - cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos +{ .mfi + nop.m 999 + fma.s1 sin_poly_q1 = sin_t,sin_coeff_Q2,sin_coeff_Q1 + nop.i 999 } -{ .mib - mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61 - mov sincosf_r_sincos = 0x8 // 8 for cos - nop.b 999 -};; - -//////////////////////////////////////////////////////// -// All entry points end up here. -// If from sin, sincosf_r_sincos is 0 and p8 is true -// If from cos, sincosf_r_sincos is 8 = 2^(k-1) and p9 is true -// We add sincosf_r_sincos to N - -///////////// Common sin and cos part ////////////////// -_SINCOSF_COMMON: - -// Form two constants we need -// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand -// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand -// fcmp used to set denormal, and invalid on snans -{ .mfi - setf.sig sincosf_SIG_INV_PI_BY_16_2TO61 = sincosf_GR_sig_inv_pi_by_16 - fclass.m p6,p0 = f8, 0xe7 // if x=0,inf,nan - mov sincosf_exp_limit = 0x10017 -} -{ .mlx - setf.d sincosf_RSHF_2TO61 = sincosf_GR_rshf_2to61 - movl sincosf_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 -};; // Right shift - -// Form another constant -// 2^-61 for scaling Nfloat -// 0x10017 is register_bias + 24. -// So if f8 >= 2^24, go to large argument routines -{ .mmi - getf.exp sincosf_r_signexp = f8 - setf.exp sincosf_2TOM61 = sincosf_GR_exp_2tom61 - addl gr_tmp = -1,r0 // For "inexect" constant create -};; - -// Load the two pieces of pi/16 -// Form another constant -// 1.1000...000 * 2^63, the right shift constant -{ .mmb - ldfe sincosf_Pi_by_16_1 = [sincosf_AD_1],16 - setf.d sincosf_RSHF = sincosf_GR_rshf -(p6) br.cond.spnt _SINCOSF_SPECIAL_ARGS -};; +{ .mfi + nop.m 999 + fma.s1 sin_S_t = sin_t,sin_tbl_S,f0 + nop.i 999 +} +;; -// Getting argument's exp for "large arguments" filtering -{ .mmi - ldfe sincosf_Pi_by_16_2 = [sincosf_AD_1],16 - setf.sig fp_tmp = gr_tmp // constant for inexact set - nop.i 999 -};; +{ .mfi + nop.m 999 +(p8) fmpy.s.s0 fp_tmp2 = f8,f8 // Dummy mult to set underflow if sin(denormal) + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 sin_r7 = sin_rcube,sin_tsq,f0 + nop.i 999 +} +;; -// Polynomial coefficients (Q2, Q1, P2, P1) loading -{ .mmi - ldfpd sincosf_P2,sincosf_Q2 = [sincosf_AD_1],16 - nop.m 999 - nop.i 999 -};; +{ .mfi + nop.m 999 + fma.s1 sin_poly_q3456 = sin_tsq,sin_poly_q5,sin_poly_q3 + nop.i 999 +} +;; -// Select exponent (17 lsb) -{ .mmi - ldfpd sincosf_P1,sincosf_Q1 = [sincosf_AD_1],16 - nop.m 999 - dep.z sincosf_r_exp = sincosf_r_signexp, 0, 17 -};; +{ .mfi + nop.m 999 + fma.s1 sin_poly_p3 = sin_t,sin_poly_p1,sin_coeff_P3 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 sin_poly_p4 = sin_rcube,sin_poly_p2,sin_r + nop.i 999 +} +;; -// p10 is true if we must call routines to handle larger arguments -// p10 is true if f8 exp is >= 0x10017 (2^24) -{ .mfb - cmp.ge p10,p0 = sincosf_r_exp,sincosf_exp_limit - nop.f 999 -(p10) br.cond.spnt _SINCOSF_LARGE_ARGS // Go to "large args" routine -};; - -// sincosf_W = x * sincosf_Inv_Pi_by_16 -// Multiply x by scaled 16/pi and add large const to shift integer part of W to -// rightmost bits of significand -{ .mfi - nop.m 999 - fma.s1 sincosf_W_2TO61_RSH = sincosf_NORM_f8, sincosf_SIG_INV_PI_BY_16_2TO61, sincosf_RSHF_2TO61 - nop.i 999 -};; +{ .mfi + nop.m 999 + fma.s1 sin_tbl_S_tcube = sin_S_t,sin_tsq,f0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 sin_poly_q12 = sin_S_t,sin_poly_q1,sin_tbl_S + nop.i 999 +} +;; -// sincosf_NFLOAT = Round_Int_Nearest(sincosf_W) -// This is done by scaling back by 2^-61 and subtracting the shift constant -{ .mfi - nop.m 999 - fms.s1 sincosf_NFLOAT = sincosf_W_2TO61_RSH,sincosf_2TOM61,sincosf_RSHF - nop.i 999 -};; +{ .mfi + nop.m 999 + fma.d.s1 sin_of_r = sin_r7,sin_poly_p3,sin_poly_p4 + nop.i 999 +} +;; -// get N = (int)sincosf_int_Nfloat -{ .mfi - getf.sig sincosf_GR_n = sincosf_W_2TO61_RSH // integer N value - nop.f 999 - nop.i 999 -};; +{ .mfi + nop.m 999 + fma.d.s1 sin_tbl_S_cos_of_r = sin_tbl_S_tcube,sin_poly_q3456,sin_poly_q12 + nop.i 999 +} +{ .mfi + nop.m 999 + fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact + nop.i 999 +} +;; -// Add 2^(k-1) (which is in sincosf_r_sincos=8) to N -// sincosf_r = -sincosf_Nfloat * sincosf_Pi_by_16_1 + x -{ .mfi - add sincosf_GR_n = sincosf_GR_n, sincosf_r_sincos - fnma.s1 sincosf_r = sincosf_NFLOAT, sincosf_Pi_by_16_1, sincosf_NORM_f8 - nop.i 999 -};; -// Get M (least k+1 bits of N) -{ .mmi - and sincosf_GR_m = 0x1f,sincosf_GR_n // Put mask 0x1F - - nop.m 999 // - select k+1 bits - nop.i 999 -};; +.pred.rel "mutex",p6,p7 //SIN_Sin_Flag, SIN_Cos_Flag +{ .mfi + nop.m 999 +//(SIN_Sin_Flag) fma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r +(p6) fma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r + nop.i 999 +} +{ .mfb + nop.m 999 +//(SIN_Cos_Flag) fnma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r +(p7) fnma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r + br.ret.sptk b0 +} -// Add 16*M to address of sin_cos_beta table -{ .mfi - shladd sincosf_AD_2 = sincosf_GR_32m, 4, sincosf_AD_1 -(p8) fclass.m.unc p10,p0 = f8,0x0b // If sin denormal input - - nop.i 999 -};; +.endp sinf +ASM_SIZE_DIRECTIVE(sinf) -// Load Sin and Cos table value using obtained index m (sincosf_AD_2) -{ .mfi - ldfd sincosf_Sm = [sincosf_AD_2],8 // Sin value S[m] -(p9) fclass.m.unc p11,p0 = f8,0x0b // If cos denormal input - - nop.i 999 // - set denormal -};; -// sincosf_r = sincosf_r -sincosf_Nfloat * sincosf_Pi_by_16_2 +.proc SIN_DOUBLE +SIN_DOUBLE: +.prologue { .mfi - ldfd sincosf_Cm = [sincosf_AD_2] // Cos table value C[m] - fnma.s1 sincosf_r_exact = sincosf_NFLOAT, sincosf_Pi_by_16_2, sincosf_r - nop.i 999 + nop.m 0 + nop.f 0 +.save ar.pfs,GR_SAVE_PFS + mov GR_SAVE_PFS=ar.pfs } -// get rsq = r*r -{ .mfi - nop.m 999 - fma.s1 sincosf_rsq = sincosf_r, sincosf_r, f0 // r^2 = r*r - nop.i 999 -};; +;; { .mfi - nop.m 999 - fmpy.s0 fp_tmp = fp_tmp, fp_tmp // forces inexact flag - nop.i 999 -};; - -// Polynomials calculation -// Q = Q2*r^2 + Q1 -// P = P2*r^2 + P1 -{ .mfi - nop.m 999 - fma.s1 sincosf_Q = sincosf_rsq, sincosf_Q2, sincosf_Q1 - nop.i 999 + mov GR_SAVE_GP=gp + nop.f 0 +.save b0, GR_SAVE_B0 + mov GR_SAVE_B0=b0 } -{ .mfi - nop.m 999 - fma.s1 sincosf_P = sincosf_rsq, sincosf_P2, sincosf_P1 - nop.i 999 -};; -// get rcube and S[m]*r^2 -{ .mfi - nop.m 999 - fmpy.s1 sincosf_srsq = sincosf_Sm,sincosf_rsq // r^2*S[m] - nop.i 999 -} -{ .mfi - nop.m 999 - fmpy.s1 sincosf_rcub = sincosf_r_exact, sincosf_rsq - nop.i 999 -};; - -// Get final P and Q -// Q = Q*S[m]*r^2 + S[m] -// P = P*r^3 + r -{ .mfi - nop.m 999 - fma.s1 sincosf_Q = sincosf_srsq,sincosf_Q, sincosf_Sm - nop.i 999 +.body +{ .mmb + nop.m 999 + nop.m 999 + br.call.sptk.many b0=sin } -{ .mfi - nop.m 999 - fma.s1 sincosf_P = sincosf_rcub,sincosf_P,sincosf_r_exact - nop.i 999 -};; +;; -// If sinf(denormal) - force underflow to be set -.pred.rel "mutex",p10,p11 { .mfi - nop.m 999 -(p10) fmpy.s.s0 fp_tmp = f8,f8 // forces underflow flag - nop.i 999 // for denormal sine args + mov gp = GR_SAVE_GP + nop.f 999 + mov b0 = GR_SAVE_B0 } -// If cosf(denormal) - force denormal to be set -{ .mfi - nop.m 999 -(p11) fma.s.s0 fp_tmp = f8, f1, f8 // forces denormal flag - nop.i 999 // for denormal cosine args -};; - +;; -// Final calculation -// result = C[m]*P + Q -{ .mfb - nop.m 999 - fma.s.s0 f8 = sincosf_Cm, sincosf_P, sincosf_Q - br.ret.sptk b0 // Exit for common path -};; - -////////// x = 0/Inf/NaN path ////////////////// -_SINCOSF_SPECIAL_ARGS: -.pred.rel "mutex",p8,p9 -// sinf(+/-0) = +/-0 -// sinf(Inf) = NaN -// sinf(NaN) = NaN { .mfi - nop.m 999 -(p8) fma.s.s0 f8 = f8, f0, f0 // sinf(+/-0,NaN,Inf) - nop.i 999 + nop.m 999 + fma.s f8 = f8,f1,f0 +(p0) mov ar.pfs = GR_SAVE_PFS } -// cosf(+/-0) = 1.0 -// cosf(Inf) = NaN -// cosf(NaN) = NaN -{ .mfb - nop.m 999 -(p9) fma.s.s0 f8 = f8, f0, f1 // cosf(+/-0,NaN,Inf) - br.ret.sptk b0 // Exit for x = 0/Inf/NaN path -};; +{ .mib + nop.m 999 + nop.i 999 +(p0) br.ret.sptk b0 +} +;; + +.endp SIN_DOUBLE +ASM_SIZE_DIRECTIVE(SIN_DOUBLE) -GLOBAL_IEEE754_END(cosf) -//////////// x >= 2^24 - large arguments routine call //////////// -LOCAL_LIBM_ENTRY(__libm_callout_sincosf) -_SINCOSF_LARGE_ARGS: +.proc COS_DOUBLE +COS_DOUBLE: .prologue { .mfi - mov sincosf_GR_all_ones = -1 // 0xffffffff - nop.f 999 -.save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS = ar.pfs + nop.m 0 + nop.f 0 +.save ar.pfs,GR_SAVE_PFS + mov GR_SAVE_PFS=ar.pfs } ;; { .mfi - mov GR_SAVE_GP = gp - nop.f 999 -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0 = b0 + mov GR_SAVE_GP=gp + nop.f 0 +.save b0, GR_SAVE_B0 + mov GR_SAVE_B0=b0 } -.body -{ .mbb - setf.sig sincosf_save_tmp = sincosf_GR_all_ones // inexact set - nop.b 999 -(p8) br.call.sptk.many b0 = __libm_sin_large# // sinf(large_X) -};; - -{ .mbb - cmp.ne p9,p0 = sincosf_r_sincos, r0 // set p9 if cos - nop.b 999 -(p9) br.call.sptk.many b0 = __libm_cos_large# // cosf(large_X) -};; +.body +{ .mmb + nop.m 999 + nop.m 999 + br.call.sptk.many b0=cos +} +;; { .mfi - mov gp = GR_SAVE_GP - fma.s.s0 f8 = f8, f1, f0 // Round result to single - mov b0 = GR_SAVE_B0 + mov gp = GR_SAVE_GP + nop.f 999 + mov b0 = GR_SAVE_B0 } -{ .mfi // force inexact set - nop.m 999 - fmpy.s0 sincosf_save_tmp = sincosf_save_tmp, sincosf_save_tmp - nop.i 999 -};; +;; +{ .mfi + nop.m 999 + fma.s f8 = f8,f1,f0 +(p0) mov ar.pfs = GR_SAVE_PFS +} { .mib - nop.m 999 - mov ar.pfs = GR_SAVE_PFS - br.ret.sptk b0 // Exit for large arguments routine call -};; -LOCAL_LIBM_END(__libm_callout_sincosf) + nop.m 999 + nop.i 999 +(p0) br.ret.sptk b0 +} +;; + +.endp COS_DOUBLE +ASM_SIZE_DIRECTIVE(COS_DOUBLE) + -.type __libm_sin_large#, @function -.global __libm_sin_large# -.type __libm_cos_large#, @function -.global __libm_cos_large# +.type sin,@function +.global sin +.type cos,@function +.global cos |