diff options
Diffstat (limited to 'sysdeps/ia64/fpu/s_atanl.S')
-rw-r--r-- | sysdeps/ia64/fpu/s_atanl.S | 1994 |
1 files changed, 1994 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/s_atanl.S b/sysdeps/ia64/fpu/s_atanl.S new file mode 100644 index 0000000000..0192ac6a18 --- /dev/null +++ b/sysdeps/ia64/fpu/s_atanl.S @@ -0,0 +1,1994 @@ +.file "atanl.s" + +// Copyright (c) 2000, 2001, Intel Corporation +// All rights reserved. +// +// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, +// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation. +// +// WARRANTY DISCLAIMER +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Intel Corporation is the author of this code, and requests that all +// problem reports or change requests be submitted to it directly at +// http://developer.intel.com/opensource. +// +// +// ********************************************************************* +// +// History +// 2/02/00 (hand-optimized) +// 4/04/00 Unwind support added +// 8/15/00 Bundle added after call to __libm_error_support to properly +// set [the previously overwritten] GR_Parameter_RESULT. +// +// ********************************************************************* +// +// Function: atanl(x) = inverse tangent(x), for double extended x values +// Function: atan2l(y,x) = atan(y/x), for double extended x values +// +// ********************************************************************* +// +// Resources Used: +// +// Floating-Point Registers: f8 (Input and Return Value) +// f9-f15 +// f32-f79 +// +// General Purpose Registers: +// r32-r48 +// r49,r50,r51,r52 (Arguments to error support for 0,0 case) +// +// Predicate Registers: p6-p15 +// +// ********************************************************************* +// +// IEEE Special Conditions: +// +// Denormal fault raised on denormal inputs +// Underflow exceptions may occur +// Special error handling for the y=0 and x=0 case +// Inexact raised when appropriate by algorithm +// +// atanl(SNaN) = QNaN +// atanl(QNaN) = QNaN +// atanl(+/-0) = +/- 0 +// atanl(+/-Inf) = +/-pi/2 +// +// atan2l(Any NaN for x or y) = QNaN +// atan2l(+/-0,x) = +/-0 for x > 0 +// atan2l(+/-0,x) = +/-pi for x < 0 +// atan2l(+/-0,+0) = +/-0 +// atan2l(+/-0,-0) = +/-pi +// atan2l(y,+/-0) = pi/2 y > 0 +// atan2l(y,+/-0) = -pi/2 y < 0 +// atan2l(+/-y, Inf) = +/-0 for finite y > 0 +// atan2l(+/-Inf, x) = +/-pi/2 for finite x +// atan2l(+/-y, -Inf) = +/-pi for finite y > 0 +// atan2l(+/-Inf, Inf) = +/-pi/4 +// atan2l(+/-Inf, -Inf) = +/-3pi/4 +// +// ********************************************************************* +// +// Mathematical Description +// --------------------------- +// +// The function ATANL( Arg_Y, Arg_X ) returns the "argument" +// or the "phase" of the complex number +// +// Arg_X + i Arg_Y +// +// or equivalently, the angle in radians from the positive +// x-axis to the line joining the origin and the point +// (Arg_X,Arg_Y) +// +// +// (Arg_X, Arg_Y) x +// \ +// \ +// \ +// \ +// \ angle between is ATANL(Arg_Y,Arg_X) + + + + +// \ +// ------------------> X-axis + +// Origin +// +// Moreover, this angle is reported in the range [-pi,pi] thus +// +// -pi <= ATANL( Arg_Y, Arg_X ) <= pi. +// +// From the geometry, it is easy to define ATANL when one of +// Arg_X or Arg_Y is +-0 or +-inf: +// +// +// \ Y | +// X \ | +0 | -0 | +inf | -inf | finite non-zero +// \ | | | | | +// ______________________________________________________ +// | | | | +// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2 +// | qNaN | | | +// -------------------------------------------------------- +// | | | | | +// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0 +// -------------------------------------------------------- +// | | | | | +// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi +// -------------------------------------------------------- +// finite | X>0? | pi/2 | -pi/2 | normal case +// non-zero| sign(Y)*0: | | | +// | sign(Y)*pi | | | +// +// +// One must take note that ATANL is NOT the arctangent of the +// value Arg_Y/Arg_X; but rather ATANL and arctan are related +// in a slightly more complicated way as follows: +// +// Let U := max(|Arg_X|, |Arg_Y|); V := min(|Arg_X|, |Arg_Y|); +// sign_X be the sign bit of Arg_X, i.e., sign_X is 0 or 1; +// s_X be the sign of Arg_X, i.e., s_X = (-1)^sign_X; +// +// sign_Y be the sign bit of Arg_Y, i.e., sign_Y is 0 or 1; +// s_Y be the sign of Arg_Y, i.e., s_Y = (-1)^sign_Y; +// +// swap be 0 if |Arg_X| >= |Arg_Y| and 1 otherwise. +// +// Then, ATANL(Arg_Y, Arg_X) = +// +// / arctan(V/U) \ sign_X = 0 & swap = 0 +// | pi/2 - arctan(V/U) | sign_X = 0 & swap = 1 +// s_Y * | | +// | pi - arctan(V/U) | sign_X = 1 & swap = 0 +// \ pi/2 + arctan(V/U) / sign_X = 1 & swap = 1 +// +// +// This relationship also suggest that the algorithm's major +// task is to calculate arctan(V/U) for 0 < V <= U; and the +// final Result is given by +// +// s_Y * { (P_hi + P_lo) + sigma * arctan(V/U) } +// +// where +// +// (P_hi,P_lo) represents M(sign_X,swap)*(pi/2) accurately +// +// M(sign_X,swap) = 0 for sign_X = 0 and swap = 0 +// 1 for swap = 1 +// 2 for sign_X = 1 and swap = 0 +// +// and +// +// sigma = { (sign_X XOR swap) : -1.0 : 1.0 } +// +// = (-1) ^ ( sign_X XOR swap ) +// +// Both (P_hi,P_lo) and sigma can be stored in a table and fetched +// using (sign_X,swap) as an index. (P_hi, P_lo) can be stored as a +// double-precision, and single-precision pair; and sigma can +// obviously be just a single-precision number. +// +// In the algorithm we propose, arctan(V/U) is calculated to high accuracy +// as A_hi + A_lo. Consequently, the Result ATANL( Arg_Y, Arg_X ) is +// given by +// +// s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo) +// +// We now discuss the calculation of arctan(V/U) for 0 < V <= U. +// +// For (V/U) < 2^(-3), we use a simple polynomial of the form +// +// z + z^3*(P_1 + z^2*(P_2 + z^2*(P_3 + ... + P_8))) +// +// where z = V/U. +// +// For the sake of accuracy, the first term "z" must approximate V/U to +// extra precision. For z^3 and higher power, a working precision +// approximation to V/U suffices. Thus, we obtain: +// +// z_hi + z_lo = V/U to extra precision and +// z = V/U to working precision +// +// The value arctan(V/U) is delivered as two pieces (A_hi, A_lo) +// +// (A_hi,A_lo) = (z_hi, z^3*(P_1 + ... + P_8) + z_lo). +// +// +// For 2^(-3) <= (V/U) <= 1, we use a table-driven approach. +// Consider +// +// (V/U) = 2^k * 1.b_1 b_2 .... b_63 b_64 b_65 .... +// +// Define +// +// z_hi = 2^k * 1.b_1 b_2 b_3 b_4 1 +// +// then +// / \ +// | (V/U) - z_hi | + +// arctan(V/U) = arctan(z_hi) + acrtan| -------------- | +// | 1 + (V/U)*z_hi | +// \ / +// +// / \ +// | V - z_hi*U | + +// = arctan(z_hi) + acrtan| -------------- | +// | U + V*z_hi | +// \ / +// +// = arctan(z_hi) + acrtan( V' / U' ) +// +// +// where +// +// V' = V - U*z_hi; U' = U + V*z_hi. +// +// Let +// +// w_hi + w_lo = V'/U' to extra precision and +// w = V'/U' to working precision +// +// then we can approximate arctan(V'/U') by +// +// arctan(V'/U') = w_hi + w_lo +// + w^3*(Q_1 + w^2*(Q_2 + w^2*(Q_3 + w^2*Q_4))) +// +// = w_hi + w_lo + poly +// +// Finally, arctan(z_hi) is calculated beforehand and stored in a table +// as Tbl_hi, Tbl_lo. Thus, +// +// (A_hi, A_lo) = (Tbl_hi, w_hi+(poly+(w_lo+Tbl_lo))) +// +// This completes the mathematical description. +// +// +// Algorithm +// ------------- +// +// Step 0. Check for unsupported format. +// +// If +// ( expo(Arg_X) not zero AND msb(Arg_X) = 0 ) OR +// ( expo(Arg_Y) not zero AND msb(Arg_Y) = 0 ) +// +// then one of the arguments is unsupported. Generate an +// invalid and return qNaN. +// +// Step 1. Initialize +// +// Normalize Arg_X and Arg_Y and set the following +// +// sign_X := sign_bit(Arg_X) +// s_Y := (sign_bit(Arg_Y)==0? 1.0 : -1.0) +// swap := (|Arg_X| >= |Arg_Y|? 0 : 1 ) +// U := max( |Arg_X|, |Arg_Y| ) +// V := min( |Arg_X|, |Arg_Y| ) +// +// execute: frcap E, pred, V, U +// If pred is 0, go to Step 5 for special cases handling. +// +// Step 2. Decide on branch. +// +// Q := E * V +// If Q < 2^(-3) go to Step 4 for simple polynomial case. +// +// Step 3. Table-driven algorithm. +// +// Q is represented as +// +// 2^(-k) * 1.b_1 b_2 b_3 ... b_63; k = 0,-1,-2,-3 +// +// and that if k = 0, b_1 = b_2 = b_3 = b_4 = 0. +// +// Define +// +// z_hi := 2^(-k) * 1.b_1 b_2 b_3 b_4 1 +// +// (note that there are 49 possible values of z_hi). +// +// ...We now calculate V' and U'. While V' is representable +// ...as a 64-bit number because of cancellation, U' is +// ...not in general a 64-bit number. Obtaining U' accurately +// ...requires two working precision numbers +// +// U_prime_hi := U + V * z_hi ...WP approx. to U' +// U_prime_lo := ( U - U_prime_hi ) + V*z_hi ...observe order +// V_prime := V - U * z_hi ...this is exact +// +// C_hi := frcpa (1.0, U_prime_hi) ...C_hi approx 1/U'_hi +// +// loop 3 times +// C_hi := C_hi + C_hi*(1.0 - C_hi*U_prime_hi) +// +// ...at this point C_hi is (1/U_prime_hi) to roughly 64 bits +// +// w_hi := V_prime * C_hi ...w_hi is V_prime/U_prime to +// ...roughly working precision +// +// ...note that we want w_hi + w_lo to approximate +// ...V_prime/(U_prime_hi + U_prime_lo) to extra precision +// ...but for now, w_hi is good enough for the polynomial +// ...calculation. +// +// wsq := w_hi*w_hi +// poly := w_hi*wsq*(Q_1 + wsq*(Q_2 + wsq*(Q_3 + wsq*Q_4))) +// +// Fetch +// (Tbl_hi, Tbl_lo) = atan(z_hi) indexed by (k,b_1,b_2,b_3,b_4) +// ...Tbl_hi is a double-precision number +// ...Tbl_lo is a single-precision number +// +// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo) +// ...as discussed previous. Again; the implementation can +// ...chose to fetch P_hi and P_lo from a table indexed by +// ...(sign_X, swap). +// ...P_hi is a double-precision number; +// ...P_lo is a single-precision number. +// +// ...calculate w_lo so that w_hi + w_lo is V'/U' accurately +// w_lo := ((V_prime - w_hi*U_prime_hi) - +// w_hi*U_prime_lo) * C_hi ...observe order +// +// +// ...Ready to deliver arctan(V'/U') as A_hi, A_lo +// A_hi := Tbl_hi +// A_lo := w_hi + (poly + (Tbl_lo + w_lo)) ...observe order +// +// ...Deliver final Result +// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo) +// +// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 ) +// ...sigma can be obtained by a table lookup using +// ...(sign_X,swap) as index and stored as single precision +// ...sigma should be calculated earlier +// +// P_hi := s_Y*P_hi +// A_hi := s_Y*A_hi +// +// Res_hi := P_hi + sigma*A_hi ...this is exact because +// ...both P_hi and Tbl_hi +// ...are double-precision +// ...and |Tbl_hi| > 2^(-4) +// ...P_hi is either 0 or +// ...between (1,4) +// +// Res_lo := sigma*A_lo + P_lo +// +// Return Res_hi + s_Y*Res_lo in user-defined rounding control +// +// Step 4. Simple polynomial case. +// +// ...E and Q are inherited from Step 2. +// +// A_hi := Q ...Q is inherited from Step 2 Q approx V/U +// +// loop 3 times +// E := E + E2(1.0 - E*U1 +// ...at this point E approximates 1/U to roughly working precision +// +// z := V * E ...z approximates V/U to roughly working precision +// zsq := z * z +// z8 := zsq * zsq; z8 := z8 * z8 +// +// poly1 := P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8))) +// poly2 := zsq*(P_1 + zsq*(P_2 + zsq*P_3)) +// +// poly := poly1 + z8*poly2 +// +// z_lo := (V - A_hi*U)*E +// +// A_lo := z*poly + z_lo +// ...A_hi, A_lo approximate arctan(V/U) accurately +// +// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo) +// ...one can store the M(sign_X,swap) as single precision +// ...values +// +// ...Deliver final Result +// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo) +// +// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 ) +// ...sigma can be obtained by a table lookup using +// ...(sign_X,swap) as index and stored as single precision +// ...sigma should be calculated earlier +// +// P_hi := s_Y*P_hi +// A_hi := s_Y*A_hi +// +// Res_hi := P_hi + sigma*A_hi ...need to compute +// ...P_hi + sigma*A_hi +// ...exactly +// +// tmp := (P_hi - Res_hi) + sigma*A_hi +// +// Res_lo := s_Y*(sigma*A_lo + P_lo) + tmp +// +// Return Res_hi + Res_lo in user-defined rounding control +// +// Step 5. Special Cases +// +// If pred is 0 where pred is obtained in +// frcap E, pred, V, U +// +// we are in one of those special cases of 0,+-inf or NaN +// +// If one of U and V is NaN, return U+V (which will generate +// invalid in case one is a signaling NaN). Otherwise, +// return the Result as described in the table +// +// +// +// \ Y | +// X \ | +0 | -0 | +inf | -inf | finite non-zero +// \ | | | | | +// ______________________________________________________ +// | | | | +// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2 +// | qNaN | | | +// -------------------------------------------------------- +// | | | | | +// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0 +// -------------------------------------------------------- +// | | | | | +// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi +// -------------------------------------------------------- +// finite | X>0? | pi/2 | -pi/2 | +// non-zero| sign(Y)*0: | | | N/A +// | sign(Y)*pi | | | +// +// + +#include "libm_support.h" + +ArgY_orig = f8 +Result = f8 +FR_RESULT = f8 +ArgX_orig = f9 +ArgX = f10 +FR_X = f10 +ArgY = f11 +FR_Y = f11 +s_Y = f12 +U = f13 +V = f14 +E = f15 +Q = f32 +z_hi = f33 +U_prime_hi = f34 +U_prime_lo = f35 +V_prime = f36 +C_hi = f37 +w_hi = f38 +w_lo = f39 +wsq = f40 +poly = f41 +Tbl_hi = f42 +Tbl_lo = f43 +P_hi = f44 +P_lo = f45 +A_hi = f46 +A_lo = f47 +sigma = f48 +Res_hi = f49 +Res_lo = f50 +Z = f52 +zsq = f53 +z8 = f54 +poly1 = f55 +poly2 = f56 +z_lo = f57 +tmp = f58 +P_1 = f59 +Q_1 = f60 +P_2 = f61 +Q_2 = f62 +P_3 = f63 +Q_3 = f64 +P_4 = f65 +Q_4 = f66 +P_5 = f67 +P_6 = f68 +P_7 = f69 +P_8 = f70 +TWO_TO_NEG3 = f71 +U_hold = f72 +C_hi_hold = f73 +E_hold = f74 +M = f75 +ArgX_abs = f76 +ArgY_abs = f77 +Result_lo = f78 +A_temp = f79 +GR_SAVE_PFS = r33 +GR_SAVE_B0 = r34 +GR_SAVE_GP = r35 +sign_X = r36 +sign_Y = r37 +swap = r38 +table_ptr1 = r39 +table_ptr2 = r40 +k = r41 +lookup = r42 +exp_ArgX = r43 +exp_ArgY = r44 +exponent_Q = r45 +significand_Q = r46 +special = r47 +special1 = r48 +GR_Parameter_X = r49 +GR_Parameter_Y = r50 +GR_Parameter_RESULT = r51 +GR_Parameter_TAG = r52 +int_temp = r52 + +#ifdef _LIBC +.rodata +#else +.data +#endif +.align 64 + +Constants_atan: +ASM_TYPE_DIRECTIVE(Constants_atan,@object) +data4 0x54442D18, 0x3FF921FB, 0x248D3132, 0x3E000000 +// double pi/2, single lo_pi/2, two**(-3) +data4 0xAAAAAAA3, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // P_1 +data4 0xCCCC54B2, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // P_2 +data4 0x47E4D0C2, 0x92492492, 0x0000BFFC, 0x00000000 // P_3 +data4 0x58870889, 0xE38E38E0, 0x00003FFB, 0x00000000 // P_4 +data4 0x290149F8, 0xBA2E895B, 0x0000BFFB, 0x00000000 // P_5 +data4 0x250F733D, 0x9D88E6D4, 0x00003FFB, 0x00000000 // P_6 +data4 0xFB8745A0, 0x884E51FF, 0x0000BFFB, 0x00000000 // P_7 +data4 0x394396BD, 0xE1C7412B, 0x00003FFA, 0x00000000 // P_8 +data4 0xAAAAA52F, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // Q_1 +data4 0xC75B60D3, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // Q_2 +data4 0x011F1940, 0x924923AD, 0x0000BFFC, 0x00000000 // Q_3 +data4 0x2A5F89BD, 0xE36F716D, 0x00003FFB, 0x00000000 // Q_4 +// +// Entries Tbl_hi (double precision) +// B = 1+Index/16+1/32 Index = 0 +// Entries Tbl_lo (single precision) +// B = 1+Index/16+1/32 Index = 0 +// +data4 0xA935BD8E, 0x3FE9A000, 0x23ACA08F, 0x00000000 +// +// Entries Tbl_hi (double precision) Index = 0,1,...,15 +// B = 2^(-1)*(1+Index/16+1/32) +// Entries Tbl_lo (single precision) +// Index = 0,1,...,15 B = 2^(-1)*(1+Index/16+1/32) +// +data4 0x7F175A34, 0x3FDE77EB, 0x238729EE, 0x00000000 +data4 0x73C1A40B, 0x3FE0039C, 0x249334DB, 0x00000000 +data4 0x5B5B43DA, 0x3FE0C614, 0x22CBA7D1, 0x00000000 +data4 0x88BE7C13, 0x3FE1835A, 0x246310E7, 0x00000000 +data4 0xE2CC9E6A, 0x3FE23B71, 0x236210E5, 0x00000000 +data4 0x8406CBCA, 0x3FE2EE62, 0x2462EAF5, 0x00000000 +data4 0x1CD41719, 0x3FE39C39, 0x24B73EF3, 0x00000000 +data4 0x5B795B55, 0x3FE44506, 0x24C11260, 0x00000000 +data4 0x5BB6EC04, 0x3FE4E8DE, 0x242519EE, 0x00000000 +data4 0x1F732FBA, 0x3FE587D8, 0x24D4346C, 0x00000000 +data4 0x115D7B8D, 0x3FE6220D, 0x24ED487B, 0x00000000 +data4 0x920B3D98, 0x3FE6B798, 0x2495FF1E, 0x00000000 +data4 0x8FBA8E0F, 0x3FE74897, 0x223D9531, 0x00000000 +data4 0x289FA093, 0x3FE7D528, 0x242B0411, 0x00000000 +data4 0x576CC2C5, 0x3FE85D69, 0x2335B374, 0x00000000 +data4 0xA99CC05D, 0x3FE8E17A, 0x24C27CFB, 0x00000000 +// +// Entries Tbl_hi (double precision) Index = 0,1,...,15 +// B = 2^(-2)*(1+Index/16+1/32) +// Entries Tbl_lo (single precision) +// Index = 0,1,...,15 B = 2^(-2)*(1+Index/16+1/32) +// +data4 0x510665B5, 0x3FD025FA, 0x24263482, 0x00000000 +data4 0x362431C9, 0x3FD1151A, 0x242C8DC9, 0x00000000 +data4 0x67E47C95, 0x3FD20255, 0x245CF9BA, 0x00000000 +data4 0x7A823CFE, 0x3FD2ED98, 0x235C892C, 0x00000000 +data4 0x29271134, 0x3FD3D6D1, 0x2389BE52, 0x00000000 +data4 0x586890E6, 0x3FD4BDEE, 0x24436471, 0x00000000 +data4 0x175E0F4E, 0x3FD5A2E0, 0x2389DBD4, 0x00000000 +data4 0x9F5FA6FD, 0x3FD68597, 0x2476D43F, 0x00000000 +data4 0x52817501, 0x3FD76607, 0x24711774, 0x00000000 +data4 0xB8DF95D7, 0x3FD84422, 0x23EBB501, 0x00000000 +data4 0x7CD0C662, 0x3FD91FDE, 0x23883A0C, 0x00000000 +data4 0x66168001, 0x3FD9F930, 0x240DF63F, 0x00000000 +data4 0x5422058B, 0x3FDAD00F, 0x23FE261A, 0x00000000 +data4 0x378624A5, 0x3FDBA473, 0x23A8CD0E, 0x00000000 +data4 0x0AAD71F8, 0x3FDC7655, 0x2422D1D0, 0x00000000 +data4 0xC9EC862B, 0x3FDD45AE, 0x2344A109, 0x00000000 +// +// Entries Tbl_hi (double precision) Index = 0,1,...,15 +// B = 2^(-3)*(1+Index/16+1/32) +// Entries Tbl_lo (single precision) +// Index = 0,1,...,15 B = 2^(-3)*(1+Index/16+1/32) +// +data4 0x84212B3D, 0x3FC068D5, 0x239874B6, 0x00000000 +data4 0x41060850, 0x3FC16465, 0x2335E774, 0x00000000 +data4 0x171A535C, 0x3FC25F6E, 0x233E36BE, 0x00000000 +data4 0xEDEB99A3, 0x3FC359E8, 0x239680A3, 0x00000000 +data4 0xC6092A9E, 0x3FC453CE, 0x230FB29E, 0x00000000 +data4 0xBA11570A, 0x3FC54D18, 0x230C1418, 0x00000000 +data4 0xFFB3AA73, 0x3FC645BF, 0x23F0564A, 0x00000000 +data4 0xE8A7D201, 0x3FC73DBD, 0x23D4A5E1, 0x00000000 +data4 0xE398EBC7, 0x3FC8350B, 0x23D4ADDA, 0x00000000 +data4 0x7D050271, 0x3FC92BA3, 0x23BCB085, 0x00000000 +data4 0x601081A5, 0x3FCA217E, 0x23BC841D, 0x00000000 +data4 0x574D780B, 0x3FCB1696, 0x23CF4A8E, 0x00000000 +data4 0x4D768466, 0x3FCC0AE5, 0x23BECC90, 0x00000000 +data4 0x4E1D5395, 0x3FCCFE65, 0x2323DCD2, 0x00000000 +data4 0x864C9D9D, 0x3FCDF110, 0x23F53F3A, 0x00000000 +data4 0x451D980C, 0x3FCEE2E1, 0x23CCB11F, 0x00000000 + +data4 0x54442D18, 0x400921FB, 0x33145C07, 0x3CA1A626 // PI two doubles +data4 0x54442D18, 0x3FF921FB, 0x33145C07, 0x3C91A626 // PI_by_2 two dbles +data4 0x54442D18, 0x3FE921FB, 0x33145C07, 0x3C81A626 // PI_by_4 two dbles +data4 0x7F3321D2, 0x4002D97C, 0x4C9E8A0A, 0x3C9A7939 // 3PI_by_4 two dbles +ASM_SIZE_DIRECTIVE(Constants_atan) + + +.text +.proc atanl# +.global atanl# +.align 64 + +atanl: +{ .mfb + nop.m 999 +(p0) mov ArgX_orig = f1 +(p0) br.cond.sptk atan2l ;; +} +.endp atanl +ASM_SIZE_DIRECTIVE(atanl) + +.text +.proc atan2l# +.global atan2l# +#ifdef _LIBC +.proc __atan2l# +.global __atan2l# +.proc __ieee754_atan2l# +.global __ieee754_atan2l# +#endif +.align 64 + + +atan2l: +#ifdef _LIBC +__atan2l: +__ieee754_atan2l: +#endif +{ .mfi +alloc r32 = ar.pfs, 0, 17 , 4, 0 +(p0) mov ArgY = ArgY_orig +} +{ .mfi + nop.m 999 +(p0) mov ArgX = ArgX_orig + nop.i 999 +};; +{ .mfi + nop.m 999 +(p0) fclass.m.unc p7,p0 = ArgY_orig, 0x103 + nop.i 999 +} +{ .mfi + nop.m 999 +// +// +// Save original input args and load table ptr. +// +(p0) fclass.m.unc p6,p0 = ArgX_orig, 0x103 + nop.i 999 +};; +{ .mfi +(p0) addl table_ptr1 = @ltoff(Constants_atan#), gp +(p0) fclass.m.unc p0,p9 = ArgY_orig, 0x1FF + nop.i 999 ;; +} +{ .mfi + ld8 table_ptr1 = [table_ptr1] +(p0) fclass.m.unc p0,p8 = ArgX_orig, 0x1FF + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fclass.m.unc p13,p0 = ArgY_orig, 0x0C3 + nop.i 999 ;; +} +{ .mfi +(p0) fclass.m.unc p12,p0 = ArgX_orig, 0x0C3 + nop.i 999 +} + + +// +// Check for NatVals. +// Check for everything - if false, then must be pseudo-zero +// or pseudo-nan (IA unsupporteds). +// +{ .mib + nop.m 999 + nop.i 999 +(p6) br.cond.spnt L(ATANL_NATVAL) ;; +} + +{ .mib + nop.m 999 + nop.i 999 +(p7) br.cond.spnt L(ATANL_NATVAL) ;; +} +{ .mib +(p0) ldfd P_hi = [table_ptr1],8 + nop.i 999 +(p8) br.cond.spnt L(ATANL_UNSUPPORTED) ;; +} +{ .mbb +(p0) add table_ptr2 = 96, table_ptr1 +(p9) br.cond.spnt L(ATANL_UNSUPPORTED) +// +// Load double precision high-order part of pi +// +(p12) br.cond.spnt L(ATANL_NAN) ;; +} +{ .mfb + nop.m 999 +(p0) fnorm.s1 ArgX = ArgX +(p13) br.cond.spnt L(ATANL_NAN) ;; +} +// +// Normalize the input argument. +// Branch out if NaN inputs +// +{ .mmf +(p0) ldfs P_lo = [table_ptr1], 4 + nop.m 999 +(p0) fnorm.s1 ArgY = ArgY ;; +} +{ .mmf + nop.m 999 +(p0) ldfs TWO_TO_NEG3 = [table_ptr1], 180 +// +// U = max(ArgX_abs,ArgY_abs) +// V = min(ArgX_abs,ArgY_abs) +// if PR1, swap = 0 +// if PR2, swap = 1 +// +(p0) mov M = f1 ;; +} +{ .mfi + nop.m 999 +// +// Get exp and sign of ArgX +// Get exp and sign of ArgY +// Load 2**(-3) and increment ptr to Q_4. +// +(p0) fmerge.s ArgX_abs = f1, ArgX + nop.i 999 ;; +} +// +// load single precision low-order part of pi = P_lo +// +{ .mfi +(p0) getf.exp sign_X = ArgX +(p0) fmerge.s ArgY_abs = f1, ArgY + nop.i 999 ;; +} +{ .mii +(p0) getf.exp sign_Y = ArgY + nop.i 999 ;; +(p0) shr sign_X = sign_X, 17 ;; +} +{ .mii + nop.m 999 +(p0) shr sign_Y = sign_Y, 17 ;; +(p0) cmp.eq.unc p8, p9 = 0x00000, sign_Y ;; +} +{ .mfi + nop.m 999 +// +// Is ArgX_abs >= ArgY_abs +// Is sign_Y == 0? +// +(p0) fmax.s1 U = ArgX_abs, ArgY_abs + nop.i 999 +} +{ .mfi + nop.m 999 +// +// ArgX_abs = |ArgX| +// ArgY_abs = |ArgY| +// sign_X is sign bit of ArgX +// sign_Y is sign bit of ArgY +// +(p0) fcmp.ge.s1 p6, p7 = ArgX_abs, ArgY_abs + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fmin.s1 V = ArgX_abs, ArgY_abs + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p8) fadd.s1 s_Y = f0, f1 +(p6) cmp.eq.unc p10, p11 = 0x00000, sign_X +} +{ .mii +(p6) add swap = r0, r0 + nop.i 999 ;; +(p7) add swap = 1, r0 +} +{ .mfi + nop.m 999 +// +// Let M = 1.0 +// if p8, s_Y = 1.0 +// if p9, s_Y = -1.0 +// +(p10) fsub.s1 M = M, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p9) fsub.s1 s_Y = f0, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) frcpa.s1 E, p6 = V, U + nop.i 999 ;; +} +{ .mbb + nop.m 999 +// +// E = frcpa(V,U) +// +(p6) br.cond.sptk L(ATANL_STEP2) +(p0) br.cond.spnt L(ATANL_SPECIAL_HANDLING) ;; +} +L(ATANL_STEP2): +{ .mfi + nop.m 999 +(p0) fmpy.s1 Q = E, V + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fcmp.eq.s0 p0, p9 = f1, ArgY_orig + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Is Q < 2**(-3)? +// +(p0) fcmp.eq.s0 p0, p8 = f1, ArgX_orig + nop.i 999 +} +{ .mfi + nop.m 999 +(p11) fadd.s1 M = M, f1 + nop.i 999 ;; +} +{ .mlx + nop.m 999 +// ************************************************* +// ********************* STEP2 ********************* +// ************************************************* +(p0) movl special = 0x8400000000000000 +} +{ .mlx + nop.m 999 +// +// lookup = b_1 b_2 b_3 B_4 +// +(p0) movl special1 = 0x0000000000000100 ;; +} +{ .mfi + nop.m 999 +// +// Do fnorms to raise any denormal operand +// exceptions. +// +(p0) fmpy.s1 P_hi = M, P_hi + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 P_lo = M, P_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Q = E * V +// +(p0) fcmp.lt.unc.s1 p6, p7 = Q, TWO_TO_NEG3 + nop.i 999 ;; +} +{ .mmb +(p0) getf.sig significand_Q = Q +(p0) getf.exp exponent_Q = Q + nop.b 999 ;; +} +{ .mmi + nop.m 999 ;; +(p0) andcm k = 0x0003, exponent_Q +(p0) extr.u lookup = significand_Q, 59, 4 ;; +} +{ .mib + nop.m 999 +(p0) dep special = lookup, special, 59, 4 +// +// Generate 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0 +// +(p6) br.cond.spnt L(ATANL_POLY) ;; +} +{ .mfi +(p0) cmp.eq.unc p8, p9 = 0x0000, k +(p0) fmpy.s1 P_hi = s_Y, P_hi +// +// We waited a few extra cycles so P_lo and P_hi could be calculated. +// Load the constant 256 for loading up table entries. +// +// ************************************************* +// ******************** STEP3 ********************** +// ************************************************* +(p0) add table_ptr2 = 16, table_ptr1 +} +// +// Let z_hi have exponent and sign of original Q +// Load the Tbl_hi(0) else, increment pointer. +// +{ .mii +(p0) ldfe Q_4 = [table_ptr1], -16 +(p0) xor swap = sign_X, swap ;; +(p9) sub k = k, r0, 1 +} +{ .mmi +(p0) setf.sig z_hi = special +(p0) ldfe Q_3 = [table_ptr1], -16 +(p9) add table_ptr2 = 16, table_ptr2 ;; +} +// +// U_hold = U - U_prime_hi +// k = k * 256 - Result can be 0, 256, or 512. +// +{ .mmb +(p0) ldfe Q_2 = [table_ptr1], -16 +(p8) ldfd Tbl_hi = [table_ptr2], 8 + nop.b 999 ;; +} +// +// U_prime_lo = U_hold + V * z_hi +// lookup -> lookup * 16 + k +// +{ .mmi +(p0) ldfe Q_1 = [table_ptr1], -16 ;; +(p8) ldfs Tbl_lo = [table_ptr2], 8 +// +// U_prime_hi = U + V * z_hi +// Load the Tbl_lo(0) +// +(p9) pmpy2.r k = k, special1 ;; +} +{ .mii + nop.m 999 + nop.i 999 + nop.i 999 ;; +} +{ .mii + nop.m 999 + nop.i 999 + nop.i 999 ;; +} +{ .mii + nop.m 999 + nop.i 999 + nop.i 999 ;; +} +{ .mii + nop.m 999 + nop.i 999 ;; +(p9) shladd lookup = lookup, 0x0004, k ;; +} +{ .mmi +(p9) add table_ptr2 = table_ptr2, lookup ;; +// +// V_prime = V - U * z_hi +// +(p9) ldfd Tbl_hi = [table_ptr2], 8 + nop.i 999 ;; +} +{ .mmf + nop.m 999 +// +// C_hi = frcpa(1,U_prime_hi) +// +(p9) ldfs Tbl_lo = [table_ptr2], 8 +// +// z_hi = s exp 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0 +// Point to beginning of Tbl_hi entries - k = 0. +// +(p0) fmerge.se z_hi = Q, z_hi ;; +} +{ .mfi + nop.m 999 +(p0) fma.s1 U_prime_hi = V, z_hi, U + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fnma.s1 V_prime = U, z_hi, V + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) mov A_hi = Tbl_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fsub.s1 U_hold = U, U_prime_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) frcpa.s1 C_hi, p6 = f1, U_prime_hi + nop.i 999 ;; +} +{ .mfi +(p0) cmp.eq.unc p7, p6 = 0x00000, swap +(p0) fmpy.s1 A_hi = s_Y, A_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// poly = wsq * poly +// +(p7) fadd.s1 sigma = f0, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fma.s1 U_prime_lo = z_hi, V, U_hold + nop.i 999 +} +{ .mfi + nop.m 999 +(p6) fsub.s1 sigma = f0, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// A_lo = A_lo + w_hi +// A_hi = s_Y * A_hi +// +(p0) fma.s1 Res_hi = sigma, A_hi, P_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// C_hi_hold = 1 - C_hi * U_prime_hi (1) +// +(p0) fma.s1 C_hi = C_hi_hold, C_hi, C_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// C_hi = C_hi + C_hi * C_hi_hold (1) +// +(p0) fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// C_hi_hold = 1 - C_hi * U_prime_hi (2) +// +(p0) fma.s1 C_hi = C_hi_hold, C_hi, C_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// C_hi = C_hi + C_hi * C_hi_hold (2) +// +(p0) fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// C_hi_hold = 1 - C_hi * U_prime_hi (3) +// +(p0) fma.s1 C_hi = C_hi_hold, C_hi, C_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// C_hi = C_hi + C_hi * C_hi_hold (3) +// +(p0) fmpy.s1 w_hi = V_prime, C_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// w_hi = V_prime * C_hi +// +(p0) fmpy.s1 wsq = w_hi, w_hi + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fnma.s1 w_lo = w_hi, U_prime_hi, V_prime + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// wsq = w_hi * w_hi +// w_lo = = V_prime - w_hi * U_prime_hi +// +(p0) fma.s1 poly = wsq, Q_4, Q_3 + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fnma.s1 w_lo = w_hi, U_prime_lo, w_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// poly = Q_3 + wsq * Q_4 +// w_lo = = w_lo - w_hi * U_prime_lo +// +(p0) fma.s1 poly = wsq, poly, Q_2 + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 w_lo = C_hi, w_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// poly = Q_2 + wsq * poly +// w_lo = = w_lo * C_hi +// +(p0) fma.s1 poly = wsq, poly, Q_1 + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fadd.s1 A_lo = Tbl_lo, w_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Result = Res_hi + Res_lo * s_Y (User Supplied Rounding Mode) +// +(p0) fmpy.s0 Q_1 = Q_1, Q_1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// poly = Q_1 + wsq * poly +// A_lo = Tbl_lo + w_lo +// swap = xor(swap,sign_X) +// +(p0) fmpy.s1 poly = wsq, poly + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Is (swap) != 0 ? +// poly = wsq * poly +// A_hi = Tbl_hi +// +(p0) fmpy.s1 poly = w_hi, poly + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// if (PR_1) sigma = -1.0 +// if (PR_2) sigma = 1.0 +// +(p0) fadd.s1 A_lo = A_lo, poly + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// P_hi = s_Y * P_hi +// A_lo = A_lo + poly +// +(p0) fadd.s1 A_lo = A_lo, w_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fma.s1 Res_lo = sigma, A_lo, P_lo + nop.i 999 ;; +} +{ .mfb + nop.m 999 +// +// Res_hi = P_hi + sigma * A_hi +// Res_lo = P_lo + sigma * A_lo +// +(p0) fma.s0 Result = Res_lo, s_Y, Res_hi +// +// Raise inexact. +// +br.ret.sptk b0 ;; +} +// +// poly1 = P_5 + zsq * poly1 +// poly2 = zsq * poly2 +// +L(ATANL_POLY): +{ .mmf +(p0) xor swap = sign_X, swap + nop.m 999 +(p0) fnma.s1 E_hold = E, U, f1 ;; +} +{ .mfi + nop.m 999 +(p0) mov A_temp = Q +// +// poly1 = P_4 + zsq * poly1 +// swap = xor(swap,sign_X) +// +// sign_X gr_002 +// swap gr_004 +// poly1 = poly1 <== Done with poly1 +// poly1 = P_4 + zsq * poly1 +// swap = xor(swap,sign_X) +// +(p0) cmp.eq.unc p7, p6 = 0x00000, swap +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 P_hi = s_Y, P_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p6) fsub.s1 sigma = f0, f1 + nop.i 999 +} +{ .mfi + nop.m 999 +(p7) fadd.s1 sigma = f0, f1 + nop.i 999 ;; +} + +// *********************************************** +// ******************** STEP4 ******************** +// *********************************************** + +{ .mmi + nop.m 999 +(p0) addl table_ptr1 = @ltoff(Constants_atan#), gp + nop.i 999 +} +;; + +{ .mmi + ld8 table_ptr1 = [table_ptr1] + nop.m 999 + nop.i 999 +} +;; + + +{ .mfi + nop.m 999 +(p0) fma.s1 E = E, E_hold, E +// +// Following: +// Iterate 3 times E = E + E*(1.0 - E*U) +// Also load P_8, P_7, P_6, P_5, P_4 +// E_hold = 1.0 - E * U (1) +// A_temp = Q +// +(p0) add table_ptr1 = 128, table_ptr1 ;; +} +{ .mmf + nop.m 999 +// +// E = E + E_hold*E (1) +// Point to P_8. +// +(p0) ldfe P_8 = [table_ptr1], -16 +// +// poly = z8*poly1 + poly2 (Typo in writeup) +// Is (swap) != 0 ? +// +(p0) fnma.s1 z_lo = A_temp, U, V ;; +} +{ .mmb + nop.m 999 +// +// E_hold = 1.0 - E * U (2) +// +(p0) ldfe P_7 = [table_ptr1], -16 + nop.b 999 ;; +} +{ .mmb + nop.m 999 +// +// E = E + E_hold*E (2) +// +(p0) ldfe P_6 = [table_ptr1], -16 + nop.b 999 ;; +} +{ .mmb + nop.m 999 +// +// E_hold = 1.0 - E * U (3) +// +(p0) ldfe P_5 = [table_ptr1], -16 + nop.b 999 ;; +} +{ .mmf + nop.m 999 +// +// E = E + E_hold*E (3) +// +// +// At this point E approximates 1/U to roughly working precision +// z = V*E approximates V/U +// +(p0) ldfe P_4 = [table_ptr1], -16 +(p0) fnma.s1 E_hold = E, U, f1 ;; +} +{ .mmb + nop.m 999 +// +// Z = V * E +// +(p0) ldfe P_3 = [table_ptr1], -16 + nop.b 999 ;; +} +{ .mmb + nop.m 999 +// +// zsq = Z * Z +// +(p0) ldfe P_2 = [table_ptr1], -16 + nop.b 999 ;; +} +{ .mmb + nop.m 999 +// +// z8 = zsq * zsq +// +(p0) ldfe P_1 = [table_ptr1], -16 + nop.b 999 ;; +} +{ .mlx + nop.m 999 +(p0) movl int_temp = 0x24005 +} +{ .mfi + nop.m 999 +(p0) fma.s1 E = E, E_hold, E + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fnma.s1 E_hold = E, U, f1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fma.s1 E = E, E_hold, E + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 Z = V, E + nop.i 999 +} +{ .mfi + nop.m 999 +// +// z_lo = V - A_temp * U +// if (PR_2) sigma = 1.0 +// +(p0) fmpy.s1 z_lo = z_lo, E + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 zsq = Z, Z + nop.i 999 +} +{ .mfi + nop.m 999 +// +// z_lo = z_lo * E +// if (PR_1) sigma = -1.0 +// +(p0) fadd.s1 A_hi = A_temp, z_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// z8 = z8 * z8 +// +// +// Now what we want to do is +// poly1 = P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8))) +// poly2 = zsq*(P_1 + zsq*(P_2 + zsq*P_3)) +// +(p0) fma.s1 poly1 = zsq, P_8, P_7 + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fma.s1 poly2 = zsq, P_3, P_2 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 z8 = zsq, zsq + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fsub.s1 A_temp = A_temp, A_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// A_lo = Z * poly + z_lo +// +(p0) fmerge.s tmp = A_hi, A_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// poly1 = P_7 + zsq * P_8 +// poly2 = P_2 + zsq * P_3 +// +(p0) fma.s1 poly1 = zsq, poly1, P_6 + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fma.s1 poly2 = zsq, poly2, P_1 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 z8 = z8, z8 + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fadd.s1 z_lo = A_temp, z_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// poly1 = P_6 + zsq * poly1 +// poly2 = P_2 + zsq * poly2 +// +(p0) fma.s1 poly1 = zsq, poly1, P_5 + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 poly2 = poly2, zsq + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Result = Res_hi + Res_lo (User Supplied Rounding Mode) +// +(p0) fmpy.s1 P_5 = P_5, P_5 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fma.s1 poly1 = zsq, poly1, P_4 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fma.s1 poly = z8, poly1, poly2 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Fixup added to force inexact later - +// A_hi = A_temp + z_lo +// z_lo = (A_temp - A_hi) + z_lo +// +(p0) fma.s1 A_lo = Z, poly, z_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fadd.s1 A_hi = tmp, A_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fsub.s1 tmp = tmp, A_hi + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fmpy.s1 A_hi = s_Y, A_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fadd.s1 A_lo = tmp, A_lo + nop.i 999 +} +{ .mfi +(p0) setf.exp tmp = int_temp +// +// P_hi = s_Y * P_hi +// A_hi = s_Y * A_hi +// +(p0) fma.s1 Res_hi = sigma, A_hi, P_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fclass.m.unc p6,p0 = A_lo, 0x007 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p6) mov A_lo = tmp + nop.i 999 +} +{ .mfi + nop.m 999 +// +// Res_hi = P_hi + sigma * A_hi +// +(p0) fsub.s1 tmp = P_hi, Res_hi + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// tmp = P_hi - Res_hi +// +(p0) fma.s1 tmp = A_hi, sigma, tmp + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fma.s1 sigma = A_lo, sigma, P_lo + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// tmp = sigma * A_hi + tmp +// sigma = A_lo * sigma + P_lo +// +(p0) fma.s1 Res_lo = s_Y, sigma, tmp + nop.i 999 ;; +} +{ .mfb + nop.m 999 +// +// Res_lo = s_Y * sigma + tmp +// +(p0) fadd.s0 Result = Res_lo, Res_hi +br.ret.sptk b0 ;; +} +L(ATANL_NATVAL): +L(ATANL_UNSUPPORTED): +L(ATANL_NAN): +{ .mfb + nop.m 999 +(p0) fmpy.s0 Result = ArgX,ArgY +(p0) br.ret.sptk b0 ;; +} +L(ATANL_SPECIAL_HANDLING): +{ .mfi + nop.m 999 +(p0) fcmp.eq.s0 p0, p6 = f1, ArgY_orig + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fcmp.eq.s0 p0, p5 = f1, ArgX_orig + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fclass.m.unc p6, p7 = ArgY, 0x007 + nop.i 999 +} +{ .mlx + nop.m 999 +(p0) movl special = 992 +} +;; + + +{ .mmi + nop.m 999 +(p0) addl table_ptr1 = @ltoff(Constants_atan#), gp + nop.i 999 +} +;; + +{ .mmi + ld8 table_ptr1 = [table_ptr1] + nop.m 999 + nop.i 999 +} +;; + + +{ .mib +(p0) add table_ptr1 = table_ptr1, special + nop.i 999 +(p7) br.cond.spnt L(ATANL_ArgY_Not_ZERO) ;; +} +{ .mmf +(p0) ldfd Result = [table_ptr1], 8 + nop.m 999 +(p6) fclass.m.unc p14, p0 = ArgX, 0x035 ;; +} +{ .mmf + nop.m 999 +(p0) ldfd Result_lo = [table_ptr1], -8 +(p6) fclass.m.unc p15, p0 = ArgX, 0x036 ;; +} +{ .mfi + nop.m 999 +(p14) fmerge.s Result = ArgY, f0 + nop.i 999 +} +{ .mfi + nop.m 999 +(p6) fclass.m.unc p13, p0 = ArgX, 0x007 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p14) fmerge.s Result_lo = ArgY, f0 + nop.i 999 ;; +} +{ .mfi +(p13) mov GR_Parameter_TAG = 36 + nop.f 999 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +// +// Return sign_Y * 0 when ArgX > +0 +// +(p15) fmerge.s Result = ArgY, Result + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p15) fmerge.s Result_lo = ArgY, Result_lo + nop.i 999 ;; +} +{ .mfb + nop.m 999 +// +// Return sign_Y * 0 when ArgX < -0 +// +(p0) fadd.s0 Result = Result, Result_lo +(p13) br.cond.spnt __libm_error_region ;; +} +{ .mib + nop.m 999 + nop.i 999 +// +// Call error support funciton for atan(0,0) +// +(p0) br.ret.sptk b0 ;; +} +L(ATANL_ArgY_Not_ZERO): +{ .mfi + nop.m 999 +(p0) fclass.m.unc p9, p10 = ArgY, 0x023 + nop.i 999 ;; +} +{ .mib + nop.m 999 + nop.i 999 +(p10) br.cond.spnt L(ATANL_ArgY_Not_INF) ;; +} +{ .mfi + nop.m 999 +(p9) fclass.m.unc p6, p0 = ArgX, 0x017 + nop.i 999 +} +{ .mfi + nop.m 999 +(p9) fclass.m.unc p7, p0 = ArgX, 0x021 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p9) fclass.m.unc p8, p0 = ArgX, 0x022 + nop.i 999 ;; +} +{ .mmi +(p6) add table_ptr1 = 16, table_ptr1 ;; +(p0) ldfd Result = [table_ptr1], 8 + nop.i 999 ;; +} +{ .mfi +(p0) ldfd Result_lo = [table_ptr1], -8 + nop.f 999 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p6) fmerge.s Result = ArgY, Result + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p6) fmerge.s Result_lo = ArgY, Result_lo + nop.i 999 ;; +} +{ .mfb + nop.m 999 +(p6) fadd.s0 Result = Result, Result_lo +(p6) br.ret.sptk b0 ;; +} +// +// Load PI/2 and adjust its sign. +// Return +PI/2 when ArgY = +Inf and ArgX = +/-0 or normal +// Return -PI/2 when ArgY = -Inf and ArgX = +/-0 or normal +// +{ .mmi +(p7) add table_ptr1 = 32, table_ptr1 ;; +(p7) ldfd Result = [table_ptr1], 8 + nop.i 999 ;; +} +{ .mfi +(p7) ldfd Result_lo = [table_ptr1], -8 + nop.f 999 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p7) fmerge.s Result = ArgY, Result + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p7) fmerge.s Result_lo = ArgY, Result_lo + nop.i 999 ;; +} +{ .mfb + nop.m 999 +(p7) fadd.s0 Result = Result, Result_lo +(p7) br.ret.sptk b0 ;; +} +// +// Load PI/4 and adjust its sign. +// Return +PI/4 when ArgY = +Inf and ArgX = +Inf +// Return -PI/4 when ArgY = -Inf and ArgX = +Inf +// +{ .mmi +(p8) add table_ptr1 = 48, table_ptr1 ;; +(p8) ldfd Result = [table_ptr1], 8 + nop.i 999 ;; +} +{ .mfi +(p8) ldfd Result_lo = [table_ptr1], -8 + nop.f 999 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p8) fmerge.s Result = ArgY, Result + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p8) fmerge.s Result_lo = ArgY, Result_lo + nop.i 999 ;; +} +{ .mfb + nop.m 999 +(p8) fadd.s0 Result = Result, Result_lo +(p8) br.ret.sptk b0 ;; +} +L(ATANL_ArgY_Not_INF): +{ .mfi + nop.m 999 +// +// Load PI/4 and adjust its sign. +// Return +3PI/4 when ArgY = +Inf and ArgX = -Inf +// Return -3PI/4 when ArgY = -Inf and ArgX = -Inf +// +(p0) fclass.m.unc p6, p0 = ArgX, 0x007 + nop.i 999 +} +{ .mfi + nop.m 999 +(p0) fclass.m.unc p7, p0 = ArgX, 0x021 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p0) fclass.m.unc p8, p0 = ArgX, 0x022 + nop.i 999 ;; +} +{ .mmi +(p6) add table_ptr1 = 16, table_ptr1 ;; +(p6) ldfd Result = [table_ptr1], 8 + nop.i 999 ;; +} +{ .mfi +(p6) ldfd Result_lo = [table_ptr1], -8 + nop.f 999 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p6) fmerge.s Result = ArgY, Result + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p6) fmerge.s Result_lo = ArgY, Result_lo + nop.i 999 ;; +} +{ .mfb + nop.m 999 +(p6) fadd.s0 Result = Result, Result_lo +(p6) br.ret.spnt b0 ;; +} +{ .mfi + nop.m 999 +// +// return = sign_Y * PI/2 when ArgX = 0 +// +(p7) fmerge.s Result = ArgY, f0 + nop.i 999 ;; +} +{ .mfb + nop.m 999 +(p7) fnorm.s0 Result = Result +(p7) br.ret.spnt b0 ;; +} +// +// return = sign_Y * 0 when ArgX = Inf +// +{ .mmi +(p8) ldfd Result = [table_ptr1], 8 ;; +(p8) ldfd Result_lo = [table_ptr1], -8 + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p8) fmerge.s Result = ArgY, Result + nop.i 999 ;; +} +{ .mfi + nop.m 999 +(p8) fmerge.s Result_lo = ArgY, Result_lo + nop.i 999 ;; +} +{ .mfb + nop.m 999 +(p8) fadd.s0 Result = Result, Result_lo +(p8) br.ret.sptk b0 ;; +} +// +// return = sign_Y * PI when ArgX = -Inf +// +.endp atan2l +ASM_SIZE_DIRECTIVE(atan2l) +ASM_SIZE_DIRECTIVE(__atan2l) +ASM_SIZE_DIRECTIVE(__ieee754_atan2l) + +.proc __libm_error_region +__libm_error_region: +.prologue +{ .mfi + add GR_Parameter_Y=-32,sp // Parameter 2 value + nop.f 0 +.save ar.pfs,GR_SAVE_PFS + mov GR_SAVE_PFS=ar.pfs // Save ar.pfs +} +{ .mfi +.fframe 64 + add sp=-64,sp // Create new stack + nop.f 0 + mov GR_SAVE_GP=gp // Save gp +};; +{ .mmi + stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack + add GR_Parameter_X = 16,sp // Parameter 1 address +.save b0, GR_SAVE_B0 + mov GR_SAVE_B0=b0 // Save b0 +};; +.body +{ .mib + stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack + add GR_Parameter_RESULT = 0,GR_Parameter_Y + nop.b 0 // Parameter 3 address +} +{ .mib + stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack + add GR_Parameter_Y = -16,GR_Parameter_Y + br.call.sptk b0=__libm_error_support# // Call error handling function +};; +{ .mmi + nop.m 0 + nop.m 0 + add GR_Parameter_RESULT = 48,sp +};; +{ .mmi + ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack +.restore sp + add sp = 64,sp // Restore stack pointer + mov b0 = GR_SAVE_B0 // Restore return address +};; +{ .mib + mov gp = GR_SAVE_GP // Restore gp + mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs + br.ret.sptk b0 // Return +};; + +.endp __libm_error_region +ASM_SIZE_DIRECTIVE(__libm_error_region) +.type __libm_error_support#,@function +.global __libm_error_support# |