about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/libm_sincosl.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincosl.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincosl.S2528
1 files changed, 2528 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincosl.S b/sysdeps/ia64/fpu/libm_sincosl.S
new file mode 100644
index 0000000000..1d89ff4bd1
--- /dev/null
+++ b/sysdeps/ia64/fpu/libm_sincosl.S
@@ -0,0 +1,2528 @@
+.file "libm_sincosl.s"
+
+
+// Copyright (c) 2000 - 2004, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+//*********************************************************************
+//
+// History:
+// 05/13/02 Initial version of sincosl (based on libm's sinl and cosl)
+// 02/10/03 Reordered header: .section, .global, .proc, .align;
+//          used data8 for long double table values
+// 10/13/03 Corrected .file name
+// 02/11/04 cisl is moved to the separate file.
+// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
+//
+//*********************************************************************
+//
+// Function:   Combined sincosl routine with 3 different API's
+//
+// API's
+//==============================================================
+// 1) void sincosl(long double, long double*s, long double*c)
+// 2) __libm_sincosl - internal LIBM function, that accepts
+//    argument in f8 and returns cosine through f8, sine through f9
+//
+//
+//*********************************************************************
+//
+// Resources Used:
+//
+//    Floating-Point Registers: f8 (Input x and cosl return value),
+//                              f9 (sinl returned)
+//                              f32-f121
+//
+//    General Purpose Registers:
+//      r32-r61
+//
+//    Predicate Registers:      p6-p15
+//
+//*********************************************************************
+//
+//  IEEE Special Conditions:
+//
+//    Denormal  fault raised on denormal inputs
+//    Overflow exceptions do not occur
+//    Underflow exceptions raised when appropriate for sincosl
+//    (No specialized error handling for this routine)
+//    Inexact raised when appropriate by algorithm
+//
+//    sincosl(SNaN) = QNaN, QNaN
+//    sincosl(QNaN) = QNaN, QNaN
+//    sincosl(inf)  = QNaN, QNaN
+//    sincosl(+/-0) = +/-0, 1
+//
+//*********************************************************************
+//
+//  Mathematical Description
+//  ========================
+//
+//  The computation of FSIN and FCOS performed in parallel.
+//
+//  Arg = N pi/2 + alpha, |alpha| <= pi/4.
+//
+//  cosl( Arg ) = sinl( (N+1) pi/2 + alpha ),
+//
+//  therefore, the code for computing sine will produce cosine as long
+//  as 1 is added to N immediately after the argument reduction
+//  process.
+//
+//  Let M = N if sine
+//      N+1 if cosine.
+//
+//  Now, given
+//
+//  Arg = M pi/2  + alpha, |alpha| <= pi/4,
+//
+//  let I = M mod 4, or I be the two lsb of M when M is represented
+//  as 2's complement. I = [i_0 i_1]. Then
+//
+//  sinl( Arg ) = (-1)^i_0  sinl( alpha ) if i_1 = 0,
+//             = (-1)^i_0  cosl( alpha )     if i_1 = 1.
+//
+//  For example:
+//       if M = -1, I = 11
+//         sin ((-pi/2 + alpha) = (-1) cos (alpha)
+//       if M = 0, I = 00
+//         sin (alpha) = sin (alpha)
+//       if M = 1, I = 01
+//         sin (pi/2 + alpha) = cos (alpha)
+//       if M = 2, I = 10
+//         sin (pi + alpha) = (-1) sin (alpha)
+//       if M = 3, I = 11
+//         sin ((3/2)pi + alpha) = (-1) cos (alpha)
+//
+//  The value of alpha is obtained by argument reduction and
+//  represented by two working precision numbers r and c where
+//
+//  alpha =  r  +  c     accurately.
+//
+//  The reduction method is described in a previous write up.
+//  The argument reduction scheme identifies 4 cases. For Cases 2
+//  and 4, because |alpha| is small, sinl(r+c) and cosl(r+c) can be
+//  computed very easily by 2 or 3 terms of the Taylor series
+//  expansion as follows:
+//
+//  Case 2:
+//  -------
+//
+//  sinl(r + c) = r + c - r^3/6 accurately
+//  cosl(r + c) = 1 - 2^(-67) accurately
+//
+//  Case 4:
+//  -------
+//
+//  sinl(r + c) = r + c - r^3/6 + r^5/120 accurately
+//  cosl(r + c) = 1 - r^2/2 + r^4/24    accurately
+//
+//  The only cases left are Cases 1 and 3 of the argument reduction
+//  procedure. These two cases will be merged since after the
+//  argument is reduced in either cases, we have the reduced argument
+//  represented as r + c and that the magnitude |r + c| is not small
+//  enough to allow the usage of a very short approximation.
+//
+//  The required calculation is either
+//
+//  sinl(r + c)  =  sinl(r)  +  correction,  or
+//  cosl(r + c)  =  cosl(r)  +  correction.
+//
+//  Specifically,
+//
+//  sinl(r + c) = sinl(r) + c sin'(r) + O(c^2)
+//       = sinl(r) + c cos (r) + O(c^2)
+//       = sinl(r) + c(1 - r^2/2)  accurately.
+//  Similarly,
+//
+//  cosl(r + c) = cosl(r) - c sinl(r) + O(c^2)
+//       = cosl(r) - c(r - r^3/6)  accurately.
+//
+//  We therefore concentrate on accurately calculating sinl(r) and
+//  cosl(r) for a working-precision number r, |r| <= pi/4 to within
+//  0.1% or so.
+//
+//  The greatest challenge of this task is that the second terms of
+//  the Taylor series
+//
+//  r - r^3/3! + r^r/5! - ...
+//
+//  and
+//
+//  1 - r^2/2! + r^4/4! - ...
+//
+//  are not very small when |r| is close to pi/4 and the rounding
+//  errors will be a concern if simple polynomial accumulation is
+//  used. When |r| < 2^-3, however, the second terms will be small
+//  enough (6 bits or so of right shift) that a normal Horner
+//  recurrence suffices. Hence there are two cases that we consider
+//  in the accurate computation of sinl(r) and cosl(r), |r| <= pi/4.
+//
+//  Case small_r: |r| < 2^(-3)
+//  --------------------------
+//
+//  Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
+//  we have
+//
+//  sinl(Arg) = (-1)^i_0 * sinl(r + c)  if i_1 = 0
+//     = (-1)^i_0 * cosl(r + c)   if i_1 = 1
+//
+//  can be accurately approximated by
+//
+//  sinl(Arg) = (-1)^i_0 * [sinl(r) + c]  if i_1 = 0
+//           = (-1)^i_0 * [cosl(r) - c*r] if i_1 = 1
+//
+//  because |r| is small and thus the second terms in the correction
+//  are unneccessary.
+//
+//  Finally, sinl(r) and cosl(r) are approximated by polynomials of
+//  moderate lengths.
+//
+//  sinl(r) =  r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
+//  cosl(r) =  1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
+//
+//  We can make use of predicates to selectively calculate
+//  sinl(r) or cosl(r) based on i_1.
+//
+//  Case normal_r: 2^(-3) <= |r| <= pi/4
+//  ------------------------------------
+//
+//  This case is more likely than the previous one if one considers
+//  r to be uniformly distributed in [-pi/4 pi/4]. Again,
+//
+//  sinl(Arg) = (-1)^i_0 * sinl(r + c)  if i_1 = 0
+//           = (-1)^i_0 * cosl(r + c)   if i_1 = 1.
+//
+//  Because |r| is now larger, we need one extra term in the
+//  correction. sinl(Arg) can be accurately approximated by
+//
+//  sinl(Arg) = (-1)^i_0 * [sinl(r) + c(1-r^2/2)]      if i_1 = 0
+//           = (-1)^i_0 * [cosl(r) - c*r*(1 - r^2/6)]    i_1 = 1.
+//
+//  Finally, sinl(r) and cosl(r) are approximated by polynomials of
+//  moderate lengths.
+//
+//  sinl(r) =  r + PP_1_hi r^3 + PP_1_lo r^3 +
+//                PP_2 r^5 + ... + PP_8 r^17
+//
+//  cosl(r) =  1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
+//
+//  where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
+//  The crux in accurate computation is to calculate
+//
+//  r + PP_1_hi r^3   or  1 + QQ_1 r^2
+//
+//  accurately as two pieces: U_hi and U_lo. The way to achieve this
+//  is to obtain r_hi as a 10 sig. bit number that approximates r to
+//  roughly 8 bits or so of accuracy. (One convenient way is
+//
+//  r_hi := frcpa( frcpa( r ) ).)
+//
+//  This way,
+//
+//  r + PP_1_hi r^3 =  r + PP_1_hi r_hi^3 +
+//                          PP_1_hi (r^3 - r_hi^3)
+//            =  [r + PP_1_hi r_hi^3]  +
+//         [PP_1_hi (r - r_hi)
+//            (r^2 + r_hi r + r_hi^2) ]
+//            =  U_hi  +  U_lo
+//
+//  Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
+//  PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
+//  exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
+//  and that there is no more than 8 bit shift off between r and
+//  PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
+//  calculated without any error. Finally, the fact that
+//
+//  |U_lo| <= 2^(-8) |U_hi|
+//
+//  says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
+//  8 extra bits of accuracy.
+//
+//  Similarly,
+//
+//  1 + QQ_1 r^2  =  [1 + QQ_1 r_hi^2]  +
+//                      [QQ_1 (r - r_hi)(r + r_hi)]
+//          =  U_hi  +  U_lo.
+//
+//  Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
+//
+//  If i_1 = 0, then
+//
+//    U_hi := r + PP_1_hi * r_hi^3
+//    U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2)
+//    poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17
+//    correction := c * ( 1 + C_1 r^2 )
+//
+//  Else ...i_1 = 1
+//
+//    U_hi := 1 + QQ_1 * r_hi * r_hi
+//    U_lo := QQ_1 * (r - r_hi) * (r + r_hi)
+//    poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16
+//    correction := -c * r * (1 + S_1 * r^2)
+//
+//  End
+//
+//  Finally,
+//
+//  V := poly + ( U_lo + correction )
+//
+//                 /    U_hi  +  V         if i_0 = 0
+//  result := |
+//                 \  (-U_hi) -  V         if i_0 = 1
+//
+//  It is important that in the last step, negation of U_hi is
+//  performed prior to the subtraction which is to be performed in
+//  the user-set rounding mode.
+//
+//
+//  Algorithmic Description
+//  =======================
+//
+//  The argument reduction algorithm shares the same code between FSIN and FCOS.
+//  The argument reduction description given
+//  previously is repeated below.
+//
+//
+//  Step 0. Initialization.
+//
+//  Step 1. Check for exceptional and special cases.
+//
+//   * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
+//     handling.
+//   * If |Arg| < 2^24, go to Step 2 for reduction of moderate
+//     arguments. This is the most likely case.
+//   * If |Arg| < 2^63, go to Step 8 for pre-reduction of large
+//     arguments.
+//   * If |Arg| >= 2^63, go to Step 10 for special handling.
+//
+//  Step 2. Reduction of moderate arguments.
+//
+//  If |Arg| < pi/4   ...quick branch
+//     N_fix := N_inc (integer)
+//     r     := Arg
+//     c     := 0.0
+//     Branch to Step 4, Case_1_complete
+//  Else    ...cf. argument reduction
+//     N     := Arg * two_by_PI (fp)
+//     N_fix := fcvt.fx( N )  (int)
+//     N     := fcvt.xf( N_fix )
+//     N_fix := N_fix + N_inc
+//     s     := Arg - N * P_1 (first piece of pi/2)
+//     w     := -N * P_2  (second piece of pi/2)
+//
+//     If |s| >= 2^(-33)
+//        go to Step 3, Case_1_reduce
+//     Else
+//        go to Step 7, Case_2_reduce
+//     Endif
+//  Endif
+//
+//  Step 3. Case_1_reduce.
+//
+//  r := s + w
+//  c := (s - r) + w  ...observe order
+//
+//  Step 4. Case_1_complete
+//
+//  ...At this point, the reduced argument alpha is
+//  ...accurately represented as r + c.
+//  If |r| < 2^(-3), go to Step 6, small_r.
+//
+//  Step 5. Normal_r.
+//
+//  Let [i_0 i_1] by the 2 lsb of N_fix.
+//  FR_rsq  := r * r
+//  r_hi := frcpa( frcpa( r ) )
+//  r_lo := r - r_hi
+//
+//  If i_1 = 0, then
+//    poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
+//    U_hi := r + PP_1_hi*r_hi*r_hi*r_hi  ...any order
+//    U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
+//    correction := c + c*C_1*FR_rsq    ...any order
+//  Else
+//    poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
+//    U_hi := 1 + QQ_1 * r_hi * r_hi    ...any order
+//    U_lo := QQ_1 * r_lo * (r + r_hi)
+//    correction := -c*(r + S_1*FR_rsq*r) ...any order
+//  Endif
+//
+//  V := poly + (U_lo + correction) ...observe order
+//
+//  result := (i_0 == 0?   1.0 : -1.0)
+//
+//  Last instruction in user-set rounding mode
+//
+//  result := (i_0 == 0?   result*U_hi + V :
+//                        result*U_hi - V)
+//
+//  Return
+//
+//  Step 6. Small_r.
+//
+//  ...Use flush to zero mode without causing exception
+//    Let [i_0 i_1] be the two lsb of N_fix.
+//
+//  FR_rsq := r * r
+//
+//  If i_1 = 0 then
+//     z := FR_rsq*FR_rsq; z := FR_rsq*z *r
+//     poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5)
+//     poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2)
+//     correction := c
+//     result := r
+//  Else
+//     z := FR_rsq*FR_rsq; z := FR_rsq*z
+//     poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
+//     poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
+//     correction := -c*r
+//     result := 1
+//  Endif
+//
+//  poly := poly_hi + (z * poly_lo + correction)
+//
+//  If i_0 = 1, result := -result
+//
+//  Last operation. Perform in user-set rounding mode
+//
+//  result := (i_0 == 0?     result + poly :
+//                          result - poly )
+//  Return
+//
+//  Step 7. Case_2_reduce.
+//
+//  ...Refer to the write up for argument reduction for
+//  ...rationale. The reduction algorithm below is taken from
+//  ...argument reduction description and integrated this.
+//
+//  w := N*P_3
+//  U_1 := N*P_2 + w    ...FMA
+//  U_2 := (N*P_2 - U_1) + w  ...2 FMA
+//  ...U_1 + U_2 is  N*(P_2+P_3) accurately
+//
+//  r := s - U_1
+//  c := ( (s - r) - U_1 ) - U_2
+//
+//  ...The mathematical sum r + c approximates the reduced
+//  ...argument accurately. Note that although compared to
+//  ...Case 1, this case requires much more work to reduce
+//  ...the argument, the subsequent calculation needed for
+//  ...any of the trigonometric function is very little because
+//  ...|alpha| < 1.01*2^(-33) and thus two terms of the
+//  ...Taylor series expansion suffices.
+//
+//  If i_1 = 0 then
+//     poly := c + S_1 * r * r * r  ...any order
+//     result := r
+//  Else
+//     poly := -2^(-67)
+//     result := 1.0
+//  Endif
+//
+//  If i_0 = 1, result := -result
+//
+//  Last operation. Perform in user-set rounding mode
+//
+//  result := (i_0 == 0?     result + poly :
+//                           result - poly )
+//
+//  Return
+//
+//
+//  Step 8. Pre-reduction of large arguments.
+//
+//  ...Again, the following reduction procedure was described
+//  ...in the separate write up for argument reduction, which
+//  ...is tightly integrated here.
+
+//  N_0 := Arg * Inv_P_0
+//  N_0_fix := fcvt.fx( N_0 )
+//  N_0 := fcvt.xf( N_0_fix)
+
+//  Arg' := Arg - N_0 * P_0
+//  w := N_0 * d_1
+//  N := Arg' * two_by_PI
+//  N_fix := fcvt.fx( N )
+//  N := fcvt.xf( N_fix )
+//  N_fix := N_fix + N_inc
+//
+//  s := Arg' - N * P_1
+//  w := w - N * P_2
+//
+//  If |s| >= 2^(-14)
+//     go to Step 3
+//  Else
+//     go to Step 9
+//  Endif
+//
+//  Step 9. Case_4_reduce.
+//
+//    ...first obtain N_0*d_1 and -N*P_2 accurately
+//   U_hi := N_0 * d_1    V_hi := -N*P_2
+//   U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
+//
+//   ...compute the contribution from N_0*d_1 and -N*P_3
+//   w := -N*P_3
+//   w := w + N_0*d_2
+//   t := U_lo + V_lo + w   ...any order
+//
+//   ...at this point, the mathematical value
+//   ...s + U_hi + V_hi  + t approximates the true reduced argument
+//   ...accurately. Just need to compute this accurately.
+//
+//   ...Calculate U_hi + V_hi accurately:
+//   A := U_hi + V_hi
+//   if |U_hi| >= |V_hi| then
+//      a := (U_hi - A) + V_hi
+//   else
+//      a := (V_hi - A) + U_hi
+//   endif
+//   ...order in computing "a" must be observed. This branch is
+//   ...best implemented by predicates.
+//   ...A + a  is U_hi + V_hi accurately. Moreover, "a" is
+//   ...much smaller than A: |a| <= (1/2)ulp(A).
+//
+//   ...Just need to calculate   s + A + a + t
+//   C_hi := s + A    t := t + a
+//   C_lo := (s - C_hi) + A
+//   C_lo := C_lo + t
+//
+//   ...Final steps for reduction
+//   r := C_hi + C_lo
+//   c := (C_hi - r) + C_lo
+//
+//   ...At this point, we have r and c
+//   ...And all we need is a couple of terms of the corresponding
+//   ...Taylor series.
+//
+//   If i_1 = 0
+//      poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2)
+//      result := r
+//   Else
+//      poly := FR_rsq*(C_1 + FR_rsq*C_2)
+//      result := 1
+//   Endif
+//
+//   If i_0 = 1, result := -result
+//
+//   Last operation. Perform in user-set rounding mode
+//
+//   result := (i_0 == 0?     result + poly :
+//                            result - poly )
+//   Return
+//
+//   Large Arguments: For arguments above 2**63, a Payne-Hanek
+//   style argument reduction is used and pi_by_2 reduce is called.
+//
+
+
+RODATA
+.align 64
+
+LOCAL_OBJECT_START(FSINCOSL_CONSTANTS)
+
+sincosl_table_p:
+//data4 0x4E44152A, 0xA2F9836E, 0x00003FFE,0x00000000 // Inv_pi_by_2
+//data4 0xCE81B9F1, 0xC84D32B0, 0x00004016,0x00000000 // P_0
+//data4 0x2168C235, 0xC90FDAA2, 0x00003FFF,0x00000000 // P_1
+//data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD,0x00000000 // P_2
+//data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C,0x00000000 // P_3
+//data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF,0x00000000 // d_1
+//data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C,0x00000000 // d_2
+data8 0xA2F9836E4E44152A, 0x00003FFE // Inv_pi_by_2
+data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
+data8 0xC90FDAA22168C235, 0x00003FFF // P_1
+data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
+data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
+data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
+data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
+LOCAL_OBJECT_END(FSINCOSL_CONSTANTS)
+
+LOCAL_OBJECT_START(sincosl_table_d)
+//data4 0x2168C234, 0xC90FDAA2, 0x00003FFE,0x00000000 // pi_by_4
+//data4 0x6EC6B45A, 0xA397E504, 0x00003FE7,0x00000000 // Inv_P_0
+data8 0xC90FDAA22168C234, 0x00003FFE // pi_by_4
+data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
+data4 0x3E000000, 0xBE000000         // 2^-3 and -2^-3
+data4 0x2F000000, 0xAF000000         // 2^-33 and -2^-33
+data4 0x9E000000, 0x00000000         // -2^-67
+data4 0x00000000, 0x00000000         // pad
+LOCAL_OBJECT_END(sincosl_table_d)
+
+LOCAL_OBJECT_START(sincosl_table_pp)
+//data4 0xA21C0BC9, 0xCC8ABEBC, 0x00003FCE,0x00000000 // PP_8
+//data4 0x720221DA, 0xD7468A05, 0x0000BFD6,0x00000000 // PP_7
+//data4 0x640AD517, 0xB092382F, 0x00003FDE,0x00000000 // PP_6
+//data4 0xD1EB75A4, 0xD7322B47, 0x0000BFE5,0x00000000 // PP_5
+//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
+//data4 0x00000000, 0xAAAA0000, 0x0000BFFC,0x00000000 // PP_1_hi
+//data4 0xBAF69EEA, 0xB8EF1D2A, 0x00003FEC,0x00000000 // PP_4
+//data4 0x0D03BB69, 0xD00D00D0, 0x0000BFF2,0x00000000 // PP_3
+//data4 0x88888962, 0x88888888, 0x00003FF8,0x00000000 // PP_2
+//data4 0xAAAB0000, 0xAAAAAAAA, 0x0000BFEC,0x00000000 // PP_1_lo
+data8 0xCC8ABEBCA21C0BC9, 0x00003FCE // PP_8
+data8 0xD7468A05720221DA, 0x0000BFD6 // PP_7
+data8 0xB092382F640AD517, 0x00003FDE // PP_6
+data8 0xD7322B47D1EB75A4, 0x0000BFE5 // PP_5
+data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
+data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hi
+data8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4
+data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3
+data8 0x8888888888888962, 0x00003FF8 // PP_2
+data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_lo
+LOCAL_OBJECT_END(sincosl_table_pp)
+
+LOCAL_OBJECT_START(sincosl_table_qq)
+//data4 0xC2B0FE52, 0xD56232EF, 0x00003FD2 // QQ_8
+//data4 0x2B48DCA6, 0xC9C99ABA, 0x0000BFDA // QQ_7
+//data4 0x9C716658, 0x8F76C650, 0x00003FE2 // QQ_6
+//data4 0xFDA8D0FC, 0x93F27DBA, 0x0000BFE9 // QQ_5
+//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC // S_1
+//data4 0x00000000, 0x80000000, 0x0000BFFE,0x00000000 // QQ_1
+//data4 0x0C6E5041, 0xD00D00D0, 0x00003FEF,0x00000000 // QQ_4
+//data4 0x0B607F60, 0xB60B60B6, 0x0000BFF5,0x00000000 // QQ_3
+//data4 0xAAAAAA9B, 0xAAAAAAAA, 0x00003FFA,0x00000000 // QQ_2
+data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8
+data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7
+data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6
+data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5
+data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
+data8 0x8000000000000000, 0x0000BFFE // QQ_1
+data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4
+data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3
+data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2
+LOCAL_OBJECT_END(sincosl_table_qq)
+
+LOCAL_OBJECT_START(sincosl_table_c)
+//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
+//data4 0xAAAA719F, 0xAAAAAAAA, 0x00003FFA,0x00000000 // C_2
+//data4 0x0356F994, 0xB60B60B6, 0x0000BFF5,0x00000000 // C_3
+//data4 0xB2385EA9, 0xD00CFFD5, 0x00003FEF,0x00000000 // C_4
+//data4 0x292A14CD, 0x93E4BD18, 0x0000BFE9,0x00000000 // C_5
+data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
+data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2
+data8 0xB60B60B60356F994, 0x0000BFF5 // C_3
+data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4
+data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5
+LOCAL_OBJECT_END(sincosl_table_c)
+
+LOCAL_OBJECT_START(sincosl_table_s)
+//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
+//data4 0x888868DB, 0x88888888, 0x00003FF8,0x00000000 // S_2
+//data4 0x055EFD4B, 0xD00D00D0, 0x0000BFF2,0x00000000 // S_3
+//data4 0x839730B9, 0xB8EF1C5D, 0x00003FEC,0x00000000 // S_4
+//data4 0xE5B3F492, 0xD71EA3A4, 0x0000BFE5,0x00000000 // S_5
+data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
+data8 0x88888888888868DB, 0x00003FF8 // S_2
+data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3
+data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4
+data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5
+data4 0x38800000, 0xB8800000         // two**-14 and -two**-14
+LOCAL_OBJECT_END(sincosl_table_s)
+
+FR_Input_X        = f8
+FR_Result         = f8
+FR_ResultS        = f9
+FR_ResultC        = f8
+FR_r              = f8
+FR_c              = f9
+
+FR_norm_x         = f9
+FR_inv_pi_2to63   = f10
+FR_rshf_2to64     = f11
+FR_2tom64         = f12
+FR_rshf           = f13
+FR_N_float_signif = f14
+FR_abs_x          = f15
+
+FR_r6             = f32
+FR_r7             = f33
+FR_Pi_by_4        = f34
+FR_Two_to_M14     = f35
+FR_Neg_Two_to_M14 = f36
+FR_Two_to_M33     = f37
+FR_Neg_Two_to_M33 = f38
+FR_Neg_Two_to_M67 = f39
+FR_Inv_pi_by_2    = f40
+FR_N_float        = f41
+FR_N_fix          = f42
+FR_P_1            = f43
+FR_P_2            = f44
+FR_P_3            = f45
+FR_s              = f46
+FR_w              = f47
+FR_Z              = f50
+FR_A              = f51
+FR_a              = f52
+FR_t              = f53
+FR_U_1            = f54
+FR_U_2            = f55
+FR_C_1            = f56
+FR_C_2            = f57
+FR_C_3            = f58
+FR_C_4            = f59
+FR_C_5            = f60
+FR_S_1            = f61
+FR_S_2            = f62
+FR_S_3            = f63
+FR_S_4            = f64
+FR_S_5            = f65
+FR_r_hi           = f68
+FR_r_lo           = f69
+FR_rsq            = f70
+FR_r_cubed        = f71
+FR_C_hi           = f72
+FR_N_0            = f73
+FR_d_1            = f74
+FR_V_hi           = f75
+FR_V_lo           = f76
+FR_U_hi           = f77
+FR_U_lo           = f78
+FR_U_hiabs        = f79
+FR_V_hiabs        = f80
+FR_PP_8           = f81
+FR_QQ_8           = f101
+FR_PP_7           = f82
+FR_QQ_7           = f102
+FR_PP_6           = f83
+FR_QQ_6           = f103
+FR_PP_5           = f84
+FR_QQ_5           = f104
+FR_PP_4           = f85
+FR_QQ_4           = f105
+FR_PP_3           = f86
+FR_QQ_3           = f106
+FR_PP_2           = f87
+FR_QQ_2           = f107
+FR_QQ_1           = f108
+FR_r_hi_sq        = f88
+FR_N_0_fix        = f89
+FR_Inv_P_0        = f90
+FR_d_2            = f93
+FR_P_0            = f95
+FR_C_lo           = f96
+FR_PP_1           = f97
+FR_PP_1_lo        = f98
+FR_ArgPrime       = f99
+FR_inexact        = f100
+
+FR_Neg_Two_to_M3  = f109
+FR_Two_to_M3      = f110
+
+FR_poly_hiS       = f66
+FR_poly_hiC       = f112
+
+FR_poly_loS       = f67
+FR_poly_loC       = f113
+
+FR_polyS          = f92
+FR_polyC          = f114
+
+FR_cS             = FR_c
+FR_cC             = f115
+
+FR_corrS          = f91
+FR_corrC          = f116
+
+FR_U_hiC          = f117
+FR_U_loC          = f118
+
+FR_VS             = f75
+FR_VC             = f119
+
+FR_FirstS         = f120
+FR_FirstC         = f121
+
+FR_U_hiS          = FR_U_hi
+FR_U_loS          = FR_U_lo
+
+FR_Tmp            = f94
+
+
+
+
+sincos_pResSin = r34
+sincos_pResCos = r35
+
+GR_exp_m2_to_m3= r36
+GR_N_Inc       = r37
+GR_Cis         = r38
+GR_signexp_x   = r40
+GR_exp_x       = r40
+GR_exp_mask    = r41
+GR_exp_2_to_63 = r42
+GR_exp_2_to_m3 = r43
+GR_exp_2_to_24 = r44
+
+GR_N_SignS     = r45
+GR_N_SignC     = r46
+GR_N_SinCos    = r47
+
+GR_sig_inv_pi  = r48
+GR_rshf_2to64  = r49
+GR_exp_2tom64  = r50
+GR_rshf        = r51
+GR_ad_p        = r52
+GR_ad_d        = r53
+GR_ad_pp       = r54
+GR_ad_qq       = r55
+GR_ad_c        = r56
+GR_ad_s        = r57
+GR_ad_ce       = r58
+GR_ad_se       = r59
+GR_ad_m14      = r60
+GR_ad_s1       = r61
+
+// For unwind support
+GR_SAVE_B0     = r39
+GR_SAVE_GP     = r40
+GR_SAVE_PFS    = r41
+
+
+.section .text
+
+GLOBAL_IEEE754_ENTRY(sincosl)
+{ .mlx  ///////////////////////////// 1 /////////////////
+      alloc r32 = ar.pfs,3,27,2,0
+      movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
+}
+{ .mlx
+      mov GR_N_Inc = 0x0
+      movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
+};;
+
+{ .mfi ///////////////////////////// 2 /////////////////
+      addl           GR_ad_p   = @ltoff(FSINCOSL_CONSTANTS#), gp
+      fclass.m p6, p0 =  FR_Input_X, 0x1E3 // Test x natval, nan, inf
+      mov GR_exp_2_to_m3 = 0xffff - 3      // Exponent of 2^-3
+}
+{ .mfb
+      mov GR_Cis = 0x0
+      fnorm.s1 FR_norm_x = FR_Input_X      // Normalize x
+    br.cond.sptk _COMMON_SINCOSL
+};;
+GLOBAL_IEEE754_END(sincosl)
+
+GLOBAL_LIBM_ENTRY(__libm_sincosl)
+{ .mlx  ///////////////////////////// 1 /////////////////
+      alloc r32 = ar.pfs,3,27,2,0
+      movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
+}
+{ .mlx
+      mov GR_N_Inc = 0x0
+      movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
+};;
+
+{ .mfi ///////////////////////////// 2 /////////////////
+      addl           GR_ad_p   = @ltoff(FSINCOSL_CONSTANTS#), gp
+      fclass.m p6, p0 =  FR_Input_X, 0x1E3 // Test x natval, nan, inf
+      mov GR_exp_2_to_m3 = 0xffff - 3      // Exponent of 2^-3
+}
+{ .mfb
+      mov GR_Cis = 0x1
+      fnorm.s1 FR_norm_x = FR_Input_X      // Normalize x
+      nop.b 0
+};;
+
+_COMMON_SINCOSL:
+{ .mfi ///////////////////////////// 3 /////////////////
+      setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
+      nop.f 0
+      mov GR_exp_2tom64 = 0xffff - 64      // Scaling constant to compute N
+}
+{ .mlx
+      setf.d FR_rshf_2to64 = GR_rshf_2to64    // Form const 1.1000 * 2^(63+64)
+      movl GR_rshf = 0x43e8000000000000       // Form const 1.1000 * 2^63
+};;
+
+{ .mfi ///////////////////////////// 4 /////////////////
+      ld8 GR_ad_p = [GR_ad_p]              // Point to Inv_pi_by_2
+      fclass.m p7, p0 = FR_Input_X, 0x0b   // Test x denormal
+      nop.i 0
+};;
+
+{ .mfi    ///////////////////////////// 5 /////////////////
+      getf.exp GR_signexp_x = FR_Input_X   // Get sign and exponent of x
+      fclass.m p10, p0 = FR_Input_X, 0x007 // Test x zero
+      nop.i 0
+}
+{ .mib
+      mov GR_exp_mask = 0x1ffff            // Exponent mask
+      nop.i 0
+(p6)  br.cond.spnt SINCOSL_SPECIAL         // Branch if x natval, nan, inf
+};;
+
+{ .mfi ///////////////////////////// 6 /////////////////
+      setf.exp FR_2tom64 = GR_exp_2tom64   // Form 2^-64 for scaling N_float
+      nop.f 0
+      add GR_ad_d = 0x70, GR_ad_p          // Point to constant table d
+}
+{ .mib
+      setf.d FR_rshf = GR_rshf         // Form right shift const 1.1000 * 2^63
+      mov  GR_exp_m2_to_m3 = 0x2fffc       // Form -(2^-3)
+(p7)  br.cond.spnt SINCOSL_DENORMAL        // Branch if x denormal
+};;
+
+SINCOSL_COMMON2:
+{ .mfi ///////////////////////////// 7 /////////////////
+      and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
+      fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test x unsupported type
+      mov GR_exp_2_to_63 = 0xffff + 63     // Exponent of 2^63
+}
+{ .mib
+      add GR_ad_pp = 0x40, GR_ad_d         // Point to constant table pp
+      mov GR_exp_2_to_24 = 0xffff + 24     // Exponent of 2^24
+(p10) br.cond.spnt SINCOSL_ZERO            // Branch if x zero
+};;
+
+{ .mfi ///////////////////////////// 8 /////////////////
+      ldfe FR_Inv_pi_by_2 = [GR_ad_p], 16  // Load 2/pi
+      fcmp.eq.s0 p15, p0 = FR_Input_X, f0  // Dummy to set denormal
+      add GR_ad_qq = 0xa0, GR_ad_pp        // Point to constant table qq
+}
+{ .mfi
+      ldfe FR_Pi_by_4 = [GR_ad_d], 16      // Load pi/4 for range test
+      nop.f 0
+      cmp.ge p10,p0 = GR_exp_x, GR_exp_2_to_63   // Is |x| >= 2^63
+};;
+
+{ .mfi ///////////////////////////// 9 /////////////////
+      ldfe FR_P_0 = [GR_ad_p], 16          // Load P_0 for pi/4 <= |x| < 2^63
+      fmerge.s FR_abs_x = f1, FR_norm_x    // |x|
+      add GR_ad_c = 0x90, GR_ad_qq         // Point to constant table c
+}
+{ .mfi
+      ldfe FR_Inv_P_0 = [GR_ad_d], 16      // Load 1/P_0 for pi/4 <= |x| < 2^63
+      nop.f 0
+      cmp.ge p7,p0 = GR_exp_x, GR_exp_2_to_24   // Is |x| >= 2^24
+};;
+
+{ .mfi ///////////////////////////// 10 /////////////////
+      ldfe FR_P_1 = [GR_ad_p], 16          // Load P_1 for pi/4 <= |x| < 2^63
+      nop.f 0
+      add GR_ad_s = 0x50, GR_ad_c          // Point to constant table s
+}
+{ .mfi
+      ldfe FR_PP_8 = [GR_ad_pp], 16        // Load PP_8 for 2^-3 < |r| < pi/4
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi ///////////////////////////// 11 /////////////////
+      ldfe FR_P_2 = [GR_ad_p], 16          // Load P_2 for pi/4 <= |x| < 2^63
+      nop.f 0
+      add GR_ad_ce = 0x40, GR_ad_c         // Point to end of constant table c
+}
+{ .mfi
+      ldfe FR_QQ_8 = [GR_ad_qq], 16        // Load QQ_8 for 2^-3 < |r| < pi/4
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi ///////////////////////////// 12 /////////////////
+      ldfe FR_QQ_7 = [GR_ad_qq], 16        // Load QQ_7 for 2^-3 < |r| < pi/4
+      fma.s1  FR_N_float_signif = FR_Input_X, FR_inv_pi_2to63, FR_rshf_2to64
+      add GR_ad_se = 0x40, GR_ad_s         // Point to end of constant table s
+}
+{ .mib
+      ldfe FR_PP_7 = [GR_ad_pp], 16        // Load PP_7 for 2^-3 < |r| < pi/4
+      mov GR_ad_s1 = GR_ad_s               // Save pointer to S_1
+(p10) br.cond.spnt SINCOSL_ARG_TOO_LARGE   // Branch if |x| >= 2^63
+                                           // Use Payne-Hanek Reduction
+};;
+
+{ .mfi ///////////////////////////// 13 /////////////////
+      ldfe FR_P_3 = [GR_ad_p], 16          // Load P_3 for pi/4 <= |x| < 2^63
+      fmerge.se FR_r = FR_norm_x, FR_norm_x // r = x, in case |x| < pi/4
+      add GR_ad_m14 = 0x50, GR_ad_s        // Point to constant table m14
+}
+{ .mfb
+      ldfps FR_Two_to_M3, FR_Neg_Two_to_M3 = [GR_ad_d], 8
+      fma.s1 FR_rsq = FR_norm_x, FR_norm_x, f0 // rsq = x*x, in case |x| < pi/4
+(p7)  br.cond.spnt SINCOSL_LARGER_ARG      // Branch if 2^24 <= |x| < 2^63
+                                           // Use pre-reduction
+};;
+
+{ .mmf ///////////////////////////// 14 /////////////////
+      ldfe FR_PP_6 = [GR_ad_pp], 16       // Load PP_6 for normal path
+      ldfe FR_QQ_6 = [GR_ad_qq], 16       // Load QQ_6 for normal path
+      fmerge.se FR_c = f0, f0             // c = 0 in case |x| < pi/4
+};;
+
+{ .mmf ///////////////////////////// 15 /////////////////
+      ldfe FR_PP_5 = [GR_ad_pp], 16       // Load PP_5 for normal path
+      ldfe FR_QQ_5 = [GR_ad_qq], 16       // Load QQ_5 for normal path
+      nop.f 0
+};;
+
+// Here if 0 < |x| < 2^24
+{ .mfi ///////////////////////////// 17 /////////////////
+      ldfe FR_S_5 = [GR_ad_se], -16       // Load S_5 if i_1=0
+      fcmp.lt.s1  p6, p7 = FR_abs_x, FR_Pi_by_4  // Test |x| < pi/4
+      nop.i 0
+}
+{ .mfi
+      ldfe FR_C_5 = [GR_ad_ce], -16       // Load C_5 if i_1=1
+      fms.s1 FR_N_float = FR_N_float_signif, FR_2tom64, FR_rshf
+      nop.i 0
+};;
+
+{ .mmi ///////////////////////////// 18 /////////////////
+      ldfe FR_S_4 = [GR_ad_se], -16       // Load S_4 if i_1=0
+      ldfe FR_C_4 = [GR_ad_ce], -16       // Load C_4 if i_1=1
+      nop.i 0
+};;
+
+//
+//     N  = Arg * 2/pi
+//     Check if Arg < pi/4
+//
+//
+//     Case 2: Convert integer N_fix back to normalized floating-point value.
+//     Case 1: p8 is only affected  when p6 is set
+//
+//
+//     Grab the integer part of N and call it N_fix
+//
+{ .mfi ///////////////////////////// 19 /////////////////
+(p7)  ldfps FR_Two_to_M33, FR_Neg_Two_to_M33 = [GR_ad_d], 8
+(p6)  fma.s1 FR_r_cubed = FR_r, FR_rsq, f0        // r^3 if |x| < pi/4
+(p6)  mov GR_N_Inc = 0x0                         // N_IncS if |x| < pi/4
+};;
+
+//     If |x| < pi/4, r = x and c = 0
+//     lf |x| < pi/4, is x < 2**(-3).
+//     r = Arg
+//     c = 0
+{ .mmi ///////////////////////////// 20 /////////////////
+(p7)  getf.sig  GR_N_Inc = FR_N_float_signif
+      nop.m 0
+(p6)  cmp.lt.unc p8,p0 = GR_exp_x, GR_exp_2_to_m3   // Is |x| < 2^-3
+};;
+
+//
+//     lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
+//     If |x| >= pi/4,
+//     Create the right N for |x| < pi/4 and otherwise
+//     Case 2: Place integer part of N in GP register
+//
+
+{ .mbb ///////////////////////////// 21 /////////////////
+      nop.m 0
+(p8)  br.cond.spnt SINCOSL_SMALL_R_0    // Branch if 0 < |x| < 2^-3
+(p6)  br.cond.spnt SINCOSL_NORMAL_R_0   // Branch if 2^-3 <= |x| < pi/4
+};;
+
+// Here if pi/4 <= |x| < 2^24
+{ .mfi
+      ldfs FR_Neg_Two_to_M67 = [GR_ad_d], 8     // Load -2^-67
+      fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X // s = -N * P_1  + Arg
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_w = FR_N_float, FR_P_2, f0      // w = N * P_2
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fms.s1 FR_r = FR_s, f1, FR_w        // r = s - w, assume |s| >= 2^-33
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fcmp.lt.s1 p7, p6 = FR_s, FR_Two_to_M33
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p7)  fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33 // p6 if |s| >= 2^-33, else p7
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fms.s1 FR_c = FR_s, f1, FR_r             // c = s - r, for |s| >= 2^-33
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_rsq = FR_r, FR_r, f0           // rsq = r * r, for |s| >= 2^-33
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p7)  fma.s1 FR_w = FR_N_float, FR_P_3, f0
+      nop.i 0
+};;
+
+{ .mmf
+      ldfe FR_C_1 = [GR_ad_pp], 16     // Load C_1 if i_1=0
+      ldfe FR_S_1 = [GR_ad_qq], 16     // Load S_1 if i_1=1
+      frcpa.s1 FR_r_hi, p15 = f1, FR_r  // r_hi = frcpa(r)
+};;
+
+{ .mfi
+      nop.m 0
+(p6)  fcmp.lt.unc.s1 p8, p13 = FR_r, FR_Two_to_M3 // If big s, test r with 2^-3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p7)  fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
+      nop.i 0
+};;
+
+//
+//     For big s: r = s - w: No futher reduction is necessary
+//     For small s: w = N * P_3 (change sign) More reduction
+//
+{ .mfi
+    nop.m 0
+(p8)  fcmp.gt.s1 p8, p13 = FR_r, FR_Neg_Two_to_M3 // If big s, p8 if |r| < 2^-3
+    nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p7)  fms.s1 FR_r = FR_s, f1, FR_U_1
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p6)  fma.s1 FR_r_cubed = FR_r, FR_rsq, f0  // rcubed = r * rsq
+      nop.i 0
+};;
+
+{ .mfi
+//
+//     For big s: Is |r| < 2**(-3)?
+//     For big s: c = S - r
+//     For small s: U_1 = N * P_2 + w
+//
+//     If p8 is set, prepare to branch to Small_R.
+//     If p9 is set, prepare to branch to Normal_R.
+//     For big s,  r is complete here.
+//
+//
+//     For big s: c = c + w (w has not been negated.)
+//     For small s: r = S - U_1
+//
+      nop.m 0
+(p6)  fms.s1 FR_c = FR_c, f1, FR_w
+      nop.i 0
+}
+{ .mbb
+      nop.m 0
+(p8)  br.cond.spnt  SINCOSL_SMALL_R_1  // Branch if |s|>=2^-33, |r| < 2^-3,
+                                       // and pi/4 <= |x| < 2^24
+(p13) br.cond.sptk  SINCOSL_NORMAL_R_1 // Branch if |s|>=2^-33, |r| >= 2^-3,
+                                       // and pi/4 <= |x| < 2^24
+};;
+
+SINCOSL_S_TINY:
+//
+// Here if |s| < 2^-33, and pi/4 <= |x| < 2^24
+//
+{ .mfi
+       and GR_N_SinCos = 0x1, GR_N_Inc
+       fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
+       tbit.z p8,p12       = GR_N_Inc, 0
+};;
+
+
+//
+//     For small s: U_2 = N * P_2 - U_1
+//     S_1 stored constant - grab the one stored with the
+//     coefficients.
+//
+{ .mfi
+      ldfe      FR_S_1 = [GR_ad_s1], 16
+      fma.s1  FR_polyC = f0, f1, FR_Neg_Two_to_M67
+      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
+}
+{ .mfi
+      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fms.s1  FR_s = FR_s, f1, FR_r
+(p8)  tbit.z.unc p10,p11   = GR_N_SignC, 1
+}
+{ .mfi
+      nop.m 0
+      fma.s1  FR_rsq = FR_r, FR_r, f0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1  FR_U_2 = FR_U_2, f1, FR_w
+(p8)  tbit.z.unc p8,p9    = GR_N_SignS, 1
+};;
+
+{ .mfi
+      nop.m 0
+      fmerge.se FR_FirstS = FR_r, FR_r
+(p12) tbit.z.unc p14,p15  = GR_N_SignC, 1
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_FirstC = f0, f1, f1
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fms.s1  FR_c = FR_s, f1, FR_U_1
+(p12) tbit.z.unc p12,p13  = GR_N_SignS, 1
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1  FR_r = FR_S_1, FR_r, f0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s0  FR_S_1 = FR_S_1, FR_S_1, f0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fms.s1 FR_c = FR_c, f1, FR_U_2
+      nop.i 0
+};;
+
+.pred.rel "mutex",p9,p15
+{ .mfi
+      nop.m 0
+(p9)  fms.s0 FR_FirstS   = f1, f0, FR_FirstS
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p15) fms.s0 FR_FirstS   = f1, f0, FR_FirstS
+      nop.i 0
+};;
+
+.pred.rel "mutex",p11,p13
+{ .mfi
+      nop.m 0
+(p11) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p13) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_r, FR_rsq, FR_c
+      nop.i 0
+};;
+
+
+.pred.rel "mutex",p8,p9
+{ .mfi
+      nop.m 0
+(p8)  fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p9)  fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
+      nop.i 0
+};;
+
+.pred.rel "mutex",p10,p11
+{ .mfi
+      nop.m 0
+(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
+      nop.i 0
+};;
+
+
+
+.pred.rel "mutex",p12,p13
+{ .mfi
+      nop.m 0
+(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
+      nop.i 0
+};;
+
+.pred.rel "mutex",p14,p15
+{ .mfi
+      nop.m 0
+(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
+      nop.i 0
+}
+{ .mfb
+      cmp.eq  p10, p0 = 0x1, GR_Cis
+(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
+(p10) br.ret.sptk               b0
+};;
+
+{ .mmb       // exit for sincosl
+      stfe  [sincos_pResSin] =  FR_ResultS
+      stfe  [sincos_pResCos] =  FR_ResultC
+      br.ret.sptk               b0
+};;
+
+
+
+
+
+
+SINCOSL_LARGER_ARG:
+//
+// Here if 2^24 <= |x| < 2^63
+//
+{ .mfi
+      ldfe FR_d_1 = [GR_ad_p], 16          // Load d_1 for |x| >= 2^24 path
+      fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0 //     N_0 = Arg * Inv_P_0
+      nop.i 0
+};;
+
+{ .mmi
+      ldfps FR_Two_to_M14, FR_Neg_Two_to_M14 = [GR_ad_m14]
+      nop.m 0
+      nop.i 0
+};;
+
+{ .mfi
+      ldfe FR_d_2 = [GR_ad_p], 16          // Load d_2 for |x| >= 2^24 path
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fcvt.fx.s1 FR_N_0_fix = FR_N_0 // N_0_fix  = integer part of N_0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fcvt.xf FR_N_0 = FR_N_0_fix //     Make N_0 the integer part
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X // Arg'=-N_0*P_0+Arg
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_w = FR_N_0, FR_d_1, f0 //     w  = N_0 * d_1
+      nop.i 0
+};;
+
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0 //  N = A' * 2/pi
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fcvt.fx.s1 FR_N_fix = FR_N_float //     N_fix is the integer part
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fcvt.xf FR_N_float = FR_N_fix
+      nop.i 0
+};;
+
+{ .mfi
+      getf.sig GR_N_Inc = FR_N_fix // N is the integer part of
+                                 // the reduced-reduced argument
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime //     s = -N*P_1 + Arg'
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w //     w = -N*P_2 + w
+      nop.i 0
+};;
+
+//
+//     For |s|  > 2**(-14) r = S + w (r complete)
+//     Else       U_hi = N_0 * d_1
+//
+{ .mfi
+      nop.m 0
+      fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p9)  fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14  // p9 if |s| < 2^-14
+      nop.i 0
+};;
+
+//
+//     Either S <= -2**(-14) or S >= 2**(-14)
+//     or -2**(-14) < s < 2**(-14)
+//
+{ .mfi
+      nop.m 0
+(p9)  fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p9)  fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p8)  fma.s1 FR_r = FR_s, f1, FR_w
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p9)  fma.s1 FR_w = FR_N_float, FR_P_3, f0
+      nop.i 0
+};;
+
+//
+//    We need abs of both U_hi and V_hi - don't
+//    worry about switched sign of V_hi.
+//
+//    Big s: finish up c = (S - r) + w (c complete)
+//    Case 4: A =  U_hi + V_hi
+//    Note: Worry about switched sign of V_hi, so subtract instead of add.
+//
+{ .mfi
+      nop.m 0
+(p9)  fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p9)  fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p9)  fmerge.s FR_V_hiabs = f0, FR_V_hi
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p9)  fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi // For small s: U_lo=N_0*d_1-U_hi
+      nop.i 0
+};;
+
+//
+//    For big s: Is |r| < 2**(-3)
+//    For big s: if p12 set, prepare to branch to Small_R.
+//    For big s: If p13 set, prepare to branch to Normal_R.
+//
+{ .mfi
+      nop.m 0
+(p9)  fmerge.s FR_U_hiabs = f0, FR_U_hi
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p8)  fms.s1 FR_c = FR_s, f1, FR_r  //     For big s: c = S - r
+      nop.i 0
+};;
+
+//
+//    For small S: V_hi = N * P_2
+//                 w = N * P_3
+//    Note the product does not include the (-) as in the writeup
+//    so (-) missing for V_hi and w.
+//
+{ .mfi
+      nop.m 0
+(p8)  fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+(p8)  fma.s1 FR_c = FR_c, f1, FR_w
+      nop.i 0
+}
+{ .mfb
+      nop.m 0
+(p9)  fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
+(p12) br.cond.spnt SINCOSL_SMALL_R      // Branch if |r| < 2^-3
+                                        // and 2^24 <= |x| < 2^63
+};;
+
+{ .mib
+      nop.m 0
+      nop.i 0
+(p13) br.cond.sptk SINCOSL_NORMAL_R     // Branch if |r| >= 2^-3
+                                        // and 2^24 <= |x| < 2^63
+};;
+
+SINCOSL_LARGER_S_TINY:
+//    Here if |s| < 2^-14, and 2^24 <= |x| < 2^63
+//
+//    Big s: Vector off when |r| < 2**(-3).  Recall that p8 will be true.
+//    The remaining stuff is for Case 4.
+//    Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
+//    Note: the (-) is still missing for V_lo.
+//    Small s: w = w + N_0 * d_2
+//    Note: the (-) is now incorporated in w.
+//
+{ .mfi
+      and GR_N_SinCos = 0x1, GR_N_Inc
+      fcmp.ge.unc.s1 p6, p7 = FR_U_hiabs, FR_V_hiabs
+      tbit.z p8,p12       = GR_N_Inc, 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_t = FR_U_lo, f1, FR_V_lo //     C_hi = S + A
+      nop.i 0
+};;
+
+{ .mfi
+      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
+(p6)  fms.s1 FR_a = FR_U_hi, f1, FR_A
+      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
+}
+{ .mfi
+      nop.m 0
+(p7)  fma.s1 FR_a = FR_V_hi, f1, FR_A
+      nop.i 0
+};;
+
+{ .mmf
+      ldfe FR_C_1 = [GR_ad_c], 16
+      ldfe  FR_S_1 = [GR_ad_s], 16
+      fma.s1 FR_C_hi = FR_s, f1, FR_A
+};;
+
+{ .mmi
+      ldfe FR_C_2 = [GR_ad_c], 64
+      ldfe FR_S_2 = [GR_ad_s], 64
+(p8)  tbit.z.unc p10,p11   = GR_N_SignC, 1
+};;
+
+//
+//    r and c have been computed.
+//    Make sure ftz mode is set - should be automatic when using wre
+//    |r| < 2**(-3)
+//    Get [i_0,i_1] - two lsb of N_fix.
+//
+//    For larger u than v: a = U_hi - A
+//    Else a = V_hi - A (do an add to account for missing (-) on V_hi
+//
+{ .mfi
+      nop.m 0
+      fma.s1 FR_t = FR_t, f1, FR_w //     t = t + w
+(p8)  tbit.z.unc p8,p9    = GR_N_SignS, 1
+}
+{ .mfi
+      nop.m 0
+(p6)  fms.s1 FR_a = FR_a, f1, FR_V_hi
+      nop.i 0
+};;
+
+//
+//     If u > v: a = (U_hi - A)  + V_hi
+//     Else      a = (V_hi - A)  + U_hi
+//     In each case account for negative missing from V_hi.
+//
+{ .mfi
+      nop.m 0
+      fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
+(p12) tbit.z.unc p14,p15  = GR_N_SignC, 1
+}
+{ .mfi
+      nop.m 0
+(p7)  fms.s1 FR_a = FR_U_hi, f1, FR_a
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_C_lo = FR_C_lo, f1, FR_A //     C_lo = (S - C_hi) + A
+(p12) tbit.z.unc p12,p13  = GR_N_SignS, 1
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_t = FR_t, f1, FR_a //     t = t + a
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_C_lo = FR_C_lo, f1, FR_t //     C_lo = C_lo + t
+      nop.i 0
+};;
+
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_rsq = FR_r, FR_r, f0
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fms.s1 FR_c = FR_C_hi, f1, FR_r
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_FirstS = f0, f1, FR_r
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_FirstC = f0, f1, f1
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_rsq, FR_S_2, FR_S_1
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_rsq, FR_C_2, FR_C_1
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_c = FR_c, f1, FR_C_lo
+      nop.i 0
+};;
+
+.pred.rel "mutex",p9,p15
+{ .mfi
+      nop.m 0
+(p9)  fms.s0 FR_FirstS   = f1, f0, FR_FirstS
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p15) fms.s0 FR_FirstS   = f1, f0, FR_FirstS
+      nop.i 0
+};;
+
+.pred.rel "mutex",p11,p13
+{ .mfi
+      nop.m 0
+(p11) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p13) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
+      nop.i 0
+};;
+
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_r_cubed, FR_polyS, FR_c
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_rsq, FR_polyC, f0
+      nop.i 0
+};;
+
+
+
+.pred.rel "mutex",p8,p9
+{ .mfi
+      nop.m 0
+(p8)  fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p9)  fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
+      nop.i 0
+};;
+
+.pred.rel "mutex",p10,p11
+{ .mfi
+      nop.m 0
+(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
+      nop.i 0
+};;
+
+
+
+.pred.rel "mutex",p12,p13
+{ .mfi
+      nop.m 0
+(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
+      nop.i 0
+};;
+
+.pred.rel "mutex",p14,p15
+{ .mfi
+      nop.m 0
+(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
+      nop.i 0
+}
+{ .mfb
+      cmp.eq  p10, p0 = 0x1, GR_Cis
+(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
+(p10) br.ret.sptk               b0
+};;
+
+
+{ .mmb       // exit for sincosl
+      stfe  [sincos_pResSin] =  FR_ResultS
+      stfe  [sincos_pResCos] =  FR_ResultC
+      br.ret.sptk               b0
+};;
+
+
+
+SINCOSL_SMALL_R:
+//
+// Here if |r| < 2^-3
+//
+// Enter with r, c, and N_Inc computed
+//
+{ .mfi
+      nop.m 0
+      fma.s1 FR_rsq = FR_r, FR_r, f0   // rsq = r * r
+      nop.i 0
+};;
+
+{ .mmi
+      ldfe FR_S_5 = [GR_ad_se], -16    // Load S_5
+      ldfe FR_C_5 = [GR_ad_ce], -16    // Load C_5
+      nop.i 0
+};;
+
+{ .mmi
+      ldfe FR_S_4 = [GR_ad_se], -16    // Load S_4
+      ldfe FR_C_4 = [GR_ad_ce], -16    // Load C_4
+      nop.i 0
+};;
+
+SINCOSL_SMALL_R_0:
+// Entry point for 2^-3 < |x| < pi/4
+SINCOSL_SMALL_R_1:
+// Entry point for pi/4 < |x| < 2^24 and |r| < 2^-3
+{ .mfi
+      ldfe   FR_S_3 = [GR_ad_se], -16    // Load S_3
+      fma.s1 FR_r6  = FR_rsq, FR_rsq, f0 // Z = rsq * rsq
+      tbit.z p7,p11       = GR_N_Inc, 0
+}
+{ .mfi
+      ldfe    FR_C_3 = [GR_ad_ce], -16   // Load C_3
+      nop.f 0
+      and GR_N_SinCos = 0x1, GR_N_Inc
+};;
+
+{ .mfi
+      ldfe   FR_S_2 = [GR_ad_se], -16    // Load S_2
+      fnma.s1 FR_cC = FR_c, FR_r, f0     // c = -c * r
+      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
+}
+{ .mfi
+      ldfe   FR_C_2 = [GR_ad_ce], -16    // Load C_2
+      nop.f 0
+      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
+};;
+
+{ .mmi
+      ldfe FR_S_1 = [GR_ad_se], -16    // Load S_1
+      ldfe FR_C_1 = [GR_ad_ce], -16    // Load C_1
+(p7)  tbit.z.unc p9,p10   = GR_N_SignC, 1
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_r7 = FR_r6, FR_r, f0     // Z = Z * r
+(p7)  tbit.z.unc p7,p8    = GR_N_SignS, 1
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_poly_loS = FR_rsq, FR_S_5, FR_S_4 // poly_lo=rsq*S_5+S_4
+(p11) tbit.z.unc p13,p14  = GR_N_SignC, 1
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_poly_loC = FR_rsq, FR_C_5, FR_C_4 // poly_lo=rsq*C_5+C_4
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_poly_hiS = FR_rsq, FR_S_2, FR_S_1 // poly_hi=rsq*S_2+S_1
+(p11) tbit.z.unc p11,p12  = GR_N_SignS, 1
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_poly_hiC = FR_rsq, FR_C_2, FR_C_1 // poly_hi=rsq*C_2+C_1
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s0 FR_FirstS = FR_r, f1, f0
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s0 FR_FirstC = f1, f1, f0
+      nop.i 0
+};;
+
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_r6 = FR_r6, FR_rsq, f0
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_r7 = FR_r7, FR_rsq, f0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_poly_loS = FR_rsq, FR_poly_loS, FR_S_3 // p_lo=p_lo*rsq+S_3
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_poly_loC = FR_rsq, FR_poly_loC, FR_C_3 // p_lo=p_lo*rsq+C_3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s0 FR_inexact = FR_S_4, FR_S_4, f0     // Dummy op to set inexact
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_poly_hiS = FR_poly_hiS, FR_rsq, f0     // p_hi=p_hi*rsq
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_poly_hiC = FR_poly_hiC, FR_rsq, f0     // p_hi=p_hi*rsq
+      nop.i 0
+};;
+
+.pred.rel "mutex",p8,p14
+{ .mfi
+      nop.m 0
+(p8)  fms.s0 FR_FirstS   = f1, f0, FR_FirstS
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p14) fms.s0 FR_FirstS   = f1, f0, FR_FirstS
+      nop.i 0
+};;
+
+.pred.rel "mutex",p10,p12
+{ .mfi
+      nop.m 0
+(p10) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p12) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_r7, FR_poly_loS, FR_cS        // poly=Z*poly_lo+c
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_r6, FR_poly_loC, FR_cC        // poly=Z*poly_lo+c
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_poly_hiS = FR_r, FR_poly_hiS, f0       // p_hi=r*p_hi
+      nop.i 0
+};;
+
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_polyS, f1, FR_poly_hiS
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_polyC, f1, FR_poly_hiC
+      nop.i 0
+};;
+
+.pred.rel "mutex",p7,p8
+{ .mfi
+      nop.m 0
+(p7)  fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p8)  fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
+      nop.i 0
+};;
+
+.pred.rel "mutex",p9,p10
+{ .mfi
+      nop.m 0
+(p9)  fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p10) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
+      nop.i 0
+};;
+
+.pred.rel "mutex",p11,p12
+{ .mfi
+      nop.m 0
+(p11) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p12) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
+      nop.i 0
+};;
+
+.pred.rel "mutex",p13,p14
+{ .mfi
+      nop.m 0
+(p13) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
+      nop.i 0
+}
+{ .mfb
+      cmp.eq  p15, p0 = 0x1, GR_Cis
+(p14) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
+(p15) br.ret.sptk               b0
+};;
+
+
+{ .mmb       // exit for sincosl
+      stfe  [sincos_pResSin] =  FR_ResultS
+      stfe  [sincos_pResCos] =  FR_ResultC
+      br.ret.sptk               b0
+};;
+
+
+
+
+
+
+SINCOSL_NORMAL_R:
+//
+// Here if 2^-3 <= |r| < pi/4
+// THIS IS THE MAIN PATH
+//
+// Enter with r, c, and N_Inc having been computed
+//
+{ .mfi
+      ldfe FR_PP_6 = [GR_ad_pp], 16    // Load PP_6
+      fma.s1 FR_rsq = FR_r, FR_r, f0   // rsq = r * r
+      nop.i 0
+}
+{ .mfi
+      ldfe FR_QQ_6 = [GR_ad_qq], 16    // Load QQ_6
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mmi
+      ldfe FR_PP_5 = [GR_ad_pp], 16    // Load PP_5
+      ldfe FR_QQ_5 = [GR_ad_qq], 16    // Load QQ_5
+      nop.i 0
+};;
+
+
+
+SINCOSL_NORMAL_R_0:
+// Entry for 2^-3 < |x| < pi/4
+.pred.rel "mutex",p9,p10
+{ .mmf
+      ldfe FR_C_1 = [GR_ad_pp], 16     // Load C_1
+      ldfe FR_S_1 = [GR_ad_qq], 16     // Load S_1
+      frcpa.s1 FR_r_hi, p6 = f1, FR_r  // r_hi = frcpa(r)
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_r_cubed = FR_r, FR_rsq, f0  // rcubed = r * rsq
+      nop.i 0
+};;
+
+
+SINCOSL_NORMAL_R_1:
+// Entry for pi/4 <= |x| < 2^24
+.pred.rel "mutex",p9,p10
+{ .mmf
+      ldfe FR_PP_1 = [GR_ad_pp], 16             // Load PP_1_hi
+      ldfe FR_QQ_1 = [GR_ad_qq], 16             // Load QQ_1
+      frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi        // r_hi = frpca(frcpa(r))
+};;
+
+{ .mfi
+      ldfe FR_PP_4 = [GR_ad_pp], 16             // Load PP_4
+      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_6 // poly = rsq*poly+PP_6
+      and GR_N_SinCos = 0x1, GR_N_Inc
+}
+{ .mfi
+      ldfe FR_QQ_4 = [GR_ad_qq], 16             // Load QQ_4
+      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_6 // poly = rsq*poly+QQ_6
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_corrS = FR_C_1, FR_rsq, f0       // corr = C_1 * rsq
+      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_corrC = FR_S_1, FR_r_cubed, FR_r // corr = S_1 * r^3 + r
+      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
+};;
+
+{ .mfi
+      ldfe FR_PP_3 = [GR_ad_pp], 16             // Load PP_3
+      fma.s1 FR_r_hi_sq = FR_r_hi, FR_r_hi, f0  // r_hi_sq = r_hi * r_hi
+      tbit.z p7,p11       = GR_N_Inc, 0
+}
+{ .mfi
+      ldfe FR_QQ_3 = [GR_ad_qq], 16             // Load QQ_3
+      fms.s1 FR_r_lo = FR_r, f1, FR_r_hi        // r_lo = r - r_hi
+      nop.i 0
+};;
+
+{ .mfi
+      ldfe FR_PP_2 = [GR_ad_pp], 16             // Load PP_2
+      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_5 // poly = rsq*poly+PP_5
+(p7)  tbit.z.unc p9,p10   = GR_N_SignC, 1
+}
+{ .mfi
+      ldfe FR_QQ_2 = [GR_ad_qq], 16             // Load QQ_2
+      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_5 // poly = rsq*poly+QQ_5
+      nop.i 0
+};;
+
+{ .mfi
+      ldfe FR_PP_1_lo = [GR_ad_pp], 16          // Load PP_1_lo
+      fma.s1 FR_corrS = FR_corrS, FR_c, FR_c      // corr = corr * c + c
+(p7)  tbit.z.unc p7,p8    = GR_N_SignS, 1
+}
+{ .mfi
+      nop.m 0
+      fnma.s1 FR_corrC = FR_corrC, FR_c, f0       // corr = -corr * c
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_loS = FR_r, FR_r_hi, FR_r_hi_sq // U_lo = r*r_hi+r_hi_sq
+(p11) tbit.z.unc p13,p14  = GR_N_SignC, 1
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_loC = FR_r_hi, f1, FR_r        // U_lo = r_hi + r
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_hiS = FR_r_hi, FR_r_hi_sq, f0  // U_hi = r_hi*r_hi_sq
+(p11) tbit.z.unc p11,p12  = GR_N_SignS, 1
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_hiC = FR_QQ_1, FR_r_hi_sq, f1  // U_hi = QQ_1*r_hi_sq+1
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_4 // poly = poly*rsq+PP_4
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_4 // poly = poly*rsq+QQ_4
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_loS = FR_r, FR_r, FR_U_loS      // U_lo = r * r + U_lo
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_loC = FR_r_lo, FR_U_loC, f0     // U_lo = r_lo * U_lo
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_hiS = FR_PP_1, FR_U_hiS, f0     // U_hi = PP_1 * U_hi
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_3 // poly = poly*rsq+PP_3
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_3 // poly = poly*rsq+QQ_3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_loS = FR_r_lo, FR_U_loS, f0     // U_lo = r_lo * U_lo
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_loC = FR_QQ_1,FR_U_loC, f0      // U_lo = QQ_1 * U_lo
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_hiS = FR_r, f1, FR_U_hiS        // U_hi = r + U_hi
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_2 // poly = poly*rsq+PP_2
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_2 // poly = poly*rsq+QQ_2
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_U_loS = FR_PP_1, FR_U_loS, f0     // U_lo = PP_1 * U_lo
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_1_lo // poly =poly*rsq+PP1lo
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_rsq, FR_polyC, f0      // poly = poly*rsq
+      nop.i 0
+};;
+
+
+.pred.rel "mutex",p8,p14
+{ .mfi
+      nop.m 0
+(p8)  fms.s0 FR_U_hiS   = f1, f0, FR_U_hiS
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p14) fms.s0 FR_U_hiS   = f1, f0, FR_U_hiS
+      nop.i 0
+};;
+
+.pred.rel "mutex",p10,p12
+{ .mfi
+      nop.m 0
+(p10) fms.s0 FR_U_hiC   = f1, f0, FR_U_hiC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p12) fms.s0 FR_U_hiC   = f1, f0, FR_U_hiC
+      nop.i 0
+};;
+
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_VS = FR_U_loS, f1, FR_corrS        // V = U_lo + corr
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_VC = FR_U_loC, f1, FR_corrC        // V = U_lo + corr
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s0 FR_inexact = FR_PP_5, FR_PP_4, f0  // Dummy op to set inexact
+      nop.i 0
+};;
+
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyS = FR_r_cubed, FR_polyS, f0  // poly = poly*r^3
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_polyC = FR_rsq, FR_polyC, f0      // poly = poly*rsq
+      nop.i 0
+};;
+
+
+{ .mfi
+      nop.m 0
+      fma.s1 FR_VS = FR_polyS, f1, FR_VS           // V = poly + V
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1 FR_VC = FR_polyC, f1, FR_VC           // V = poly + V
+      nop.i 0
+};;
+
+
+
+.pred.rel "mutex",p7,p8
+{ .mfi
+      nop.m 0
+(p7)  fma.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p8)  fms.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
+      nop.i 0
+};;
+
+.pred.rel "mutex",p9,p10
+{ .mfi
+      nop.m 0
+(p9)  fma.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p10) fms.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
+      nop.i 0
+};;
+
+
+
+.pred.rel "mutex",p11,p12
+{ .mfi
+      nop.m 0
+(p11) fma.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+(p12) fms.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
+      nop.i 0
+};;
+
+.pred.rel "mutex",p13,p14
+{ .mfi
+      nop.m 0
+(p13) fma.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
+      nop.i 0
+}
+{ .mfb
+      cmp.eq  p15, p0 = 0x1, GR_Cis
+(p14) fms.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
+(p15) br.ret.sptk               b0
+};;
+
+{ .mmb       // exit for sincosl
+      stfe  [sincos_pResSin] =  FR_ResultS
+      stfe  [sincos_pResCos] =  FR_ResultC
+      br.ret.sptk               b0
+};;
+
+
+
+
+
+SINCOSL_ZERO:
+
+{ .mfi
+      nop.m 0
+      fmerge.s FR_ResultS = FR_Input_X, FR_Input_X // If sin, result = input
+      nop.i 0
+}
+{ .mfb
+      cmp.eq  p15, p0 = 0x1, GR_Cis
+      fma.s0 FR_ResultC = f1, f1, f0    // If cos, result=1.0
+(p15) br.ret.sptk               b0
+};;
+
+{ .mmb       // exit for sincosl
+      stfe  [sincos_pResSin] =  FR_ResultS
+      stfe  [sincos_pResCos] =  FR_ResultC
+      br.ret.sptk               b0
+};;
+
+
+SINCOSL_DENORMAL:
+{ .mmb
+      getf.exp GR_signexp_x = FR_norm_x   // Get sign and exponent of x
+      nop.m 999
+      br.cond.sptk  SINCOSL_COMMON2        // Return to common code
+}
+;;
+
+
+SINCOSL_SPECIAL:
+//
+//    Path for Arg = +/- QNaN, SNaN, Inf
+//    Invalid can be raised. SNaNs
+//    become QNaNs
+//
+{ .mfi
+      cmp.eq  p15, p0 = 0x1, GR_Cis
+      fmpy.s0 FR_ResultS = FR_Input_X, f0
+      nop.i 0
+}
+{ .mfb
+      nop.m 0
+      fmpy.s0 FR_ResultC = FR_Input_X, f0
+(p15) br.ret.sptk               b0
+};;
+
+{ .mmb       // exit for sincosl
+      stfe  [sincos_pResSin] =  FR_ResultS
+      stfe  [sincos_pResCos] =  FR_ResultC
+      br.ret.sptk               b0
+};;
+
+GLOBAL_LIBM_END(__libm_sincosl)
+
+
+// *******************************************************************
+// *******************************************************************
+// *******************************************************************
+//
+//     Special Code to handle very large argument case.
+//     Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
+//     The interface is custom:
+//       On input:
+//         (Arg or x) is in f8
+//       On output:
+//         r is in f8
+//         c is in f9
+//         N is in r8
+//     Be sure to allocate at least 2 GP registers as output registers for
+//     __libm_pi_by_2_reduce.  This routine uses r62-63. These are used as
+//     scratch registers within the __libm_pi_by_2_reduce routine (for speed).
+//
+//     We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127.  We
+//     use this to eliminate save/restore of key fp registers in this calling
+//     function.
+//
+// *******************************************************************
+// *******************************************************************
+// *******************************************************************
+
+LOCAL_LIBM_ENTRY(__libm_callout)
+SINCOSL_ARG_TOO_LARGE:
+.prologue
+{ .mfi
+        nop.f 0
+.save   ar.pfs,GR_SAVE_PFS
+        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
+};;
+
+{ .mmi
+        setf.exp FR_Two_to_M3 = GR_exp_2_to_m3  // Form 2^-3
+        mov GR_SAVE_GP=gp                       // Save gp
+.save   b0, GR_SAVE_B0
+        mov GR_SAVE_B0=b0                       // Save b0
+};;
+
+.body
+//
+//     Call argument reduction with x in f8
+//     Returns with N in r8, r in f8, c in f9
+//     Assumes f71-127 are preserved across the call
+//
+{ .mib
+        setf.exp FR_Neg_Two_to_M3 = GR_exp_m2_to_m3 // Form -(2^-3)
+        nop.i 0
+        br.call.sptk b0=__libm_pi_by_2_reduce#
+};;
+
+{ .mfi
+        mov   GR_N_Inc = r8
+        fcmp.lt.unc.s1  p6, p0 = FR_r, FR_Two_to_M3
+        mov   b0 = GR_SAVE_B0                  // Restore return address
+};;
+
+{ .mfi
+        mov   gp = GR_SAVE_GP                  // Restore gp
+(p6)    fcmp.gt.unc.s1  p6, p0 = FR_r, FR_Neg_Two_to_M3
+        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
+};;
+
+{ .mbb
+  nop.m 0
+(p6)    br.cond.spnt SINCOSL_SMALL_R     // Branch if |r|< 2^-3 for |x| >= 2^63
+        br.cond.sptk SINCOSL_NORMAL_R    // Branch if |r|>=2^-3 for |x| >= 2^63
+};;
+
+LOCAL_LIBM_END(__libm_callout)
+
+.type   __libm_pi_by_2_reduce#,@function
+.global __libm_pi_by_2_reduce#
+
+
+