about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/libm_sincosl.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincosl.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincosl.S2528
1 files changed, 0 insertions, 2528 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincosl.S b/sysdeps/ia64/fpu/libm_sincosl.S
deleted file mode 100644
index 1d89ff4bd1..0000000000
--- a/sysdeps/ia64/fpu/libm_sincosl.S
+++ /dev/null
@@ -1,2528 +0,0 @@
-.file "libm_sincosl.s"
-
-
-// Copyright (c) 2000 - 2004, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-//*********************************************************************
-//
-// History:
-// 05/13/02 Initial version of sincosl (based on libm's sinl and cosl)
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-//          used data8 for long double table values
-// 10/13/03 Corrected .file name
-// 02/11/04 cisl is moved to the separate file.
-// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
-//
-//*********************************************************************
-//
-// Function:   Combined sincosl routine with 3 different API's
-//
-// API's
-//==============================================================
-// 1) void sincosl(long double, long double*s, long double*c)
-// 2) __libm_sincosl - internal LIBM function, that accepts
-//    argument in f8 and returns cosine through f8, sine through f9
-//
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-//    Floating-Point Registers: f8 (Input x and cosl return value),
-//                              f9 (sinl returned)
-//                              f32-f121
-//
-//    General Purpose Registers:
-//      r32-r61
-//
-//    Predicate Registers:      p6-p15
-//
-//*********************************************************************
-//
-//  IEEE Special Conditions:
-//
-//    Denormal  fault raised on denormal inputs
-//    Overflow exceptions do not occur
-//    Underflow exceptions raised when appropriate for sincosl
-//    (No specialized error handling for this routine)
-//    Inexact raised when appropriate by algorithm
-//
-//    sincosl(SNaN) = QNaN, QNaN
-//    sincosl(QNaN) = QNaN, QNaN
-//    sincosl(inf)  = QNaN, QNaN
-//    sincosl(+/-0) = +/-0, 1
-//
-//*********************************************************************
-//
-//  Mathematical Description
-//  ========================
-//
-//  The computation of FSIN and FCOS performed in parallel.
-//
-//  Arg = N pi/2 + alpha, |alpha| <= pi/4.
-//
-//  cosl( Arg ) = sinl( (N+1) pi/2 + alpha ),
-//
-//  therefore, the code for computing sine will produce cosine as long
-//  as 1 is added to N immediately after the argument reduction
-//  process.
-//
-//  Let M = N if sine
-//      N+1 if cosine.
-//
-//  Now, given
-//
-//  Arg = M pi/2  + alpha, |alpha| <= pi/4,
-//
-//  let I = M mod 4, or I be the two lsb of M when M is represented
-//  as 2's complement. I = [i_0 i_1]. Then
-//
-//  sinl( Arg ) = (-1)^i_0  sinl( alpha ) if i_1 = 0,
-//             = (-1)^i_0  cosl( alpha )     if i_1 = 1.
-//
-//  For example:
-//       if M = -1, I = 11
-//         sin ((-pi/2 + alpha) = (-1) cos (alpha)
-//       if M = 0, I = 00
-//         sin (alpha) = sin (alpha)
-//       if M = 1, I = 01
-//         sin (pi/2 + alpha) = cos (alpha)
-//       if M = 2, I = 10
-//         sin (pi + alpha) = (-1) sin (alpha)
-//       if M = 3, I = 11
-//         sin ((3/2)pi + alpha) = (-1) cos (alpha)
-//
-//  The value of alpha is obtained by argument reduction and
-//  represented by two working precision numbers r and c where
-//
-//  alpha =  r  +  c     accurately.
-//
-//  The reduction method is described in a previous write up.
-//  The argument reduction scheme identifies 4 cases. For Cases 2
-//  and 4, because |alpha| is small, sinl(r+c) and cosl(r+c) can be
-//  computed very easily by 2 or 3 terms of the Taylor series
-//  expansion as follows:
-//
-//  Case 2:
-//  -------
-//
-//  sinl(r + c) = r + c - r^3/6 accurately
-//  cosl(r + c) = 1 - 2^(-67) accurately
-//
-//  Case 4:
-//  -------
-//
-//  sinl(r + c) = r + c - r^3/6 + r^5/120 accurately
-//  cosl(r + c) = 1 - r^2/2 + r^4/24    accurately
-//
-//  The only cases left are Cases 1 and 3 of the argument reduction
-//  procedure. These two cases will be merged since after the
-//  argument is reduced in either cases, we have the reduced argument
-//  represented as r + c and that the magnitude |r + c| is not small
-//  enough to allow the usage of a very short approximation.
-//
-//  The required calculation is either
-//
-//  sinl(r + c)  =  sinl(r)  +  correction,  or
-//  cosl(r + c)  =  cosl(r)  +  correction.
-//
-//  Specifically,
-//
-//  sinl(r + c) = sinl(r) + c sin'(r) + O(c^2)
-//       = sinl(r) + c cos (r) + O(c^2)
-//       = sinl(r) + c(1 - r^2/2)  accurately.
-//  Similarly,
-//
-//  cosl(r + c) = cosl(r) - c sinl(r) + O(c^2)
-//       = cosl(r) - c(r - r^3/6)  accurately.
-//
-//  We therefore concentrate on accurately calculating sinl(r) and
-//  cosl(r) for a working-precision number r, |r| <= pi/4 to within
-//  0.1% or so.
-//
-//  The greatest challenge of this task is that the second terms of
-//  the Taylor series
-//
-//  r - r^3/3! + r^r/5! - ...
-//
-//  and
-//
-//  1 - r^2/2! + r^4/4! - ...
-//
-//  are not very small when |r| is close to pi/4 and the rounding
-//  errors will be a concern if simple polynomial accumulation is
-//  used. When |r| < 2^-3, however, the second terms will be small
-//  enough (6 bits or so of right shift) that a normal Horner
-//  recurrence suffices. Hence there are two cases that we consider
-//  in the accurate computation of sinl(r) and cosl(r), |r| <= pi/4.
-//
-//  Case small_r: |r| < 2^(-3)
-//  --------------------------
-//
-//  Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
-//  we have
-//
-//  sinl(Arg) = (-1)^i_0 * sinl(r + c)  if i_1 = 0
-//     = (-1)^i_0 * cosl(r + c)   if i_1 = 1
-//
-//  can be accurately approximated by
-//
-//  sinl(Arg) = (-1)^i_0 * [sinl(r) + c]  if i_1 = 0
-//           = (-1)^i_0 * [cosl(r) - c*r] if i_1 = 1
-//
-//  because |r| is small and thus the second terms in the correction
-//  are unneccessary.
-//
-//  Finally, sinl(r) and cosl(r) are approximated by polynomials of
-//  moderate lengths.
-//
-//  sinl(r) =  r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
-//  cosl(r) =  1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
-//
-//  We can make use of predicates to selectively calculate
-//  sinl(r) or cosl(r) based on i_1.
-//
-//  Case normal_r: 2^(-3) <= |r| <= pi/4
-//  ------------------------------------
-//
-//  This case is more likely than the previous one if one considers
-//  r to be uniformly distributed in [-pi/4 pi/4]. Again,
-//
-//  sinl(Arg) = (-1)^i_0 * sinl(r + c)  if i_1 = 0
-//           = (-1)^i_0 * cosl(r + c)   if i_1 = 1.
-//
-//  Because |r| is now larger, we need one extra term in the
-//  correction. sinl(Arg) can be accurately approximated by
-//
-//  sinl(Arg) = (-1)^i_0 * [sinl(r) + c(1-r^2/2)]      if i_1 = 0
-//           = (-1)^i_0 * [cosl(r) - c*r*(1 - r^2/6)]    i_1 = 1.
-//
-//  Finally, sinl(r) and cosl(r) are approximated by polynomials of
-//  moderate lengths.
-//
-//  sinl(r) =  r + PP_1_hi r^3 + PP_1_lo r^3 +
-//                PP_2 r^5 + ... + PP_8 r^17
-//
-//  cosl(r) =  1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
-//
-//  where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
-//  The crux in accurate computation is to calculate
-//
-//  r + PP_1_hi r^3   or  1 + QQ_1 r^2
-//
-//  accurately as two pieces: U_hi and U_lo. The way to achieve this
-//  is to obtain r_hi as a 10 sig. bit number that approximates r to
-//  roughly 8 bits or so of accuracy. (One convenient way is
-//
-//  r_hi := frcpa( frcpa( r ) ).)
-//
-//  This way,
-//
-//  r + PP_1_hi r^3 =  r + PP_1_hi r_hi^3 +
-//                          PP_1_hi (r^3 - r_hi^3)
-//            =  [r + PP_1_hi r_hi^3]  +
-//         [PP_1_hi (r - r_hi)
-//            (r^2 + r_hi r + r_hi^2) ]
-//            =  U_hi  +  U_lo
-//
-//  Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
-//  PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
-//  exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
-//  and that there is no more than 8 bit shift off between r and
-//  PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
-//  calculated without any error. Finally, the fact that
-//
-//  |U_lo| <= 2^(-8) |U_hi|
-//
-//  says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
-//  8 extra bits of accuracy.
-//
-//  Similarly,
-//
-//  1 + QQ_1 r^2  =  [1 + QQ_1 r_hi^2]  +
-//                      [QQ_1 (r - r_hi)(r + r_hi)]
-//          =  U_hi  +  U_lo.
-//
-//  Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
-//
-//  If i_1 = 0, then
-//
-//    U_hi := r + PP_1_hi * r_hi^3
-//    U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2)
-//    poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17
-//    correction := c * ( 1 + C_1 r^2 )
-//
-//  Else ...i_1 = 1
-//
-//    U_hi := 1 + QQ_1 * r_hi * r_hi
-//    U_lo := QQ_1 * (r - r_hi) * (r + r_hi)
-//    poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16
-//    correction := -c * r * (1 + S_1 * r^2)
-//
-//  End
-//
-//  Finally,
-//
-//  V := poly + ( U_lo + correction )
-//
-//                 /    U_hi  +  V         if i_0 = 0
-//  result := |
-//                 \  (-U_hi) -  V         if i_0 = 1
-//
-//  It is important that in the last step, negation of U_hi is
-//  performed prior to the subtraction which is to be performed in
-//  the user-set rounding mode.
-//
-//
-//  Algorithmic Description
-//  =======================
-//
-//  The argument reduction algorithm shares the same code between FSIN and FCOS.
-//  The argument reduction description given
-//  previously is repeated below.
-//
-//
-//  Step 0. Initialization.
-//
-//  Step 1. Check for exceptional and special cases.
-//
-//   * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
-//     handling.
-//   * If |Arg| < 2^24, go to Step 2 for reduction of moderate
-//     arguments. This is the most likely case.
-//   * If |Arg| < 2^63, go to Step 8 for pre-reduction of large
-//     arguments.
-//   * If |Arg| >= 2^63, go to Step 10 for special handling.
-//
-//  Step 2. Reduction of moderate arguments.
-//
-//  If |Arg| < pi/4   ...quick branch
-//     N_fix := N_inc (integer)
-//     r     := Arg
-//     c     := 0.0
-//     Branch to Step 4, Case_1_complete
-//  Else    ...cf. argument reduction
-//     N     := Arg * two_by_PI (fp)
-//     N_fix := fcvt.fx( N )  (int)
-//     N     := fcvt.xf( N_fix )
-//     N_fix := N_fix + N_inc
-//     s     := Arg - N * P_1 (first piece of pi/2)
-//     w     := -N * P_2  (second piece of pi/2)
-//
-//     If |s| >= 2^(-33)
-//        go to Step 3, Case_1_reduce
-//     Else
-//        go to Step 7, Case_2_reduce
-//     Endif
-//  Endif
-//
-//  Step 3. Case_1_reduce.
-//
-//  r := s + w
-//  c := (s - r) + w  ...observe order
-//
-//  Step 4. Case_1_complete
-//
-//  ...At this point, the reduced argument alpha is
-//  ...accurately represented as r + c.
-//  If |r| < 2^(-3), go to Step 6, small_r.
-//
-//  Step 5. Normal_r.
-//
-//  Let [i_0 i_1] by the 2 lsb of N_fix.
-//  FR_rsq  := r * r
-//  r_hi := frcpa( frcpa( r ) )
-//  r_lo := r - r_hi
-//
-//  If i_1 = 0, then
-//    poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
-//    U_hi := r + PP_1_hi*r_hi*r_hi*r_hi  ...any order
-//    U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
-//    correction := c + c*C_1*FR_rsq    ...any order
-//  Else
-//    poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
-//    U_hi := 1 + QQ_1 * r_hi * r_hi    ...any order
-//    U_lo := QQ_1 * r_lo * (r + r_hi)
-//    correction := -c*(r + S_1*FR_rsq*r) ...any order
-//  Endif
-//
-//  V := poly + (U_lo + correction) ...observe order
-//
-//  result := (i_0 == 0?   1.0 : -1.0)
-//
-//  Last instruction in user-set rounding mode
-//
-//  result := (i_0 == 0?   result*U_hi + V :
-//                        result*U_hi - V)
-//
-//  Return
-//
-//  Step 6. Small_r.
-//
-//  ...Use flush to zero mode without causing exception
-//    Let [i_0 i_1] be the two lsb of N_fix.
-//
-//  FR_rsq := r * r
-//
-//  If i_1 = 0 then
-//     z := FR_rsq*FR_rsq; z := FR_rsq*z *r
-//     poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5)
-//     poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2)
-//     correction := c
-//     result := r
-//  Else
-//     z := FR_rsq*FR_rsq; z := FR_rsq*z
-//     poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
-//     poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
-//     correction := -c*r
-//     result := 1
-//  Endif
-//
-//  poly := poly_hi + (z * poly_lo + correction)
-//
-//  If i_0 = 1, result := -result
-//
-//  Last operation. Perform in user-set rounding mode
-//
-//  result := (i_0 == 0?     result + poly :
-//                          result - poly )
-//  Return
-//
-//  Step 7. Case_2_reduce.
-//
-//  ...Refer to the write up for argument reduction for
-//  ...rationale. The reduction algorithm below is taken from
-//  ...argument reduction description and integrated this.
-//
-//  w := N*P_3
-//  U_1 := N*P_2 + w    ...FMA
-//  U_2 := (N*P_2 - U_1) + w  ...2 FMA
-//  ...U_1 + U_2 is  N*(P_2+P_3) accurately
-//
-//  r := s - U_1
-//  c := ( (s - r) - U_1 ) - U_2
-//
-//  ...The mathematical sum r + c approximates the reduced
-//  ...argument accurately. Note that although compared to
-//  ...Case 1, this case requires much more work to reduce
-//  ...the argument, the subsequent calculation needed for
-//  ...any of the trigonometric function is very little because
-//  ...|alpha| < 1.01*2^(-33) and thus two terms of the
-//  ...Taylor series expansion suffices.
-//
-//  If i_1 = 0 then
-//     poly := c + S_1 * r * r * r  ...any order
-//     result := r
-//  Else
-//     poly := -2^(-67)
-//     result := 1.0
-//  Endif
-//
-//  If i_0 = 1, result := -result
-//
-//  Last operation. Perform in user-set rounding mode
-//
-//  result := (i_0 == 0?     result + poly :
-//                           result - poly )
-//
-//  Return
-//
-//
-//  Step 8. Pre-reduction of large arguments.
-//
-//  ...Again, the following reduction procedure was described
-//  ...in the separate write up for argument reduction, which
-//  ...is tightly integrated here.
-
-//  N_0 := Arg * Inv_P_0
-//  N_0_fix := fcvt.fx( N_0 )
-//  N_0 := fcvt.xf( N_0_fix)
-
-//  Arg' := Arg - N_0 * P_0
-//  w := N_0 * d_1
-//  N := Arg' * two_by_PI
-//  N_fix := fcvt.fx( N )
-//  N := fcvt.xf( N_fix )
-//  N_fix := N_fix + N_inc
-//
-//  s := Arg' - N * P_1
-//  w := w - N * P_2
-//
-//  If |s| >= 2^(-14)
-//     go to Step 3
-//  Else
-//     go to Step 9
-//  Endif
-//
-//  Step 9. Case_4_reduce.
-//
-//    ...first obtain N_0*d_1 and -N*P_2 accurately
-//   U_hi := N_0 * d_1    V_hi := -N*P_2
-//   U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
-//
-//   ...compute the contribution from N_0*d_1 and -N*P_3
-//   w := -N*P_3
-//   w := w + N_0*d_2
-//   t := U_lo + V_lo + w   ...any order
-//
-//   ...at this point, the mathematical value
-//   ...s + U_hi + V_hi  + t approximates the true reduced argument
-//   ...accurately. Just need to compute this accurately.
-//
-//   ...Calculate U_hi + V_hi accurately:
-//   A := U_hi + V_hi
-//   if |U_hi| >= |V_hi| then
-//      a := (U_hi - A) + V_hi
-//   else
-//      a := (V_hi - A) + U_hi
-//   endif
-//   ...order in computing "a" must be observed. This branch is
-//   ...best implemented by predicates.
-//   ...A + a  is U_hi + V_hi accurately. Moreover, "a" is
-//   ...much smaller than A: |a| <= (1/2)ulp(A).
-//
-//   ...Just need to calculate   s + A + a + t
-//   C_hi := s + A    t := t + a
-//   C_lo := (s - C_hi) + A
-//   C_lo := C_lo + t
-//
-//   ...Final steps for reduction
-//   r := C_hi + C_lo
-//   c := (C_hi - r) + C_lo
-//
-//   ...At this point, we have r and c
-//   ...And all we need is a couple of terms of the corresponding
-//   ...Taylor series.
-//
-//   If i_1 = 0
-//      poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2)
-//      result := r
-//   Else
-//      poly := FR_rsq*(C_1 + FR_rsq*C_2)
-//      result := 1
-//   Endif
-//
-//   If i_0 = 1, result := -result
-//
-//   Last operation. Perform in user-set rounding mode
-//
-//   result := (i_0 == 0?     result + poly :
-//                            result - poly )
-//   Return
-//
-//   Large Arguments: For arguments above 2**63, a Payne-Hanek
-//   style argument reduction is used and pi_by_2 reduce is called.
-//
-
-
-RODATA
-.align 64
-
-LOCAL_OBJECT_START(FSINCOSL_CONSTANTS)
-
-sincosl_table_p:
-//data4 0x4E44152A, 0xA2F9836E, 0x00003FFE,0x00000000 // Inv_pi_by_2
-//data4 0xCE81B9F1, 0xC84D32B0, 0x00004016,0x00000000 // P_0
-//data4 0x2168C235, 0xC90FDAA2, 0x00003FFF,0x00000000 // P_1
-//data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD,0x00000000 // P_2
-//data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C,0x00000000 // P_3
-//data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF,0x00000000 // d_1
-//data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C,0x00000000 // d_2
-data8 0xA2F9836E4E44152A, 0x00003FFE // Inv_pi_by_2
-data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
-data8 0xC90FDAA22168C235, 0x00003FFF // P_1
-data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
-data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
-data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
-data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
-LOCAL_OBJECT_END(FSINCOSL_CONSTANTS)
-
-LOCAL_OBJECT_START(sincosl_table_d)
-//data4 0x2168C234, 0xC90FDAA2, 0x00003FFE,0x00000000 // pi_by_4
-//data4 0x6EC6B45A, 0xA397E504, 0x00003FE7,0x00000000 // Inv_P_0
-data8 0xC90FDAA22168C234, 0x00003FFE // pi_by_4
-data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
-data4 0x3E000000, 0xBE000000         // 2^-3 and -2^-3
-data4 0x2F000000, 0xAF000000         // 2^-33 and -2^-33
-data4 0x9E000000, 0x00000000         // -2^-67
-data4 0x00000000, 0x00000000         // pad
-LOCAL_OBJECT_END(sincosl_table_d)
-
-LOCAL_OBJECT_START(sincosl_table_pp)
-//data4 0xA21C0BC9, 0xCC8ABEBC, 0x00003FCE,0x00000000 // PP_8
-//data4 0x720221DA, 0xD7468A05, 0x0000BFD6,0x00000000 // PP_7
-//data4 0x640AD517, 0xB092382F, 0x00003FDE,0x00000000 // PP_6
-//data4 0xD1EB75A4, 0xD7322B47, 0x0000BFE5,0x00000000 // PP_5
-//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
-//data4 0x00000000, 0xAAAA0000, 0x0000BFFC,0x00000000 // PP_1_hi
-//data4 0xBAF69EEA, 0xB8EF1D2A, 0x00003FEC,0x00000000 // PP_4
-//data4 0x0D03BB69, 0xD00D00D0, 0x0000BFF2,0x00000000 // PP_3
-//data4 0x88888962, 0x88888888, 0x00003FF8,0x00000000 // PP_2
-//data4 0xAAAB0000, 0xAAAAAAAA, 0x0000BFEC,0x00000000 // PP_1_lo
-data8 0xCC8ABEBCA21C0BC9, 0x00003FCE // PP_8
-data8 0xD7468A05720221DA, 0x0000BFD6 // PP_7
-data8 0xB092382F640AD517, 0x00003FDE // PP_6
-data8 0xD7322B47D1EB75A4, 0x0000BFE5 // PP_5
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hi
-data8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4
-data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3
-data8 0x8888888888888962, 0x00003FF8 // PP_2
-data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_lo
-LOCAL_OBJECT_END(sincosl_table_pp)
-
-LOCAL_OBJECT_START(sincosl_table_qq)
-//data4 0xC2B0FE52, 0xD56232EF, 0x00003FD2 // QQ_8
-//data4 0x2B48DCA6, 0xC9C99ABA, 0x0000BFDA // QQ_7
-//data4 0x9C716658, 0x8F76C650, 0x00003FE2 // QQ_6
-//data4 0xFDA8D0FC, 0x93F27DBA, 0x0000BFE9 // QQ_5
-//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC // S_1
-//data4 0x00000000, 0x80000000, 0x0000BFFE,0x00000000 // QQ_1
-//data4 0x0C6E5041, 0xD00D00D0, 0x00003FEF,0x00000000 // QQ_4
-//data4 0x0B607F60, 0xB60B60B6, 0x0000BFF5,0x00000000 // QQ_3
-//data4 0xAAAAAA9B, 0xAAAAAAAA, 0x00003FFA,0x00000000 // QQ_2
-data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8
-data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7
-data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6
-data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x8000000000000000, 0x0000BFFE // QQ_1
-data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4
-data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3
-data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2
-LOCAL_OBJECT_END(sincosl_table_qq)
-
-LOCAL_OBJECT_START(sincosl_table_c)
-//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
-//data4 0xAAAA719F, 0xAAAAAAAA, 0x00003FFA,0x00000000 // C_2
-//data4 0x0356F994, 0xB60B60B6, 0x0000BFF5,0x00000000 // C_3
-//data4 0xB2385EA9, 0xD00CFFD5, 0x00003FEF,0x00000000 // C_4
-//data4 0x292A14CD, 0x93E4BD18, 0x0000BFE9,0x00000000 // C_5
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2
-data8 0xB60B60B60356F994, 0x0000BFF5 // C_3
-data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4
-data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5
-LOCAL_OBJECT_END(sincosl_table_c)
-
-LOCAL_OBJECT_START(sincosl_table_s)
-//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
-//data4 0x888868DB, 0x88888888, 0x00003FF8,0x00000000 // S_2
-//data4 0x055EFD4B, 0xD00D00D0, 0x0000BFF2,0x00000000 // S_3
-//data4 0x839730B9, 0xB8EF1C5D, 0x00003FEC,0x00000000 // S_4
-//data4 0xE5B3F492, 0xD71EA3A4, 0x0000BFE5,0x00000000 // S_5
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x88888888888868DB, 0x00003FF8 // S_2
-data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3
-data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4
-data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5
-data4 0x38800000, 0xB8800000         // two**-14 and -two**-14
-LOCAL_OBJECT_END(sincosl_table_s)
-
-FR_Input_X        = f8
-FR_Result         = f8
-FR_ResultS        = f9
-FR_ResultC        = f8
-FR_r              = f8
-FR_c              = f9
-
-FR_norm_x         = f9
-FR_inv_pi_2to63   = f10
-FR_rshf_2to64     = f11
-FR_2tom64         = f12
-FR_rshf           = f13
-FR_N_float_signif = f14
-FR_abs_x          = f15
-
-FR_r6             = f32
-FR_r7             = f33
-FR_Pi_by_4        = f34
-FR_Two_to_M14     = f35
-FR_Neg_Two_to_M14 = f36
-FR_Two_to_M33     = f37
-FR_Neg_Two_to_M33 = f38
-FR_Neg_Two_to_M67 = f39
-FR_Inv_pi_by_2    = f40
-FR_N_float        = f41
-FR_N_fix          = f42
-FR_P_1            = f43
-FR_P_2            = f44
-FR_P_3            = f45
-FR_s              = f46
-FR_w              = f47
-FR_Z              = f50
-FR_A              = f51
-FR_a              = f52
-FR_t              = f53
-FR_U_1            = f54
-FR_U_2            = f55
-FR_C_1            = f56
-FR_C_2            = f57
-FR_C_3            = f58
-FR_C_4            = f59
-FR_C_5            = f60
-FR_S_1            = f61
-FR_S_2            = f62
-FR_S_3            = f63
-FR_S_4            = f64
-FR_S_5            = f65
-FR_r_hi           = f68
-FR_r_lo           = f69
-FR_rsq            = f70
-FR_r_cubed        = f71
-FR_C_hi           = f72
-FR_N_0            = f73
-FR_d_1            = f74
-FR_V_hi           = f75
-FR_V_lo           = f76
-FR_U_hi           = f77
-FR_U_lo           = f78
-FR_U_hiabs        = f79
-FR_V_hiabs        = f80
-FR_PP_8           = f81
-FR_QQ_8           = f101
-FR_PP_7           = f82
-FR_QQ_7           = f102
-FR_PP_6           = f83
-FR_QQ_6           = f103
-FR_PP_5           = f84
-FR_QQ_5           = f104
-FR_PP_4           = f85
-FR_QQ_4           = f105
-FR_PP_3           = f86
-FR_QQ_3           = f106
-FR_PP_2           = f87
-FR_QQ_2           = f107
-FR_QQ_1           = f108
-FR_r_hi_sq        = f88
-FR_N_0_fix        = f89
-FR_Inv_P_0        = f90
-FR_d_2            = f93
-FR_P_0            = f95
-FR_C_lo           = f96
-FR_PP_1           = f97
-FR_PP_1_lo        = f98
-FR_ArgPrime       = f99
-FR_inexact        = f100
-
-FR_Neg_Two_to_M3  = f109
-FR_Two_to_M3      = f110
-
-FR_poly_hiS       = f66
-FR_poly_hiC       = f112
-
-FR_poly_loS       = f67
-FR_poly_loC       = f113
-
-FR_polyS          = f92
-FR_polyC          = f114
-
-FR_cS             = FR_c
-FR_cC             = f115
-
-FR_corrS          = f91
-FR_corrC          = f116
-
-FR_U_hiC          = f117
-FR_U_loC          = f118
-
-FR_VS             = f75
-FR_VC             = f119
-
-FR_FirstS         = f120
-FR_FirstC         = f121
-
-FR_U_hiS          = FR_U_hi
-FR_U_loS          = FR_U_lo
-
-FR_Tmp            = f94
-
-
-
-
-sincos_pResSin = r34
-sincos_pResCos = r35
-
-GR_exp_m2_to_m3= r36
-GR_N_Inc       = r37
-GR_Cis         = r38
-GR_signexp_x   = r40
-GR_exp_x       = r40
-GR_exp_mask    = r41
-GR_exp_2_to_63 = r42
-GR_exp_2_to_m3 = r43
-GR_exp_2_to_24 = r44
-
-GR_N_SignS     = r45
-GR_N_SignC     = r46
-GR_N_SinCos    = r47
-
-GR_sig_inv_pi  = r48
-GR_rshf_2to64  = r49
-GR_exp_2tom64  = r50
-GR_rshf        = r51
-GR_ad_p        = r52
-GR_ad_d        = r53
-GR_ad_pp       = r54
-GR_ad_qq       = r55
-GR_ad_c        = r56
-GR_ad_s        = r57
-GR_ad_ce       = r58
-GR_ad_se       = r59
-GR_ad_m14      = r60
-GR_ad_s1       = r61
-
-// For unwind support
-GR_SAVE_B0     = r39
-GR_SAVE_GP     = r40
-GR_SAVE_PFS    = r41
-
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(sincosl)
-{ .mlx  ///////////////////////////// 1 /////////////////
-      alloc r32 = ar.pfs,3,27,2,0
-      movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
-}
-{ .mlx
-      mov GR_N_Inc = 0x0
-      movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
-};;
-
-{ .mfi ///////////////////////////// 2 /////////////////
-      addl           GR_ad_p   = @ltoff(FSINCOSL_CONSTANTS#), gp
-      fclass.m p6, p0 =  FR_Input_X, 0x1E3 // Test x natval, nan, inf
-      mov GR_exp_2_to_m3 = 0xffff - 3      // Exponent of 2^-3
-}
-{ .mfb
-      mov GR_Cis = 0x0
-      fnorm.s1 FR_norm_x = FR_Input_X      // Normalize x
-    br.cond.sptk _COMMON_SINCOSL
-};;
-GLOBAL_IEEE754_END(sincosl)
-
-GLOBAL_LIBM_ENTRY(__libm_sincosl)
-{ .mlx  ///////////////////////////// 1 /////////////////
-      alloc r32 = ar.pfs,3,27,2,0
-      movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
-}
-{ .mlx
-      mov GR_N_Inc = 0x0
-      movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
-};;
-
-{ .mfi ///////////////////////////// 2 /////////////////
-      addl           GR_ad_p   = @ltoff(FSINCOSL_CONSTANTS#), gp
-      fclass.m p6, p0 =  FR_Input_X, 0x1E3 // Test x natval, nan, inf
-      mov GR_exp_2_to_m3 = 0xffff - 3      // Exponent of 2^-3
-}
-{ .mfb
-      mov GR_Cis = 0x1
-      fnorm.s1 FR_norm_x = FR_Input_X      // Normalize x
-      nop.b 0
-};;
-
-_COMMON_SINCOSL:
-{ .mfi ///////////////////////////// 3 /////////////////
-      setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
-      nop.f 0
-      mov GR_exp_2tom64 = 0xffff - 64      // Scaling constant to compute N
-}
-{ .mlx
-      setf.d FR_rshf_2to64 = GR_rshf_2to64    // Form const 1.1000 * 2^(63+64)
-      movl GR_rshf = 0x43e8000000000000       // Form const 1.1000 * 2^63
-};;
-
-{ .mfi ///////////////////////////// 4 /////////////////
-      ld8 GR_ad_p = [GR_ad_p]              // Point to Inv_pi_by_2
-      fclass.m p7, p0 = FR_Input_X, 0x0b   // Test x denormal
-      nop.i 0
-};;
-
-{ .mfi    ///////////////////////////// 5 /////////////////
-      getf.exp GR_signexp_x = FR_Input_X   // Get sign and exponent of x
-      fclass.m p10, p0 = FR_Input_X, 0x007 // Test x zero
-      nop.i 0
-}
-{ .mib
-      mov GR_exp_mask = 0x1ffff            // Exponent mask
-      nop.i 0
-(p6)  br.cond.spnt SINCOSL_SPECIAL         // Branch if x natval, nan, inf
-};;
-
-{ .mfi ///////////////////////////// 6 /////////////////
-      setf.exp FR_2tom64 = GR_exp_2tom64   // Form 2^-64 for scaling N_float
-      nop.f 0
-      add GR_ad_d = 0x70, GR_ad_p          // Point to constant table d
-}
-{ .mib
-      setf.d FR_rshf = GR_rshf         // Form right shift const 1.1000 * 2^63
-      mov  GR_exp_m2_to_m3 = 0x2fffc       // Form -(2^-3)
-(p7)  br.cond.spnt SINCOSL_DENORMAL        // Branch if x denormal
-};;
-
-SINCOSL_COMMON2:
-{ .mfi ///////////////////////////// 7 /////////////////
-      and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
-      fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test x unsupported type
-      mov GR_exp_2_to_63 = 0xffff + 63     // Exponent of 2^63
-}
-{ .mib
-      add GR_ad_pp = 0x40, GR_ad_d         // Point to constant table pp
-      mov GR_exp_2_to_24 = 0xffff + 24     // Exponent of 2^24
-(p10) br.cond.spnt SINCOSL_ZERO            // Branch if x zero
-};;
-
-{ .mfi ///////////////////////////// 8 /////////////////
-      ldfe FR_Inv_pi_by_2 = [GR_ad_p], 16  // Load 2/pi
-      fcmp.eq.s0 p15, p0 = FR_Input_X, f0  // Dummy to set denormal
-      add GR_ad_qq = 0xa0, GR_ad_pp        // Point to constant table qq
-}
-{ .mfi
-      ldfe FR_Pi_by_4 = [GR_ad_d], 16      // Load pi/4 for range test
-      nop.f 0
-      cmp.ge p10,p0 = GR_exp_x, GR_exp_2_to_63   // Is |x| >= 2^63
-};;
-
-{ .mfi ///////////////////////////// 9 /////////////////
-      ldfe FR_P_0 = [GR_ad_p], 16          // Load P_0 for pi/4 <= |x| < 2^63
-      fmerge.s FR_abs_x = f1, FR_norm_x    // |x|
-      add GR_ad_c = 0x90, GR_ad_qq         // Point to constant table c
-}
-{ .mfi
-      ldfe FR_Inv_P_0 = [GR_ad_d], 16      // Load 1/P_0 for pi/4 <= |x| < 2^63
-      nop.f 0
-      cmp.ge p7,p0 = GR_exp_x, GR_exp_2_to_24   // Is |x| >= 2^24
-};;
-
-{ .mfi ///////////////////////////// 10 /////////////////
-      ldfe FR_P_1 = [GR_ad_p], 16          // Load P_1 for pi/4 <= |x| < 2^63
-      nop.f 0
-      add GR_ad_s = 0x50, GR_ad_c          // Point to constant table s
-}
-{ .mfi
-      ldfe FR_PP_8 = [GR_ad_pp], 16        // Load PP_8 for 2^-3 < |r| < pi/4
-      nop.f 0
-      nop.i 0
-};;
-
-{ .mfi ///////////////////////////// 11 /////////////////
-      ldfe FR_P_2 = [GR_ad_p], 16          // Load P_2 for pi/4 <= |x| < 2^63
-      nop.f 0
-      add GR_ad_ce = 0x40, GR_ad_c         // Point to end of constant table c
-}
-{ .mfi
-      ldfe FR_QQ_8 = [GR_ad_qq], 16        // Load QQ_8 for 2^-3 < |r| < pi/4
-      nop.f 0
-      nop.i 0
-};;
-
-{ .mfi ///////////////////////////// 12 /////////////////
-      ldfe FR_QQ_7 = [GR_ad_qq], 16        // Load QQ_7 for 2^-3 < |r| < pi/4
-      fma.s1  FR_N_float_signif = FR_Input_X, FR_inv_pi_2to63, FR_rshf_2to64
-      add GR_ad_se = 0x40, GR_ad_s         // Point to end of constant table s
-}
-{ .mib
-      ldfe FR_PP_7 = [GR_ad_pp], 16        // Load PP_7 for 2^-3 < |r| < pi/4
-      mov GR_ad_s1 = GR_ad_s               // Save pointer to S_1
-(p10) br.cond.spnt SINCOSL_ARG_TOO_LARGE   // Branch if |x| >= 2^63
-                                           // Use Payne-Hanek Reduction
-};;
-
-{ .mfi ///////////////////////////// 13 /////////////////
-      ldfe FR_P_3 = [GR_ad_p], 16          // Load P_3 for pi/4 <= |x| < 2^63
-      fmerge.se FR_r = FR_norm_x, FR_norm_x // r = x, in case |x| < pi/4
-      add GR_ad_m14 = 0x50, GR_ad_s        // Point to constant table m14
-}
-{ .mfb
-      ldfps FR_Two_to_M3, FR_Neg_Two_to_M3 = [GR_ad_d], 8
-      fma.s1 FR_rsq = FR_norm_x, FR_norm_x, f0 // rsq = x*x, in case |x| < pi/4
-(p7)  br.cond.spnt SINCOSL_LARGER_ARG      // Branch if 2^24 <= |x| < 2^63
-                                           // Use pre-reduction
-};;
-
-{ .mmf ///////////////////////////// 14 /////////////////
-      ldfe FR_PP_6 = [GR_ad_pp], 16       // Load PP_6 for normal path
-      ldfe FR_QQ_6 = [GR_ad_qq], 16       // Load QQ_6 for normal path
-      fmerge.se FR_c = f0, f0             // c = 0 in case |x| < pi/4
-};;
-
-{ .mmf ///////////////////////////// 15 /////////////////
-      ldfe FR_PP_5 = [GR_ad_pp], 16       // Load PP_5 for normal path
-      ldfe FR_QQ_5 = [GR_ad_qq], 16       // Load QQ_5 for normal path
-      nop.f 0
-};;
-
-// Here if 0 < |x| < 2^24
-{ .mfi ///////////////////////////// 17 /////////////////
-      ldfe FR_S_5 = [GR_ad_se], -16       // Load S_5 if i_1=0
-      fcmp.lt.s1  p6, p7 = FR_abs_x, FR_Pi_by_4  // Test |x| < pi/4
-      nop.i 0
-}
-{ .mfi
-      ldfe FR_C_5 = [GR_ad_ce], -16       // Load C_5 if i_1=1
-      fms.s1 FR_N_float = FR_N_float_signif, FR_2tom64, FR_rshf
-      nop.i 0
-};;
-
-{ .mmi ///////////////////////////// 18 /////////////////
-      ldfe FR_S_4 = [GR_ad_se], -16       // Load S_4 if i_1=0
-      ldfe FR_C_4 = [GR_ad_ce], -16       // Load C_4 if i_1=1
-      nop.i 0
-};;
-
-//
-//     N  = Arg * 2/pi
-//     Check if Arg < pi/4
-//
-//
-//     Case 2: Convert integer N_fix back to normalized floating-point value.
-//     Case 1: p8 is only affected  when p6 is set
-//
-//
-//     Grab the integer part of N and call it N_fix
-//
-{ .mfi ///////////////////////////// 19 /////////////////
-(p7)  ldfps FR_Two_to_M33, FR_Neg_Two_to_M33 = [GR_ad_d], 8
-(p6)  fma.s1 FR_r_cubed = FR_r, FR_rsq, f0        // r^3 if |x| < pi/4
-(p6)  mov GR_N_Inc = 0x0                         // N_IncS if |x| < pi/4
-};;
-
-//     If |x| < pi/4, r = x and c = 0
-//     lf |x| < pi/4, is x < 2**(-3).
-//     r = Arg
-//     c = 0
-{ .mmi ///////////////////////////// 20 /////////////////
-(p7)  getf.sig  GR_N_Inc = FR_N_float_signif
-      nop.m 0
-(p6)  cmp.lt.unc p8,p0 = GR_exp_x, GR_exp_2_to_m3   // Is |x| < 2^-3
-};;
-
-//
-//     lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
-//     If |x| >= pi/4,
-//     Create the right N for |x| < pi/4 and otherwise
-//     Case 2: Place integer part of N in GP register
-//
-
-{ .mbb ///////////////////////////// 21 /////////////////
-      nop.m 0
-(p8)  br.cond.spnt SINCOSL_SMALL_R_0    // Branch if 0 < |x| < 2^-3
-(p6)  br.cond.spnt SINCOSL_NORMAL_R_0   // Branch if 2^-3 <= |x| < pi/4
-};;
-
-// Here if pi/4 <= |x| < 2^24
-{ .mfi
-      ldfs FR_Neg_Two_to_M67 = [GR_ad_d], 8     // Load -2^-67
-      fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X // s = -N * P_1  + Arg
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_w = FR_N_float, FR_P_2, f0      // w = N * P_2
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fms.s1 FR_r = FR_s, f1, FR_w        // r = s - w, assume |s| >= 2^-33
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fcmp.lt.s1 p7, p6 = FR_s, FR_Two_to_M33
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p7)  fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33 // p6 if |s| >= 2^-33, else p7
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fms.s1 FR_c = FR_s, f1, FR_r             // c = s - r, for |s| >= 2^-33
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_rsq = FR_r, FR_r, f0           // rsq = r * r, for |s| >= 2^-33
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p7)  fma.s1 FR_w = FR_N_float, FR_P_3, f0
-      nop.i 0
-};;
-
-{ .mmf
-      ldfe FR_C_1 = [GR_ad_pp], 16     // Load C_1 if i_1=0
-      ldfe FR_S_1 = [GR_ad_qq], 16     // Load S_1 if i_1=1
-      frcpa.s1 FR_r_hi, p15 = f1, FR_r  // r_hi = frcpa(r)
-};;
-
-{ .mfi
-      nop.m 0
-(p6)  fcmp.lt.unc.s1 p8, p13 = FR_r, FR_Two_to_M3 // If big s, test r with 2^-3
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p7)  fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
-      nop.i 0
-};;
-
-//
-//     For big s: r = s - w: No futher reduction is necessary
-//     For small s: w = N * P_3 (change sign) More reduction
-//
-{ .mfi
-    nop.m 0
-(p8)  fcmp.gt.s1 p8, p13 = FR_r, FR_Neg_Two_to_M3 // If big s, p8 if |r| < 2^-3
-    nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p7)  fms.s1 FR_r = FR_s, f1, FR_U_1
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p6)  fma.s1 FR_r_cubed = FR_r, FR_rsq, f0  // rcubed = r * rsq
-      nop.i 0
-};;
-
-{ .mfi
-//
-//     For big s: Is |r| < 2**(-3)?
-//     For big s: c = S - r
-//     For small s: U_1 = N * P_2 + w
-//
-//     If p8 is set, prepare to branch to Small_R.
-//     If p9 is set, prepare to branch to Normal_R.
-//     For big s,  r is complete here.
-//
-//
-//     For big s: c = c + w (w has not been negated.)
-//     For small s: r = S - U_1
-//
-      nop.m 0
-(p6)  fms.s1 FR_c = FR_c, f1, FR_w
-      nop.i 0
-}
-{ .mbb
-      nop.m 0
-(p8)  br.cond.spnt  SINCOSL_SMALL_R_1  // Branch if |s|>=2^-33, |r| < 2^-3,
-                                       // and pi/4 <= |x| < 2^24
-(p13) br.cond.sptk  SINCOSL_NORMAL_R_1 // Branch if |s|>=2^-33, |r| >= 2^-3,
-                                       // and pi/4 <= |x| < 2^24
-};;
-
-SINCOSL_S_TINY:
-//
-// Here if |s| < 2^-33, and pi/4 <= |x| < 2^24
-//
-{ .mfi
-       and GR_N_SinCos = 0x1, GR_N_Inc
-       fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
-       tbit.z p8,p12       = GR_N_Inc, 0
-};;
-
-
-//
-//     For small s: U_2 = N * P_2 - U_1
-//     S_1 stored constant - grab the one stored with the
-//     coefficients.
-//
-{ .mfi
-      ldfe      FR_S_1 = [GR_ad_s1], 16
-      fma.s1  FR_polyC = f0, f1, FR_Neg_Two_to_M67
-      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
-}
-{ .mfi
-      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
-      nop.f 0
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fms.s1  FR_s = FR_s, f1, FR_r
-(p8)  tbit.z.unc p10,p11   = GR_N_SignC, 1
-}
-{ .mfi
-      nop.m 0
-      fma.s1  FR_rsq = FR_r, FR_r, f0
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1  FR_U_2 = FR_U_2, f1, FR_w
-(p8)  tbit.z.unc p8,p9    = GR_N_SignS, 1
-};;
-
-{ .mfi
-      nop.m 0
-      fmerge.se FR_FirstS = FR_r, FR_r
-(p12) tbit.z.unc p14,p15  = GR_N_SignC, 1
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_FirstC = f0, f1, f1
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fms.s1  FR_c = FR_s, f1, FR_U_1
-(p12) tbit.z.unc p12,p13  = GR_N_SignS, 1
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1  FR_r = FR_S_1, FR_r, f0
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s0  FR_S_1 = FR_S_1, FR_S_1, f0
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fms.s1 FR_c = FR_c, f1, FR_U_2
-      nop.i 0
-};;
-
-.pred.rel "mutex",p9,p15
-{ .mfi
-      nop.m 0
-(p9)  fms.s0 FR_FirstS   = f1, f0, FR_FirstS
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p15) fms.s0 FR_FirstS   = f1, f0, FR_FirstS
-      nop.i 0
-};;
-
-.pred.rel "mutex",p11,p13
-{ .mfi
-      nop.m 0
-(p11) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p13) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_r, FR_rsq, FR_c
-      nop.i 0
-};;
-
-
-.pred.rel "mutex",p8,p9
-{ .mfi
-      nop.m 0
-(p8)  fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p9)  fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
-      nop.i 0
-};;
-
-.pred.rel "mutex",p10,p11
-{ .mfi
-      nop.m 0
-(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
-      nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p12,p13
-{ .mfi
-      nop.m 0
-(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
-      nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
-      nop.m 0
-(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
-      nop.i 0
-}
-{ .mfb
-      cmp.eq  p10, p0 = 0x1, GR_Cis
-(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
-(p10) br.ret.sptk               b0
-};;
-
-{ .mmb       // exit for sincosl
-      stfe  [sincos_pResSin] =  FR_ResultS
-      stfe  [sincos_pResCos] =  FR_ResultC
-      br.ret.sptk               b0
-};;
-
-
-
-
-
-
-SINCOSL_LARGER_ARG:
-//
-// Here if 2^24 <= |x| < 2^63
-//
-{ .mfi
-      ldfe FR_d_1 = [GR_ad_p], 16          // Load d_1 for |x| >= 2^24 path
-      fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0 //     N_0 = Arg * Inv_P_0
-      nop.i 0
-};;
-
-{ .mmi
-      ldfps FR_Two_to_M14, FR_Neg_Two_to_M14 = [GR_ad_m14]
-      nop.m 0
-      nop.i 0
-};;
-
-{ .mfi
-      ldfe FR_d_2 = [GR_ad_p], 16          // Load d_2 for |x| >= 2^24 path
-      nop.f 0
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fcvt.fx.s1 FR_N_0_fix = FR_N_0 // N_0_fix  = integer part of N_0
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fcvt.xf FR_N_0 = FR_N_0_fix //     Make N_0 the integer part
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X // Arg'=-N_0*P_0+Arg
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_w = FR_N_0, FR_d_1, f0 //     w  = N_0 * d_1
-      nop.i 0
-};;
-
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0 //  N = A' * 2/pi
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fcvt.fx.s1 FR_N_fix = FR_N_float //     N_fix is the integer part
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fcvt.xf FR_N_float = FR_N_fix
-      nop.i 0
-};;
-
-{ .mfi
-      getf.sig GR_N_Inc = FR_N_fix // N is the integer part of
-                                 // the reduced-reduced argument
-      nop.f 0
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime //     s = -N*P_1 + Arg'
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w //     w = -N*P_2 + w
-      nop.i 0
-};;
-
-//
-//     For |s|  > 2**(-14) r = S + w (r complete)
-//     Else       U_hi = N_0 * d_1
-//
-{ .mfi
-      nop.m 0
-      fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p9)  fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14  // p9 if |s| < 2^-14
-      nop.i 0
-};;
-
-//
-//     Either S <= -2**(-14) or S >= 2**(-14)
-//     or -2**(-14) < s < 2**(-14)
-//
-{ .mfi
-      nop.m 0
-(p9)  fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p9)  fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p8)  fma.s1 FR_r = FR_s, f1, FR_w
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p9)  fma.s1 FR_w = FR_N_float, FR_P_3, f0
-      nop.i 0
-};;
-
-//
-//    We need abs of both U_hi and V_hi - don't
-//    worry about switched sign of V_hi.
-//
-//    Big s: finish up c = (S - r) + w (c complete)
-//    Case 4: A =  U_hi + V_hi
-//    Note: Worry about switched sign of V_hi, so subtract instead of add.
-//
-{ .mfi
-      nop.m 0
-(p9)  fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p9)  fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p9)  fmerge.s FR_V_hiabs = f0, FR_V_hi
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p9)  fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi // For small s: U_lo=N_0*d_1-U_hi
-      nop.i 0
-};;
-
-//
-//    For big s: Is |r| < 2**(-3)
-//    For big s: if p12 set, prepare to branch to Small_R.
-//    For big s: If p13 set, prepare to branch to Normal_R.
-//
-{ .mfi
-      nop.m 0
-(p9)  fmerge.s FR_U_hiabs = f0, FR_U_hi
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p8)  fms.s1 FR_c = FR_s, f1, FR_r  //     For big s: c = S - r
-      nop.i 0
-};;
-
-//
-//    For small S: V_hi = N * P_2
-//                 w = N * P_3
-//    Note the product does not include the (-) as in the writeup
-//    so (-) missing for V_hi and w.
-//
-{ .mfi
-      nop.m 0
-(p8)  fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-(p8)  fma.s1 FR_c = FR_c, f1, FR_w
-      nop.i 0
-}
-{ .mfb
-      nop.m 0
-(p9)  fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
-(p12) br.cond.spnt SINCOSL_SMALL_R      // Branch if |r| < 2^-3
-                                        // and 2^24 <= |x| < 2^63
-};;
-
-{ .mib
-      nop.m 0
-      nop.i 0
-(p13) br.cond.sptk SINCOSL_NORMAL_R     // Branch if |r| >= 2^-3
-                                        // and 2^24 <= |x| < 2^63
-};;
-
-SINCOSL_LARGER_S_TINY:
-//    Here if |s| < 2^-14, and 2^24 <= |x| < 2^63
-//
-//    Big s: Vector off when |r| < 2**(-3).  Recall that p8 will be true.
-//    The remaining stuff is for Case 4.
-//    Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
-//    Note: the (-) is still missing for V_lo.
-//    Small s: w = w + N_0 * d_2
-//    Note: the (-) is now incorporated in w.
-//
-{ .mfi
-      and GR_N_SinCos = 0x1, GR_N_Inc
-      fcmp.ge.unc.s1 p6, p7 = FR_U_hiabs, FR_V_hiabs
-      tbit.z p8,p12       = GR_N_Inc, 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_t = FR_U_lo, f1, FR_V_lo //     C_hi = S + A
-      nop.i 0
-};;
-
-{ .mfi
-      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
-(p6)  fms.s1 FR_a = FR_U_hi, f1, FR_A
-      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
-}
-{ .mfi
-      nop.m 0
-(p7)  fma.s1 FR_a = FR_V_hi, f1, FR_A
-      nop.i 0
-};;
-
-{ .mmf
-      ldfe FR_C_1 = [GR_ad_c], 16
-      ldfe  FR_S_1 = [GR_ad_s], 16
-      fma.s1 FR_C_hi = FR_s, f1, FR_A
-};;
-
-{ .mmi
-      ldfe FR_C_2 = [GR_ad_c], 64
-      ldfe FR_S_2 = [GR_ad_s], 64
-(p8)  tbit.z.unc p10,p11   = GR_N_SignC, 1
-};;
-
-//
-//    r and c have been computed.
-//    Make sure ftz mode is set - should be automatic when using wre
-//    |r| < 2**(-3)
-//    Get [i_0,i_1] - two lsb of N_fix.
-//
-//    For larger u than v: a = U_hi - A
-//    Else a = V_hi - A (do an add to account for missing (-) on V_hi
-//
-{ .mfi
-      nop.m 0
-      fma.s1 FR_t = FR_t, f1, FR_w //     t = t + w
-(p8)  tbit.z.unc p8,p9    = GR_N_SignS, 1
-}
-{ .mfi
-      nop.m 0
-(p6)  fms.s1 FR_a = FR_a, f1, FR_V_hi
-      nop.i 0
-};;
-
-//
-//     If u > v: a = (U_hi - A)  + V_hi
-//     Else      a = (V_hi - A)  + U_hi
-//     In each case account for negative missing from V_hi.
-//
-{ .mfi
-      nop.m 0
-      fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
-(p12) tbit.z.unc p14,p15  = GR_N_SignC, 1
-}
-{ .mfi
-      nop.m 0
-(p7)  fms.s1 FR_a = FR_U_hi, f1, FR_a
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_C_lo = FR_C_lo, f1, FR_A //     C_lo = (S - C_hi) + A
-(p12) tbit.z.unc p12,p13  = GR_N_SignS, 1
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_t = FR_t, f1, FR_a //     t = t + a
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_C_lo = FR_C_lo, f1, FR_t //     C_lo = C_lo + t
-      nop.i 0
-};;
-
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_rsq = FR_r, FR_r, f0
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fms.s1 FR_c = FR_C_hi, f1, FR_r
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_FirstS = f0, f1, FR_r
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_FirstC = f0, f1, f1
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_rsq, FR_S_2, FR_S_1
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_rsq, FR_C_2, FR_C_1
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_c = FR_c, f1, FR_C_lo
-      nop.i 0
-};;
-
-.pred.rel "mutex",p9,p15
-{ .mfi
-      nop.m 0
-(p9)  fms.s0 FR_FirstS   = f1, f0, FR_FirstS
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p15) fms.s0 FR_FirstS   = f1, f0, FR_FirstS
-      nop.i 0
-};;
-
-.pred.rel "mutex",p11,p13
-{ .mfi
-      nop.m 0
-(p11) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p13) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
-      nop.i 0
-};;
-
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_r_cubed, FR_polyS, FR_c
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_rsq, FR_polyC, f0
-      nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p8,p9
-{ .mfi
-      nop.m 0
-(p8)  fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p9)  fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
-      nop.i 0
-};;
-
-.pred.rel "mutex",p10,p11
-{ .mfi
-      nop.m 0
-(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
-      nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p12,p13
-{ .mfi
-      nop.m 0
-(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
-      nop.i 0
-};;
-
-.pred.rel "mutex",p14,p15
-{ .mfi
-      nop.m 0
-(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
-      nop.i 0
-}
-{ .mfb
-      cmp.eq  p10, p0 = 0x1, GR_Cis
-(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
-(p10) br.ret.sptk               b0
-};;
-
-
-{ .mmb       // exit for sincosl
-      stfe  [sincos_pResSin] =  FR_ResultS
-      stfe  [sincos_pResCos] =  FR_ResultC
-      br.ret.sptk               b0
-};;
-
-
-
-SINCOSL_SMALL_R:
-//
-// Here if |r| < 2^-3
-//
-// Enter with r, c, and N_Inc computed
-//
-{ .mfi
-      nop.m 0
-      fma.s1 FR_rsq = FR_r, FR_r, f0   // rsq = r * r
-      nop.i 0
-};;
-
-{ .mmi
-      ldfe FR_S_5 = [GR_ad_se], -16    // Load S_5
-      ldfe FR_C_5 = [GR_ad_ce], -16    // Load C_5
-      nop.i 0
-};;
-
-{ .mmi
-      ldfe FR_S_4 = [GR_ad_se], -16    // Load S_4
-      ldfe FR_C_4 = [GR_ad_ce], -16    // Load C_4
-      nop.i 0
-};;
-
-SINCOSL_SMALL_R_0:
-// Entry point for 2^-3 < |x| < pi/4
-SINCOSL_SMALL_R_1:
-// Entry point for pi/4 < |x| < 2^24 and |r| < 2^-3
-{ .mfi
-      ldfe   FR_S_3 = [GR_ad_se], -16    // Load S_3
-      fma.s1 FR_r6  = FR_rsq, FR_rsq, f0 // Z = rsq * rsq
-      tbit.z p7,p11       = GR_N_Inc, 0
-}
-{ .mfi
-      ldfe    FR_C_3 = [GR_ad_ce], -16   // Load C_3
-      nop.f 0
-      and GR_N_SinCos = 0x1, GR_N_Inc
-};;
-
-{ .mfi
-      ldfe   FR_S_2 = [GR_ad_se], -16    // Load S_2
-      fnma.s1 FR_cC = FR_c, FR_r, f0     // c = -c * r
-      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
-}
-{ .mfi
-      ldfe   FR_C_2 = [GR_ad_ce], -16    // Load C_2
-      nop.f 0
-      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
-};;
-
-{ .mmi
-      ldfe FR_S_1 = [GR_ad_se], -16    // Load S_1
-      ldfe FR_C_1 = [GR_ad_ce], -16    // Load C_1
-(p7)  tbit.z.unc p9,p10   = GR_N_SignC, 1
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_r7 = FR_r6, FR_r, f0     // Z = Z * r
-(p7)  tbit.z.unc p7,p8    = GR_N_SignS, 1
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_poly_loS = FR_rsq, FR_S_5, FR_S_4 // poly_lo=rsq*S_5+S_4
-(p11) tbit.z.unc p13,p14  = GR_N_SignC, 1
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_poly_loC = FR_rsq, FR_C_5, FR_C_4 // poly_lo=rsq*C_5+C_4
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_poly_hiS = FR_rsq, FR_S_2, FR_S_1 // poly_hi=rsq*S_2+S_1
-(p11) tbit.z.unc p11,p12  = GR_N_SignS, 1
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_poly_hiC = FR_rsq, FR_C_2, FR_C_1 // poly_hi=rsq*C_2+C_1
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s0 FR_FirstS = FR_r, f1, f0
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s0 FR_FirstC = f1, f1, f0
-      nop.i 0
-};;
-
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_r6 = FR_r6, FR_rsq, f0
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_r7 = FR_r7, FR_rsq, f0
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_poly_loS = FR_rsq, FR_poly_loS, FR_S_3 // p_lo=p_lo*rsq+S_3
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_poly_loC = FR_rsq, FR_poly_loC, FR_C_3 // p_lo=p_lo*rsq+C_3
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s0 FR_inexact = FR_S_4, FR_S_4, f0     // Dummy op to set inexact
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_poly_hiS = FR_poly_hiS, FR_rsq, f0     // p_hi=p_hi*rsq
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_poly_hiC = FR_poly_hiC, FR_rsq, f0     // p_hi=p_hi*rsq
-      nop.i 0
-};;
-
-.pred.rel "mutex",p8,p14
-{ .mfi
-      nop.m 0
-(p8)  fms.s0 FR_FirstS   = f1, f0, FR_FirstS
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p14) fms.s0 FR_FirstS   = f1, f0, FR_FirstS
-      nop.i 0
-};;
-
-.pred.rel "mutex",p10,p12
-{ .mfi
-      nop.m 0
-(p10) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p12) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_r7, FR_poly_loS, FR_cS        // poly=Z*poly_lo+c
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_r6, FR_poly_loC, FR_cC        // poly=Z*poly_lo+c
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_poly_hiS = FR_r, FR_poly_hiS, f0       // p_hi=r*p_hi
-      nop.i 0
-};;
-
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_polyS, f1, FR_poly_hiS
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_polyC, f1, FR_poly_hiC
-      nop.i 0
-};;
-
-.pred.rel "mutex",p7,p8
-{ .mfi
-      nop.m 0
-(p7)  fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p8)  fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
-      nop.i 0
-};;
-
-.pred.rel "mutex",p9,p10
-{ .mfi
-      nop.m 0
-(p9)  fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p10) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
-      nop.i 0
-};;
-
-.pred.rel "mutex",p11,p12
-{ .mfi
-      nop.m 0
-(p11) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p12) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
-      nop.i 0
-};;
-
-.pred.rel "mutex",p13,p14
-{ .mfi
-      nop.m 0
-(p13) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
-      nop.i 0
-}
-{ .mfb
-      cmp.eq  p15, p0 = 0x1, GR_Cis
-(p14) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
-(p15) br.ret.sptk               b0
-};;
-
-
-{ .mmb       // exit for sincosl
-      stfe  [sincos_pResSin] =  FR_ResultS
-      stfe  [sincos_pResCos] =  FR_ResultC
-      br.ret.sptk               b0
-};;
-
-
-
-
-
-
-SINCOSL_NORMAL_R:
-//
-// Here if 2^-3 <= |r| < pi/4
-// THIS IS THE MAIN PATH
-//
-// Enter with r, c, and N_Inc having been computed
-//
-{ .mfi
-      ldfe FR_PP_6 = [GR_ad_pp], 16    // Load PP_6
-      fma.s1 FR_rsq = FR_r, FR_r, f0   // rsq = r * r
-      nop.i 0
-}
-{ .mfi
-      ldfe FR_QQ_6 = [GR_ad_qq], 16    // Load QQ_6
-      nop.f 0
-      nop.i 0
-};;
-
-{ .mmi
-      ldfe FR_PP_5 = [GR_ad_pp], 16    // Load PP_5
-      ldfe FR_QQ_5 = [GR_ad_qq], 16    // Load QQ_5
-      nop.i 0
-};;
-
-
-
-SINCOSL_NORMAL_R_0:
-// Entry for 2^-3 < |x| < pi/4
-.pred.rel "mutex",p9,p10
-{ .mmf
-      ldfe FR_C_1 = [GR_ad_pp], 16     // Load C_1
-      ldfe FR_S_1 = [GR_ad_qq], 16     // Load S_1
-      frcpa.s1 FR_r_hi, p6 = f1, FR_r  // r_hi = frcpa(r)
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_r_cubed = FR_r, FR_rsq, f0  // rcubed = r * rsq
-      nop.i 0
-};;
-
-
-SINCOSL_NORMAL_R_1:
-// Entry for pi/4 <= |x| < 2^24
-.pred.rel "mutex",p9,p10
-{ .mmf
-      ldfe FR_PP_1 = [GR_ad_pp], 16             // Load PP_1_hi
-      ldfe FR_QQ_1 = [GR_ad_qq], 16             // Load QQ_1
-      frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi        // r_hi = frpca(frcpa(r))
-};;
-
-{ .mfi
-      ldfe FR_PP_4 = [GR_ad_pp], 16             // Load PP_4
-      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_6 // poly = rsq*poly+PP_6
-      and GR_N_SinCos = 0x1, GR_N_Inc
-}
-{ .mfi
-      ldfe FR_QQ_4 = [GR_ad_qq], 16             // Load QQ_4
-      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_6 // poly = rsq*poly+QQ_6
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_corrS = FR_C_1, FR_rsq, f0       // corr = C_1 * rsq
-      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_corrC = FR_S_1, FR_r_cubed, FR_r // corr = S_1 * r^3 + r
-      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
-};;
-
-{ .mfi
-      ldfe FR_PP_3 = [GR_ad_pp], 16             // Load PP_3
-      fma.s1 FR_r_hi_sq = FR_r_hi, FR_r_hi, f0  // r_hi_sq = r_hi * r_hi
-      tbit.z p7,p11       = GR_N_Inc, 0
-}
-{ .mfi
-      ldfe FR_QQ_3 = [GR_ad_qq], 16             // Load QQ_3
-      fms.s1 FR_r_lo = FR_r, f1, FR_r_hi        // r_lo = r - r_hi
-      nop.i 0
-};;
-
-{ .mfi
-      ldfe FR_PP_2 = [GR_ad_pp], 16             // Load PP_2
-      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_5 // poly = rsq*poly+PP_5
-(p7)  tbit.z.unc p9,p10   = GR_N_SignC, 1
-}
-{ .mfi
-      ldfe FR_QQ_2 = [GR_ad_qq], 16             // Load QQ_2
-      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_5 // poly = rsq*poly+QQ_5
-      nop.i 0
-};;
-
-{ .mfi
-      ldfe FR_PP_1_lo = [GR_ad_pp], 16          // Load PP_1_lo
-      fma.s1 FR_corrS = FR_corrS, FR_c, FR_c      // corr = corr * c + c
-(p7)  tbit.z.unc p7,p8    = GR_N_SignS, 1
-}
-{ .mfi
-      nop.m 0
-      fnma.s1 FR_corrC = FR_corrC, FR_c, f0       // corr = -corr * c
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_loS = FR_r, FR_r_hi, FR_r_hi_sq // U_lo = r*r_hi+r_hi_sq
-(p11) tbit.z.unc p13,p14  = GR_N_SignC, 1
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_loC = FR_r_hi, f1, FR_r        // U_lo = r_hi + r
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_hiS = FR_r_hi, FR_r_hi_sq, f0  // U_hi = r_hi*r_hi_sq
-(p11) tbit.z.unc p11,p12  = GR_N_SignS, 1
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_hiC = FR_QQ_1, FR_r_hi_sq, f1  // U_hi = QQ_1*r_hi_sq+1
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_4 // poly = poly*rsq+PP_4
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_4 // poly = poly*rsq+QQ_4
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_loS = FR_r, FR_r, FR_U_loS      // U_lo = r * r + U_lo
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_loC = FR_r_lo, FR_U_loC, f0     // U_lo = r_lo * U_lo
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_hiS = FR_PP_1, FR_U_hiS, f0     // U_hi = PP_1 * U_hi
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_3 // poly = poly*rsq+PP_3
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_3 // poly = poly*rsq+QQ_3
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_loS = FR_r_lo, FR_U_loS, f0     // U_lo = r_lo * U_lo
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_loC = FR_QQ_1,FR_U_loC, f0      // U_lo = QQ_1 * U_lo
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_hiS = FR_r, f1, FR_U_hiS        // U_hi = r + U_hi
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_2 // poly = poly*rsq+PP_2
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_2 // poly = poly*rsq+QQ_2
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_U_loS = FR_PP_1, FR_U_loS, f0     // U_lo = PP_1 * U_lo
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_1_lo // poly =poly*rsq+PP1lo
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_rsq, FR_polyC, f0      // poly = poly*rsq
-      nop.i 0
-};;
-
-
-.pred.rel "mutex",p8,p14
-{ .mfi
-      nop.m 0
-(p8)  fms.s0 FR_U_hiS   = f1, f0, FR_U_hiS
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p14) fms.s0 FR_U_hiS   = f1, f0, FR_U_hiS
-      nop.i 0
-};;
-
-.pred.rel "mutex",p10,p12
-{ .mfi
-      nop.m 0
-(p10) fms.s0 FR_U_hiC   = f1, f0, FR_U_hiC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p12) fms.s0 FR_U_hiC   = f1, f0, FR_U_hiC
-      nop.i 0
-};;
-
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_VS = FR_U_loS, f1, FR_corrS        // V = U_lo + corr
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_VC = FR_U_loC, f1, FR_corrC        // V = U_lo + corr
-      nop.i 0
-};;
-
-{ .mfi
-      nop.m 0
-      fma.s0 FR_inexact = FR_PP_5, FR_PP_4, f0  // Dummy op to set inexact
-      nop.i 0
-};;
-
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyS = FR_r_cubed, FR_polyS, f0  // poly = poly*r^3
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_polyC = FR_rsq, FR_polyC, f0      // poly = poly*rsq
-      nop.i 0
-};;
-
-
-{ .mfi
-      nop.m 0
-      fma.s1 FR_VS = FR_polyS, f1, FR_VS           // V = poly + V
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-      fma.s1 FR_VC = FR_polyC, f1, FR_VC           // V = poly + V
-      nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p7,p8
-{ .mfi
-      nop.m 0
-(p7)  fma.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p8)  fms.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
-      nop.i 0
-};;
-
-.pred.rel "mutex",p9,p10
-{ .mfi
-      nop.m 0
-(p9)  fma.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p10) fms.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
-      nop.i 0
-};;
-
-
-
-.pred.rel "mutex",p11,p12
-{ .mfi
-      nop.m 0
-(p11) fma.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
-      nop.i 0
-}
-{ .mfi
-      nop.m 0
-(p12) fms.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
-      nop.i 0
-};;
-
-.pred.rel "mutex",p13,p14
-{ .mfi
-      nop.m 0
-(p13) fma.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
-      nop.i 0
-}
-{ .mfb
-      cmp.eq  p15, p0 = 0x1, GR_Cis
-(p14) fms.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
-(p15) br.ret.sptk               b0
-};;
-
-{ .mmb       // exit for sincosl
-      stfe  [sincos_pResSin] =  FR_ResultS
-      stfe  [sincos_pResCos] =  FR_ResultC
-      br.ret.sptk               b0
-};;
-
-
-
-
-
-SINCOSL_ZERO:
-
-{ .mfi
-      nop.m 0
-      fmerge.s FR_ResultS = FR_Input_X, FR_Input_X // If sin, result = input
-      nop.i 0
-}
-{ .mfb
-      cmp.eq  p15, p0 = 0x1, GR_Cis
-      fma.s0 FR_ResultC = f1, f1, f0    // If cos, result=1.0
-(p15) br.ret.sptk               b0
-};;
-
-{ .mmb       // exit for sincosl
-      stfe  [sincos_pResSin] =  FR_ResultS
-      stfe  [sincos_pResCos] =  FR_ResultC
-      br.ret.sptk               b0
-};;
-
-
-SINCOSL_DENORMAL:
-{ .mmb
-      getf.exp GR_signexp_x = FR_norm_x   // Get sign and exponent of x
-      nop.m 999
-      br.cond.sptk  SINCOSL_COMMON2        // Return to common code
-}
-;;
-
-
-SINCOSL_SPECIAL:
-//
-//    Path for Arg = +/- QNaN, SNaN, Inf
-//    Invalid can be raised. SNaNs
-//    become QNaNs
-//
-{ .mfi
-      cmp.eq  p15, p0 = 0x1, GR_Cis
-      fmpy.s0 FR_ResultS = FR_Input_X, f0
-      nop.i 0
-}
-{ .mfb
-      nop.m 0
-      fmpy.s0 FR_ResultC = FR_Input_X, f0
-(p15) br.ret.sptk               b0
-};;
-
-{ .mmb       // exit for sincosl
-      stfe  [sincos_pResSin] =  FR_ResultS
-      stfe  [sincos_pResCos] =  FR_ResultC
-      br.ret.sptk               b0
-};;
-
-GLOBAL_LIBM_END(__libm_sincosl)
-
-
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-//
-//     Special Code to handle very large argument case.
-//     Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
-//     The interface is custom:
-//       On input:
-//         (Arg or x) is in f8
-//       On output:
-//         r is in f8
-//         c is in f9
-//         N is in r8
-//     Be sure to allocate at least 2 GP registers as output registers for
-//     __libm_pi_by_2_reduce.  This routine uses r62-63. These are used as
-//     scratch registers within the __libm_pi_by_2_reduce routine (for speed).
-//
-//     We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127.  We
-//     use this to eliminate save/restore of key fp registers in this calling
-//     function.
-//
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-
-LOCAL_LIBM_ENTRY(__libm_callout)
-SINCOSL_ARG_TOO_LARGE:
-.prologue
-{ .mfi
-        nop.f 0
-.save   ar.pfs,GR_SAVE_PFS
-        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
-};;
-
-{ .mmi
-        setf.exp FR_Two_to_M3 = GR_exp_2_to_m3  // Form 2^-3
-        mov GR_SAVE_GP=gp                       // Save gp
-.save   b0, GR_SAVE_B0
-        mov GR_SAVE_B0=b0                       // Save b0
-};;
-
-.body
-//
-//     Call argument reduction with x in f8
-//     Returns with N in r8, r in f8, c in f9
-//     Assumes f71-127 are preserved across the call
-//
-{ .mib
-        setf.exp FR_Neg_Two_to_M3 = GR_exp_m2_to_m3 // Form -(2^-3)
-        nop.i 0
-        br.call.sptk b0=__libm_pi_by_2_reduce#
-};;
-
-{ .mfi
-        mov   GR_N_Inc = r8
-        fcmp.lt.unc.s1  p6, p0 = FR_r, FR_Two_to_M3
-        mov   b0 = GR_SAVE_B0                  // Restore return address
-};;
-
-{ .mfi
-        mov   gp = GR_SAVE_GP                  // Restore gp
-(p6)    fcmp.gt.unc.s1  p6, p0 = FR_r, FR_Neg_Two_to_M3
-        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
-};;
-
-{ .mbb
-  nop.m 0
-(p6)    br.cond.spnt SINCOSL_SMALL_R     // Branch if |r|< 2^-3 for |x| >= 2^63
-        br.cond.sptk SINCOSL_NORMAL_R    // Branch if |r|>=2^-3 for |x| >= 2^63
-};;
-
-LOCAL_LIBM_END(__libm_callout)
-
-.type   __libm_pi_by_2_reduce#,@function
-.global __libm_pi_by_2_reduce#
-
-
-