about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/libm_sincos.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincos.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincos.S783
1 files changed, 0 insertions, 783 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincos.S b/sysdeps/ia64/fpu/libm_sincos.S
deleted file mode 100644
index 7fda2afac4..0000000000
--- a/sysdeps/ia64/fpu/libm_sincos.S
+++ /dev/null
@@ -1,783 +0,0 @@
-.file "libm_sincos.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/01/02 Initial version
-// 02/18/02 Large arguments processing routine is excluded.
-//          External interface entry points are added
-// 03/13/02 Corrected restore of predicate registers
-// 03/19/02 Added stack unwind around call to __libm_cis_large
-// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/08/03 Improved performance
-// 02/11/04 cis is moved to the separate file.
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// 1) void sincos(double, double*s, double*c)
-// 2) __libm_sincos - internal LIBM function, that accepts
-//    argument in f8 and returns cosine through f8, sine through f9
-//
-// Overview of operation
-//==============================================================
-//
-// Step 1
-// ======
-// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4
-//    divide x by pi/2^k.
-//    Multiply by 2^k/pi.
-//    nfloat = Round result to integer (round-to-nearest)
-//
-// r = x -  nfloat * pi/2^k
-//    Do this as ((((x -  nfloat * HIGH(pi/2^k))) -
-//                        nfloat * LOW(pi/2^k)) -
-//                        nfloat * LOWEST(pi/2^k) for increased accuracy.
-//    pi/2^k is stored as two numbers that when added make pi/2^k.
-//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-//    HIGH and LOW parts are rounded to zero values,
-//    and LOWEST is rounded to nearest one.
-//
-// x = (nfloat * pi/2^k) + r
-//    r is small enough that we can use a polynomial approximation
-//    and is referred to as the reduced argument.
-//
-// Step 3
-// ======
-// Take the unreduced part and remove the multiples of 2pi.
-// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
-//
-//    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
-//    N * 2^(k+1)
-//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N2pi + M * pi/2^k
-//
-//
-// Sin(x) = Sin((nfloat * pi/2^k) + r)
-//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
-//
-//          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
-//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
-//                               = Sin(Mpi/2^k)
-//
-//          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
-//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
-//                               = Cos(Mpi/2^k)
-//
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-//
-// Step 4
-// ======
-// 0 <= M < 2^(k+1)
-// There are 2^(k+1) Sin entries in a table.
-// There are 2^(k+1) Cos entries in a table.
-//
-// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
-//
-//
-// Step 5
-// ======
-// Calculate Cos(r) and Sin(r) by polynomial approximation.
-//
-// Cos(r) = 1 + r^2 q1  + r^4 q2 + r^6 q3 + ... = Series for Cos
-// Sin(r) = r + r^3 p1  + r^5 p2 + r^7 p3 + ... = Series for Sin
-//
-// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table
-//
-//
-// Calculate
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-// as follows
-//
-//    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
-//    rsq = r*r
-//
-//
-//    P = p1 + r^2p2 + r^4p3 + r^6p4
-//    Q = q1 + r^2q2 + r^4q3 + r^6q4
-//
-//       rcub = r * rsq
-//       Sin(r) = r + rcub * P
-//              = r + r^3p1  + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)
-//
-//            The coefficients are not exactly these values, but almost.
-//
-//            p1 = -1/6  = -1/3!
-//            p2 = 1/120 =  1/5!
-//            p3 = -1/5040 = -1/7!
-//            p4 = 1/362889 = 1/9!
-//
-//       P =  r + rcub * P
-//
-//    Answer = S[m] Cos(r) + C[m] P
-//
-//       Cos(r) = 1 + rsq Q
-//       Cos(r) = 1 + r^2 Q
-//       Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
-//       Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
-//
-//       S[m] Cos(r) = S[m](1 + rsq Q)
-//       S[m] Cos(r) = S[m] + S[m] rsq Q
-//       S[m] Cos(r) = S[m] + s_rsq Q
-//       Q           = S[m] + s_rsq Q
-//
-// Then,
-//
-//    Answer = Q + C[m] P
-
-// Registers used
-//==============================================================
-// general input registers:
-// r14 -> r39
-
-// predicate registers used:
-// p6 -> p14
-//
-// floating-point registers used
-// f9 -> f15
-// f32 -> f67
-
-// Assembly macros
-//==============================================================
-
-cis_Arg                     = f8
-
-cis_Sin_res                 = f9
-cis_Cos_res                 = f8
-
-cis_NORM_f8                 = f10
-cis_W                       = f11
-cis_int_Nfloat              = f12
-cis_Nfloat                  = f13
-
-cis_r                       = f14
-cis_rsq                     = f15
-cis_rcub                    = f32
-
-cis_Inv_Pi_by_16            = f33
-cis_Pi_by_16_hi             = f34
-cis_Pi_by_16_lo             = f35
-
-cis_Inv_Pi_by_64            = f36
-cis_Pi_by_16_lowest         = f37
-cis_r_exact                 = f38
-
-
-cis_P1                      = f39
-cis_Q1                      = f40
-cis_P2                      = f41
-cis_Q2                      = f42
-cis_P3                      = f43
-cis_Q3                      = f44
-cis_P4                      = f45
-cis_Q4                      = f46
-
-cis_P_temp1                 = f47
-cis_P_temp2                 = f48
-
-cis_Q_temp1                 = f49
-cis_Q_temp2                 = f50
-
-cis_P                       = f51
-
-cis_SIG_INV_PI_BY_16_2TO61  = f52
-cis_RSHF_2TO61              = f53
-cis_RSHF                    = f54
-cis_2TOM61                  = f55
-cis_NFLOAT                  = f56
-cis_W_2TO61_RSH             = f57
-
-cis_tmp                     = f58
-
-cis_Sm_sin                  = f59
-cis_Cm_sin                  = f60
-
-cis_Sm_cos                  = f61
-cis_Cm_cos                  = f62
-
-cis_srsq_sin                = f63
-cis_srsq_cos                = f64
-
-cis_Q_sin                   = f65
-cis_Q_cos                   = f66
-cis_Q                       = f67
-
-/////////////////////////////////////////////////////////////
-
-cis_pResSin                 = r33
-cis_pResCos                 = r34
-
-cis_GR_sig_inv_pi_by_16     = r14
-cis_GR_rshf_2to61           = r15
-cis_GR_rshf                 = r16
-cis_GR_exp_2tom61           = r17
-cis_GR_n                    = r18
-cis_GR_n_sin                = r19
-cis_exp_limit               = r20
-cis_r_signexp               = r21
-cis_AD_1                    = r22
-cis_r_sincos                = r23
-cis_r_exp                   = r24
-cis_r_17_ones               = r25
-cis_GR_m_sin                = r26
-cis_GR_32m_sin              = r26
-cis_GR_n_cos                = r27
-cis_GR_m_cos                = r28
-cis_GR_32m_cos              = r28
-cis_AD_2_sin                = r29
-cis_AD_2_cos                = r30
-cis_gr_tmp                  = r31
-
-GR_SAVE_B0                  = r35
-GR_SAVE_GP                  = r36
-rB0_SAVED                   = r37
-GR_SAVE_PFS                 = r38
-GR_SAVE_PR                  = r39
-
-RODATA
-
-.align 16
-// Pi/16 parts
-LOCAL_OBJECT_START(double_cis_pi)
-   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
-   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
-   data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
-LOCAL_OBJECT_END(double_cis_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_cis_pq_k4)
-   data8 0x3EC71C963717C63A // P4
-   data8 0x3EF9FFBA8F191AE6 // Q4
-   data8 0xBF2A01A00F4E11A8 // P3
-   data8 0xBF56C16C05AC77BF // Q3
-   data8 0x3F8111111110F167 // P2
-   data8 0x3FA555555554DD45 // Q2
-   data8 0xBFC5555555555555 // P1
-   data8 0xBFDFFFFFFFFFFFFC // Q1
-LOCAL_OBJECT_END(double_cis_pq_k4)
-
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
-data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16)  S0
-data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16)  C0
-//
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16)  S1
-data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16)  C1
-//
-data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16)  S2
-data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16)  C2
-//
-data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16)  S3
-data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16)  C3
-//
-data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16)  S4
-data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16)  C4
-//
-data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16)  C3
-data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16)  S3
-//
-data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16)  C2
-data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16)  S2
-//
-data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16)  C1
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16)  S1
-//
-data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16)  C0
-data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16)  S0
-//
-data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16)  C1
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16)  -S1
-//
-data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16)  C2
-data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16)  -S2
-//
-data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16)  C3
-data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16)  -S3
-//
-data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16)  S4
-data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16)  -S4
-//
-data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
-data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
-//
-data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
-data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
-//
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
-data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
-//
-data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
-data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
-//
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
-data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
-//
-data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
-data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
-//
-data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
-data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
-//
-data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
-data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
-//
-data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
-data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
-//
-data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
-data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
-//
-data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
-//
-data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
-data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
-//
-data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
-data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
-//
-data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
-data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
-//
-data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
-data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
-//
-data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
-data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
-//
-data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
-data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
-//
-data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
-data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
-//
-data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
-data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
-//
-data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
-data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(sincos)
-// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
-{ .mlx
-      getf.exp      cis_r_signexp       = cis_Arg
-      movl          cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
-
-}
-// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
-      addl          cis_AD_1                = @ltoff(double_cis_pi), gp
-      movl          cis_GR_rshf_2to61       = 0x47b8000000000000
-};;
-
-{ .mfi
-      ld8           cis_AD_1            = [cis_AD_1]
-      fnorm.s1      cis_NORM_f8         = cis_Arg
-      cmp.eq        p13, p14            = r0, r0 // p13 set for sincos
-}
-// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
-      mov           cis_GR_exp_2tom61   = 0xffff-61
-      nop.i         0
-      br.cond.sptk  _CIS_COMMON
-};;
-GLOBAL_IEEE754_END(sincos)
-
-GLOBAL_LIBM_ENTRY(__libm_sincos)
-// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
-{ .mlx
-      getf.exp      cis_r_signexp       = cis_Arg
-      movl          cis_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
-}
-// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
-      addl          cis_AD_1            = @ltoff(double_cis_pi), gp
-      movl          cis_GR_rshf_2to61   = 0x47b8000000000000
-};;
-
-// p14 set for __libm_sincos and cis
-{ .mfi
-      ld8           cis_AD_1            = [cis_AD_1]
-      fnorm.s1      cis_NORM_f8         = cis_Arg
-      cmp.eq        p14, p13            = r0, r0
-}
-// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
-      mov           cis_GR_exp_2tom61   = 0xffff-61
-      nop.i         0
-      nop.b         0
-};;
-
-_CIS_COMMON:
-//  Form two constants we need
-//  16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
-//  1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
-//  fcmp used to set denormal, and invalid on snans
-{ .mfi
-      setf.sig      cis_SIG_INV_PI_BY_16_2TO61 = cis_GR_sig_inv_pi_by_16
-      fclass.m      p6,p0                      = cis_Arg, 0xe7 // if x=0,inf,nan
-      addl          cis_gr_tmp                 = -1, r0
-}
-// 1.1000 2^63 for right shift
-{ .mlx
-      setf.d        cis_RSHF_2TO61             = cis_GR_rshf_2to61
-      movl          cis_GR_rshf                = 0x43e8000000000000
-};;
-
-//  Form another constant
-//  2^-61 for scaling Nfloat
-//  0x1001a is register_bias + 27.
-//  So if f8 >= 2^27, go to large arguments routine
-{ .mfi
-      alloc         GR_SAVE_PFS         = ar.pfs, 3, 5, 0, 0
-      fclass.m      p11,p0              = cis_Arg, 0x0b // Test for x=unorm
-      mov           cis_exp_limit       = 0x1001a
-}
-{ .mib
-      setf.exp      cis_2TOM61          = cis_GR_exp_2tom61
-      nop.i         0
-(p6)  br.cond.spnt  _CIS_SPECIAL_ARGS
-};;
-
-//  Load the two pieces of pi/16
-//  Form another constant
-//  1.1000...000 * 2^63, the right shift constant
-{ .mmb
-      ldfe          cis_Pi_by_16_hi     = [cis_AD_1],16
-      setf.d        cis_RSHF            = cis_GR_rshf
-(p11) br.cond.spnt  _CIS_UNORM          // Branch if x=unorm
-};;
-
-_CIS_COMMON2:
-// Return here if x=unorm
-// Create constant inexact set
-{ .mmi
-      ldfe          cis_Pi_by_16_lo     = [cis_AD_1],16
-      setf.sig      cis_tmp             = cis_gr_tmp
-      nop.i         0
-};;
-
-// Select exponent (17 lsb)
-{ .mfi
-      ldfe          cis_Pi_by_16_lowest = [cis_AD_1],16
-      nop.f         0
-      dep.z         cis_r_exp           = cis_r_signexp, 0, 17
-};;
-
-// Start loading P, Q coefficients
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is > 0x1001a
-{ .mmb
-      ldfpd         cis_P4,cis_Q4       = [cis_AD_1],16
-      cmp.ge        p10, p0             = cis_r_exp, cis_exp_limit
-(p10) br.cond.spnt  _CIS_LARGE_ARGS // go to |x| >= 2^27 path
-};;
-
-// cis_W = x * cis_Inv_Pi_by_16
-// Multiply x by scaled 16/pi and add large const to shift integer part of W to
-// rightmost bits of significand
-{ .mfi
-      ldfpd         cis_P3,cis_Q3       = [cis_AD_1],16
-      fma.s1 cis_W_2TO61_RSH = cis_NORM_f8,cis_SIG_INV_PI_BY_16_2TO61,cis_RSHF_2TO61
-      nop.i  0
-};;
-
-// get N = (int)cis_int_Nfloat
-// cis_NFLOAT = Round_Int_Nearest(cis_W)
-{ .mmf
-      getf.sig      cis_GR_n            = cis_W_2TO61_RSH
-      ldfpd  cis_P2,cis_Q2   = [cis_AD_1],16
-      fms.s1        cis_NFLOAT          = cis_W_2TO61_RSH,cis_2TOM61,cis_RSHF
-};;
-
-// cis_r = -cis_Nfloat * cis_Pi_by_16_hi + x
-{ .mfi
-      ldfpd         cis_P1,cis_Q1       = [cis_AD_1], 16
-      fnma.s1       cis_r               = cis_NFLOAT,cis_Pi_by_16_hi,cis_NORM_f8
-      nop.i         0
-};;
-
-// Add 2^(k-1) (which is in cis_r_sincos) to N
-{ .mmi
-      add           cis_GR_n_cos        = 0x8, cis_GR_n
-;;
-//Get M (least k+1 bits of N)
-      and           cis_GR_m_sin        = 0x1f,cis_GR_n
-      and           cis_GR_m_cos        = 0x1f,cis_GR_n_cos
-};;
-
-{ .mmi
-      nop.m         0
-      nop.m         0
-      shl           cis_GR_32m_sin      = cis_GR_m_sin,5
-};;
-
-// Add 32*M to address of sin_cos_beta table
-// cis_r =  cis_r -cis_Nfloat * cis_Pi_by_16_lo
-{ .mfi
-      add           cis_AD_2_sin        = cis_GR_32m_sin, cis_AD_1
-      fnma.s1       cis_r               = cis_NFLOAT, cis_Pi_by_16_lo,  cis_r
-      shl           cis_GR_32m_cos      = cis_GR_m_cos,5
-};;
-
-// Add 32*M to address of sin_cos_beta table
-{ .mmf
-      ldfe          cis_Sm_sin          = [cis_AD_2_sin],16
-      add           cis_AD_2_cos        = cis_GR_32m_cos, cis_AD_1
-      fclass.m.unc  p10,p0              = cis_Arg,0x0b  // den. input - uflow
-};;
-
-{ .mfi
-      ldfe          cis_Sm_cos          = [cis_AD_2_cos], 16
-      nop.i         0
-};;
-
-{ .mfi
-      ldfe          cis_Cm_sin          = [cis_AD_2_sin]
-      fma.s1        cis_rsq             = cis_r, cis_r,   f0  // get r^2
-      nop.i         0
-}
-// fmpy forces inexact flag
-{ .mfi
-      nop.m         0
-      fmpy.s0       cis_tmp             = cis_tmp,cis_tmp
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fnma.s1       cis_r_exact         = cis_NFLOAT, cis_Pi_by_16_lowest, cis_r
-      nop.i         0
-};;
-
-{ .mfi
-      ldfe          cis_Cm_cos          = [cis_AD_2_cos]
-      fma.s1        cis_P_temp1         = cis_rsq, cis_P4, cis_P3
-      nop.i         0
-}
-
-{ .mfi
-      nop.m         0
-      fma.s1        cis_Q_temp1         = cis_rsq, cis_Q4, cis_Q3
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fmpy.s1       cis_srsq_sin        = cis_Sm_sin, cis_rsq
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fmpy.s1       cis_srsq_cos        = cis_Sm_cos,cis_rsq
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cis_Q_temp2         = cis_rsq, cis_Q_temp1, cis_Q2
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        cis_P_temp2         = cis_rsq, cis_P_temp1, cis_P2
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fmpy.s1       cis_rcub            = cis_r_exact, cis_rsq // get r^3
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cis_Q               = cis_rsq, cis_Q_temp2, cis_Q1
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        cis_P               = cis_rsq, cis_P_temp2, cis_P1
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cis_Q_sin           = cis_srsq_sin,cis_Q, cis_Sm_sin
-      nop.i         0
-}
-{ .mfi
-      nop.m         0
-      fma.s1        cis_Q_cos           = cis_srsq_cos,cis_Q, cis_Sm_cos
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fma.s1        cis_P               = cis_rcub,cis_P, cis_r_exact // final P
-      nop.i         0
-};;
-
-// If den. arg, force underflow to be set
-{ .mfi
-      nop.m         0
-(p10) fmpy.d.s0     cis_tmp             = cis_Arg,cis_Arg
-      nop.i         0
-};;
-
-{ .mfi
-      nop.m         0
-      fma.d.s0      cis_Sin_res         = cis_Cm_sin,cis_P,cis_Q_sin//Final sin
-      nop.i         0
-}
-{ .mfb
-      nop.m         0
-      fma.d.s0      cis_Cos_res         = cis_Cm_cos,cis_P,cis_Q_cos//Final cos
-(p14) br.ret.sptk   b0  // common exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
-      stfd          [cis_pResSin]       = cis_Sin_res
-      stfd          [cis_pResCos]       = cis_Cos_res
-      br.ret.sptk   b0 // common exit for sincos main path
-};;
-
-_CIS_SPECIAL_ARGS:
-// sin(+/-0) = +/-0
-// sin(Inf)  = NaN
-// sin(NaN)  = NaN
-{ .mfi
-      nop.m         999
-      fma.d.s0      cis_Sin_res          = cis_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
-      nop.i         999
-};;
-// cos(+/-0) = 1.0
-// cos(Inf)  = NaN
-// cos(NaN)  = NaN
-{ .mfb
-      nop.m         999
-      fma.d.s0      cis_Cos_res          = cis_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
-(p14) br.ret.sptk   b0 //spec exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
-      stfd          [cis_pResSin]       = cis_Sin_res
-      stfd          [cis_pResCos]       = cis_Cos_res
-      br.ret.sptk   b0 // common exit for sincos main path
-};;
-
-_CIS_UNORM:
-// Here if x=unorm
-{ .mfb
-      getf.exp      cis_r_signexp       = cis_NORM_f8 // Get signexp of x
-      fcmp.eq.s0    p11,p0              = cis_Arg, f0 // Dummy op to set denorm
-      br.cond.sptk  _CIS_COMMON2        // Return to main path
-};;
-
-GLOBAL_LIBM_END(__libm_sincos)
-
-////  |x| > 2^27 path  ///////
-.proc _CIS_LARGE_ARGS
-_CIS_LARGE_ARGS:
-.prologue
-{ .mfi
-      nop.m         0
-      nop.f         0
-.save ar.pfs, GR_SAVE_PFS
-      mov           GR_SAVE_PFS         = ar.pfs
-}
-;;
-
-{ .mfi
-      mov           GR_SAVE_GP          = gp
-      nop.f         0
-.save b0, GR_SAVE_B0
-      mov           GR_SAVE_B0          = b0
-};;
-
-.body
-// Call of huge arguments sincos
-{ .mib
-      nop.m         0
-      mov           GR_SAVE_PR          = pr
-      br.call.sptk  b0                  = __libm_sincos_large
-};;
-
-{ .mfi
-      mov           gp                  = GR_SAVE_GP
-      nop.f         0
-      mov           pr                  = GR_SAVE_PR, 0x1fffe
-}
-;;
-
-{ .mfi
-      nop.m         0
-      nop.f         0
-      mov           b0                  = GR_SAVE_B0
-}
-;;
-
-{ .mfi
-      nop.m         0
-      fma.d.s0      cis_Cos_res         = cis_Cos_res, f1, f0
-      mov           ar.pfs              = GR_SAVE_PFS
-}
-{ .mfb
-      nop.m         0
-      fma.d.s0      cis_Sin_res         = cis_Sin_res, f1, f0
-(p14) br.ret.sptk   b0  // exit for |x| > 2^27 path (__libm_sincos and cis)
-};;
-
-{ .mmb
-      stfd          [cis_pResSin]       = cis_Sin_res
-      stfd          [cis_pResCos]       = cis_Cos_res
-      br.ret.sptk   b0 // exit for sincos |x| > 2^27 path
-};;
-.endp _CIS_LARGE_ARGS
-
-.type __libm_sincos_large#,@function
-.global __libm_sincos_large#
-