diff options
Diffstat (limited to 'sysdeps/ia64/fpu/e_sinh.S')
-rw-r--r-- | sysdeps/ia64/fpu/e_sinh.S | 905 |
1 files changed, 905 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/e_sinh.S b/sysdeps/ia64/fpu/e_sinh.S new file mode 100644 index 0000000000..f60907b72b --- /dev/null +++ b/sysdeps/ia64/fpu/e_sinh.S @@ -0,0 +1,905 @@ +.file "sinh.s" + + +// Copyright (c) 2000 - 2005, Intel Corporation +// All rights reserved. +// +// Contributed 2000 by the Intel Numerics Group, Intel Corporation +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote +// products derived from this software without specific prior written +// permission. + +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS +// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY +// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Intel Corporation is the author of this code, and requests that all +// problem reports or change requests be submitted to it directly at +// http://www.intel.com/software/products/opensource/libraries/num.htm. +// +// History +//============================================================== +// 02/02/00 Initial version +// 04/04/00 Unwind support added +// 08/15/00 Bundle added after call to __libm_error_support to properly +// set [the previously overwritten] GR_Parameter_RESULT. +// 10/12/00 Update to set denormal operand and underflow flags +// 01/22/01 Fixed to set inexact flag for small args. +// 05/02/01 Reworked to improve speed of all paths +// 05/20/02 Cleaned up namespace and sf0 syntax +// 11/20/02 Improved speed with new algorithm +// 03/31/05 Reformatted delimiters between data tables + +// API +//============================================================== +// double sinh(double) + +// Overview of operation +//============================================================== +// Case 1: 0 < |x| < 2^-60 +// Result = x, computed by x+sgn(x)*x^2) to handle flags and rounding +// +// Case 2: 2^-60 < |x| < 0.25 +// Evaluate sinh(x) by a 13th order polynomial +// Care is take for the order of multiplication; and A1 is not exactly 1/3!, +// A2 is not exactly 1/5!, etc. +// sinh(x) = x + (A1*x^3 + A2*x^5 + A3*x^7 + A4*x^9 + A5*x^11 + A6*x^13) +// +// Case 3: 0.25 < |x| < 710.47586 +// Algorithm is based on the identity sinh(x) = ( exp(x) - exp(-x) ) / 2. +// The algorithm for exp is described as below. There are a number of +// economies from evaluating both exp(x) and exp(-x). Although we +// are evaluating both quantities, only where the quantities diverge do we +// duplicate the computations. The basic algorithm for exp(x) is described +// below. +// +// Take the input x. w is "how many log2/128 in x?" +// w = x * 128/log2 +// n = int(w) +// x = n log2/128 + r + delta + +// n = 128M + index_1 + 2^4 index_2 +// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta + +// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta) +// Construct 2^M +// Get 2^(index_1/128) from table_1; +// Get 2^(index_2/8) from table_2; +// Calculate exp(r) by 5th order polynomial +// r = x - n (log2/128)_high +// delta = - n (log2/128)_low +// Calculate exp(delta) as 1 + delta + + +// Special values +//============================================================== +// sinh(+0) = +0 +// sinh(-0) = -0 + +// sinh(+qnan) = +qnan +// sinh(-qnan) = -qnan +// sinh(+snan) = +qnan +// sinh(-snan) = -qnan + +// sinh(-inf) = -inf +// sinh(+inf) = +inf + +// Overflow and Underflow +//======================= +// sinh(x) = largest double normal when +// |x| = 710.47586 = 0x408633ce8fb9f87d +// +// Underflow is handled as described in case 1 above + +// Registers used +//============================================================== +// Floating Point registers used: +// f8, input, output +// f6 -> f15, f32 -> f61 + +// General registers used: +// r14 -> r40 + +// Predicate registers used: +// p6 -> p15 + +// Assembly macros +//============================================================== + +rRshf = r14 +rN_neg = r14 +rAD_TB1 = r15 +rAD_TB2 = r16 +rAD_P = r17 +rN = r18 +rIndex_1 = r19 +rIndex_2_16 = r20 +rM = r21 +rBiased_M = r21 +rSig_inv_ln2 = r22 +rIndex_1_neg = r22 +rExp_bias = r23 +rExp_bias_minus_1 = r23 +rExp_mask = r24 +rTmp = r24 +rGt_ln = r24 +rIndex_2_16_neg = r24 +rM_neg = r25 +rBiased_M_neg = r25 +rRshf_2to56 = r26 +rAD_T1_neg = r26 +rExp_2tom56 = r28 +rAD_T2_neg = r28 +rAD_T1 = r29 +rAD_T2 = r30 +rSignexp_x = r31 +rExp_x = r31 + +GR_SAVE_B0 = r33 +GR_SAVE_PFS = r34 +GR_SAVE_GP = r35 + +GR_Parameter_X = r37 +GR_Parameter_Y = r38 +GR_Parameter_RESULT = r39 +GR_Parameter_TAG = r40 + + +FR_X = f10 +FR_Y = f1 +FR_RESULT = f8 + +fRSHF_2TO56 = f6 +fINV_LN2_2TO63 = f7 +fW_2TO56_RSH = f9 +f2TOM56 = f11 +fP5 = f12 +fP4 = f13 +fP3 = f14 +fP2 = f15 + +fLn2_by_128_hi = f33 +fLn2_by_128_lo = f34 + +fRSHF = f35 +fNfloat = f36 +fNormX = f37 +fR = f38 +fF = f39 + +fRsq = f40 +f2M = f41 +fS1 = f42 +fT1 = f42 +fS2 = f43 +fT2 = f43 +fS = f43 +fWre_urm_f8 = f44 +fAbsX = f44 + +fMIN_DBL_OFLOW_ARG = f45 +fMAX_DBL_NORM_ARG = f46 +fXsq = f47 +fX4 = f48 +fGt_pln = f49 +fTmp = f49 + +fP54 = f50 +fP5432 = f50 +fP32 = f51 +fP = f52 +fP54_neg = f53 +fP5432_neg = f53 +fP32_neg = f54 +fP_neg = f55 +fF_neg = f56 + +f2M_neg = f57 +fS1_neg = f58 +fT1_neg = f58 +fS2_neg = f59 +fT2_neg = f59 +fS_neg = f59 +fExp = f60 +fExp_neg = f61 + +fA6 = f50 +fA65 = f50 +fA6543 = f50 +fA654321 = f50 +fA5 = f51 +fA4 = f52 +fA43 = f52 +fA3 = f53 +fA2 = f54 +fA21 = f54 +fA1 = f55 +fX3 = f56 + +// Data tables +//============================================================== + +RODATA +.align 16 + +// ************* DO NOT CHANGE ORDER OF THESE TABLES ******************** + +// double-extended 1/ln(2) +// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88 +// 3fff b8aa 3b29 5c17 f0bc +// For speed the significand will be loaded directly with a movl and setf.sig +// and the exponent will be bias+63 instead of bias+0. Thus subsequent +// computations need to scale appropriately. +// The constant 128/ln(2) is needed for the computation of w. This is also +// obtained by scaling the computations. +// +// Two shifting constants are loaded directly with movl and setf.d. +// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7) +// This constant is added to x*1/ln2 to shift the integer part of +// x*128/ln2 into the rightmost bits of the significand. +// The result of this fma is fW_2TO56_RSH. +// 2. fRSHF = 1.1000..00 * 2^(63) +// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give +// the integer part of w, n, as a floating-point number. +// The result of this fms is fNfloat. + + +LOCAL_OBJECT_START(exp_table_1) +data8 0x408633ce8fb9f87e // smallest dbl overflow arg +data8 0x408633ce8fb9f87d // largest dbl arg to give normal dbl result +data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi +data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo +// +// Table 1 is 2^(index_1/128) where +// index_1 goes from 0 to 15 +// +data8 0x8000000000000000 , 0x00003FFF +data8 0x80B1ED4FD999AB6C , 0x00003FFF +data8 0x8164D1F3BC030773 , 0x00003FFF +data8 0x8218AF4373FC25EC , 0x00003FFF +data8 0x82CD8698AC2BA1D7 , 0x00003FFF +data8 0x8383594EEFB6EE37 , 0x00003FFF +data8 0x843A28C3ACDE4046 , 0x00003FFF +data8 0x84F1F656379C1A29 , 0x00003FFF +data8 0x85AAC367CC487B15 , 0x00003FFF +data8 0x8664915B923FBA04 , 0x00003FFF +data8 0x871F61969E8D1010 , 0x00003FFF +data8 0x87DB357FF698D792 , 0x00003FFF +data8 0x88980E8092DA8527 , 0x00003FFF +data8 0x8955EE03618E5FDD , 0x00003FFF +data8 0x8A14D575496EFD9A , 0x00003FFF +data8 0x8AD4C6452C728924 , 0x00003FFF +LOCAL_OBJECT_END(exp_table_1) + +// Table 2 is 2^(index_1/8) where +// index_2 goes from 0 to 7 +LOCAL_OBJECT_START(exp_table_2) +data8 0x8000000000000000 , 0x00003FFF +data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF +data8 0x9837F0518DB8A96F , 0x00003FFF +data8 0xA5FED6A9B15138EA , 0x00003FFF +data8 0xB504F333F9DE6484 , 0x00003FFF +data8 0xC5672A115506DADD , 0x00003FFF +data8 0xD744FCCAD69D6AF4 , 0x00003FFF +data8 0xEAC0C6E7DD24392F , 0x00003FFF +LOCAL_OBJECT_END(exp_table_2) + + +LOCAL_OBJECT_START(exp_p_table) +data8 0x3f8111116da21757 //P5 +data8 0x3fa55555d787761c //P4 +data8 0x3fc5555555555414 //P3 +data8 0x3fdffffffffffd6a //P2 +LOCAL_OBJECT_END(exp_p_table) + +LOCAL_OBJECT_START(sinh_p_table) +data8 0xB08AF9AE78C1239F, 0x00003FDE // A6 +data8 0xB8EF1D28926D8891, 0x00003FEC // A4 +data8 0x8888888888888412, 0x00003FF8 // A2 +data8 0xD732377688025BE9, 0x00003FE5 // A5 +data8 0xD00D00D00D4D39F2, 0x00003FF2 // A3 +data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // A1 +LOCAL_OBJECT_END(sinh_p_table) + + +.section .text +GLOBAL_IEEE754_ENTRY(sinh) + +{ .mlx + getf.exp rSignexp_x = f8 // Must recompute if x unorm + movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2 +} +{ .mlx + addl rAD_TB1 = @ltoff(exp_table_1), gp + movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56) +} +;; + +{ .mfi + ld8 rAD_TB1 = [rAD_TB1] + fclass.m p6,p0 = f8,0x0b // Test for x=unorm + mov rExp_mask = 0x1ffff +} +{ .mfi + mov rExp_bias = 0xffff + fnorm.s1 fNormX = f8 + mov rExp_2tom56 = 0xffff-56 +} +;; + +// Form two constants we need +// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128 +// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand + +{ .mfi + setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63 + fclass.m p8,p0 = f8,0x07 // Test for x=0 + nop.i 999 +} +{ .mlx + setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56) + movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift +} +;; + +{ .mfi + ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_NORM_ARG = [rAD_TB1],16 + fclass.m p10,p0 = f8,0x1e3 // Test for x=inf, nan, NaT + nop.i 0 +} +{ .mfb + setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat + nop.f 0 +(p6) br.cond.spnt SINH_UNORM // Branch if x=unorm +} +;; + +SINH_COMMON: +{ .mfi + ldfe fLn2_by_128_hi = [rAD_TB1],16 + nop.f 0 + nop.i 0 +} +{ .mfb + setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63 + nop.f 0 +(p8) br.ret.spnt b0 // Exit for x=0, result=x +} +;; + +{ .mfi + ldfe fLn2_by_128_lo = [rAD_TB1],16 + nop.f 0 + nop.i 0 +} +{ .mfb + and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x +(p10) fma.d.s0 f8 = f8,f1,f0 // Result if x=inf, nan, NaT +(p10) br.ret.spnt b0 // quick exit for x=inf, nan, NaT +} +;; + +// After that last load rAD_TB1 points to the beginning of table 1 +{ .mfi + nop.m 0 + fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D + sub rExp_x = rExp_x, rExp_bias // True exponent of x +} +;; + +{ .mfi + nop.m 0 + fmerge.s fAbsX = f0, fNormX // Form |x| + nop.i 0 +} +{ .mfb + cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2) + fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path +(p7) br.cond.spnt SINH_SMALL // Branch if 0 < |x| < 2^-2 +} +;; + +// W = X * Inv_log2_by_128 +// By adding 1.10...0*2^63 we shift and get round_int(W) in significand. +// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing. + +{ .mfi + add rAD_P = 0x180, rAD_TB1 + fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56 + add rAD_TB2 = 0x100, rAD_TB1 +} +;; + +// Divide arguments into the following categories: +// Certain Safe - 0.25 <= |x| <= MAX_DBL_NORM_ARG +// Possible Overflow p14 - MAX_DBL_NORM_ARG < |x| < MIN_DBL_OFLOW_ARG +// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= |x| < +inf +// +// If the input is really a double arg, then there will never be +// "Possible Overflow" arguments. +// + +{ .mfi + ldfpd fP5, fP4 = [rAD_P] ,16 + fcmp.ge.s1 p15,p14 = fAbsX,fMIN_DBL_OFLOW_ARG + nop.i 0 +} +;; + +// Nfloat = round_int(W) +// The signficand of fW_2TO56_RSH contains the rounded integer part of W, +// as a twos complement number in the lower bits (that is, it may be negative). +// That twos complement number (called N) is put into rN. + +// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56 +// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat. +// Thus, fNfloat contains the floating point version of N + +{ .mfi + ldfpd fP3, fP2 = [rAD_P] +(p14) fcmp.gt.unc.s1 p14,p0 = fAbsX,fMAX_DBL_NORM_ARG + nop.i 0 +} +{ .mfb + nop.m 0 + fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF +(p15) br.cond.spnt SINH_CERTAIN_OVERFLOW +} +;; + +{ .mfi + getf.sig rN = fW_2TO56_RSH + nop.f 0 + mov rExp_bias_minus_1 = 0xfffe +} +;; + +// rIndex_1 has index_1 +// rIndex_2_16 has index_2 * 16 +// rBiased_M has M + +// rM has true M +// r = x - Nfloat * ln2_by_128_hi +// f = 1 - Nfloat * ln2_by_128_lo +{ .mfi + and rIndex_1 = 0x0f, rN + fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX + shr rM = rN, 0x7 +} +{ .mfi + and rIndex_2_16 = 0x70, rN + fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1 + sub rN_neg = r0, rN +} +;; + +{ .mmi + and rIndex_1_neg = 0x0f, rN_neg + add rBiased_M = rExp_bias_minus_1, rM + shr rM_neg = rN_neg, 0x7 +} +{ .mmi + and rIndex_2_16_neg = 0x70, rN_neg + add rAD_T2 = rAD_TB2, rIndex_2_16 + shladd rAD_T1 = rIndex_1, 4, rAD_TB1 +} +;; + +// rAD_T1 has address of T1 +// rAD_T2 has address if T2 + +{ .mmi + setf.exp f2M = rBiased_M + ldfe fT2 = [rAD_T2] + nop.i 0 +} +{ .mmi + add rBiased_M_neg = rExp_bias_minus_1, rM_neg + add rAD_T2_neg = rAD_TB2, rIndex_2_16_neg + shladd rAD_T1_neg = rIndex_1_neg, 4, rAD_TB1 +} +;; + +// Create Scale = 2^M +// Load T1 and T2 +{ .mmi + ldfe fT1 = [rAD_T1] + nop.m 0 + nop.i 0 +} +{ .mmf + setf.exp f2M_neg = rBiased_M_neg + ldfe fT2_neg = [rAD_T2_neg] + fma.s1 fF_neg = fNfloat, fLn2_by_128_lo, f1 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fRsq = fR, fR, f0 + nop.i 0 +} +{ .mfi + ldfe fT1_neg = [rAD_T1_neg] + fma.s1 fP54 = fR, fP5, fP4 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fP32 = fR, fP3, fP2 + nop.i 0 +} +{ .mfi + nop.m 0 + fnma.s1 fP54_neg = fR, fP5, fP4 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fnma.s1 fP32_neg = fR, fP3, fP2 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fP5432 = fRsq, fP54, fP32 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 fS2 = fF,fT2,f0 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fS1 = f2M,fT1,f0 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 fP5432_neg = fRsq, fP54_neg, fP32_neg + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fS1_neg = f2M_neg,fT1_neg,f0 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 fS2_neg = fF_neg,fT2_neg,f0 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fP = fRsq, fP5432, fR + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 fS = fS1,fS2,f0 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fms.s1 fP_neg = fRsq, fP5432_neg, fR + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 fS_neg = fS1_neg,fS2_neg,f0 + nop.i 0 +} +;; + +{ .mfb + nop.m 0 + fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact +(p14) br.cond.spnt SINH_POSSIBLE_OVERFLOW +} +;; + +{ .mfi + nop.m 0 + fma.s1 fExp = fS, fP, fS + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 fExp_neg = fS_neg, fP_neg, fS_neg + nop.i 0 +} +;; + +{ .mfb + nop.m 0 + fms.d.s0 f8 = fExp, f1, fExp_neg + br.ret.sptk b0 // Normal path exit +} +;; + +// Here if 0 < |x| < 0.25 +SINH_SMALL: +{ .mfi + add rAD_T1 = 0x1a0, rAD_TB1 + fcmp.lt.s1 p7, p8 = fNormX, f0 // Test sign of x + cmp.gt p6, p0 = -60, rExp_x // Test |x| < 2^(-60) +} +{ .mfi + add rAD_T2 = 0x1d0, rAD_TB1 + nop.f 0 + nop.i 0 +} +;; + +{ .mmb + ldfe fA6 = [rAD_T1],16 + ldfe fA5 = [rAD_T2],16 +(p6) br.cond.spnt SINH_VERY_SMALL // Branch if |x| < 2^(-60) +} +;; + +{ .mmi + ldfe fA4 = [rAD_T1],16 + ldfe fA3 = [rAD_T2],16 + nop.i 0 +} +;; + +{ .mmi + ldfe fA2 = [rAD_T1] + ldfe fA1 = [rAD_T2] + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fX3 = fNormX, fXsq, f0 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 fX4 = fXsq, fXsq, f0 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fA65 = fXsq, fA6, fA5 + nop.i 0 +} +{ .mfi + nop.m 0 + fma.s1 fA43 = fXsq, fA4, fA3 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fA21 = fXsq, fA2, fA1 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fA6543 = fX4, fA65, fA43 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fma.s1 fA654321 = fX4, fA6543, fA21 + nop.i 0 +} +;; + +// Dummy multiply to generate inexact +{ .mfi + nop.m 0 + fmpy.s0 fTmp = fA6, fA6 + nop.i 0 +} +{ .mfb + nop.m 0 + fma.d.s0 f8 = fA654321, fX3, fNormX + br.ret.sptk b0 // Exit if 2^-60 < |x| < 0.25 +} +;; + +SINH_VERY_SMALL: +// Here if 0 < |x| < 2^-60 +// Compute result by x + sgn(x)*x^2 to get properly rounded result +.pred.rel "mutex",p7,p8 +{ .mfi + nop.m 0 +(p7) fnma.d.s0 f8 = fNormX, fNormX, fNormX // If x<0 result ~ x-x^2 + nop.i 0 +} +{ .mfb + nop.m 0 +(p8) fma.d.s0 f8 = fNormX, fNormX, fNormX // If x>0 result ~ x+x^2 + br.ret.sptk b0 // Exit if |x| < 2^-60 +} +;; + + +SINH_POSSIBLE_OVERFLOW: + +// Here if fMAX_DBL_NORM_ARG < |x| < fMIN_DBL_OFLOW_ARG +// This cannot happen if input is a double, only if input higher precision. +// Overflow is a possibility, not a certainty. + +// Recompute result using status field 2 with user's rounding mode, +// and wre set. If result is larger than largest double, then we have +// overflow + +{ .mfi + mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp + fsetc.s2 0x7F,0x42 // Get user's round mode, set wre + nop.i 0 +} +;; + +{ .mfi + setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp + fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fsetc.s2 0x7F,0x40 // Turn off wre in sf2 + nop.i 0 +} +;; + +{ .mfi + nop.m 0 + fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow + nop.i 0 +} +;; + +{ .mfb + nop.m 0 + nop.f 0 +(p6) br.cond.spnt SINH_CERTAIN_OVERFLOW // Branch if overflow +} +;; + +{ .mfb + nop.m 0 + fma.d.s0 f8 = fS, fP, fS + br.ret.sptk b0 // Exit if really no overflow +} +;; + +SINH_CERTAIN_OVERFLOW: +{ .mfi + sub rTmp = rExp_mask, r0, 1 + fcmp.lt.s1 p6, p7 = fNormX, f0 // Test for x < 0 + nop.i 0 +} +;; + +{ .mmf + alloc r32=ar.pfs,1,4,4,0 + setf.exp fTmp = rTmp + fmerge.s FR_X = f8,f8 +} +;; + +{ .mfi + mov GR_Parameter_TAG = 127 +(p6) fnma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and -INF result + nop.i 0 +} +{ .mfb + nop.m 0 +(p7) fma.d.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result + br.cond.sptk __libm_error_region +} +;; + +// Here if x unorm +SINH_UNORM: +{ .mfb + getf.exp rSignexp_x = fNormX // Must recompute if x unorm + fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag + br.cond.sptk SINH_COMMON +} +;; + +GLOBAL_IEEE754_END(sinh) + + +LOCAL_LIBM_ENTRY(__libm_error_region) +.prologue +{ .mfi + add GR_Parameter_Y=-32,sp // Parameter 2 value + nop.f 0 +.save ar.pfs,GR_SAVE_PFS + mov GR_SAVE_PFS=ar.pfs // Save ar.pfs +} +{ .mfi +.fframe 64 + add sp=-64,sp // Create new stack + nop.f 0 + mov GR_SAVE_GP=gp // Save gp +};; +{ .mmi + stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack + add GR_Parameter_X = 16,sp // Parameter 1 address +.save b0, GR_SAVE_B0 + mov GR_SAVE_B0=b0 // Save b0 +};; +.body +{ .mib + stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack + add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address + nop.b 0 +} +{ .mib + stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack + add GR_Parameter_Y = -16,GR_Parameter_Y + br.call.sptk b0=__libm_error_support# // Call error handling function +};; +{ .mmi + add GR_Parameter_RESULT = 48,sp + nop.m 0 + nop.i 0 +};; +{ .mmi + ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack +.restore sp + add sp = 64,sp // Restore stack pointer + mov b0 = GR_SAVE_B0 // Restore return address +};; +{ .mib + mov gp = GR_SAVE_GP // Restore gp + mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs + br.ret.sptk b0 // Return +};; + +LOCAL_LIBM_END(__libm_error_region) +.type __libm_error_support#,@function +.global __libm_error_support# |