summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_pow.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_pow.S')
-rw-r--r--sysdeps/ia64/fpu/e_pow.S2296
1 files changed, 2296 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/e_pow.S b/sysdeps/ia64/fpu/e_pow.S
new file mode 100644
index 0000000000..765f509695
--- /dev/null
+++ b/sysdeps/ia64/fpu/e_pow.S
@@ -0,0 +1,2296 @@
+.file "pow.s"
+
+
+// Copyright (c) 2000 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+// History
+//==============================================================
+// 02/02/00 Initial version
+// 02/03/00 Added p12 to definite over/under path. With odd power we did not
+//          maintain the sign of x in this path.
+// 04/04/00 Unwind support added
+// 04/19/00 pow(+-1,inf) now returns NaN
+//          pow(+-val, +-inf) returns 0 or inf, but now does not call error
+//          support
+//          Added s1 to fcvt.fx because invalid flag was incorrectly set.
+// 08/15/00 Bundle added after call to __libm_error_support to properly
+//          set [the previously overwritten] GR_Parameter_RESULT.
+// 09/07/00 Improved performance by eliminating bank conflicts and other stalls,
+//          and tweaking the critical path
+// 09/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
+// 09/28/00 Updated NaN**0 path
+// 01/20/01 Fixed denormal flag settings.
+// 02/13/01 Improved speed.
+// 03/19/01 Reordered exp polynomial to improve speed and eliminate monotonicity
+//          problem in round up, down, and to zero modes.  Also corrected
+//          overflow result when x negative, y odd in round up, down, zero.
+// 06/14/01 Added brace missing from bundle
+// 12/10/01 Corrected case where x negative, 2^52 <= |y| < 2^53, y odd integer.
+// 12/20/01 Fixed monotonity problem in round to nearest.
+// 02/08/02 Fixed overflow/underflow cases that were not calling error support.
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 08/29/02 Improved Itanium 2 performance
+// 09/21/02 Added branch for |y*log(x)|<2^-11 to fix monotonicity problems.
+// 02/10/03 Reordered header: .section, .global, .proc, .align
+// 03/31/05 Reformatted delimiters between data tables
+//
+// API
+//==============================================================
+// double pow(double x, double y)
+//
+// Overview of operation
+//==============================================================
+//
+// Three steps...
+// 1. Log(x)
+// 2. y Log(x)
+// 3. exp(y log(x))
+//
+// This means we work with the absolute value of x and merge in the sign later.
+//      Log(x) = G + delta + r -rsq/2 + p
+// G,delta depend on the exponent of x and table entries. The table entries are
+// indexed by the exponent of x, called K.
+//
+// The G and delta come out of the reduction; r is the reduced x.
+//
+// B = frcpa(x)
+// xB-1 is small means that B is the approximate inverse of x.
+//
+//      Log(x) = Log( (1/B)(Bx) )
+//             = Log(1/B) + Log(Bx)
+//             = Log(1/B) + Log( 1 + (Bx-1))
+//
+//      x  = 2^K 1.x_1x_2.....x_52
+//      B= frcpa(x) = 2^-k Cm
+//      Log(1/B) = Log(1/(2^-K Cm))
+//      Log(1/B) = Log((2^K/ Cm))
+//      Log(1/B) = K Log(2) + Log(1/Cm)
+//
+//      Log(x)   = K Log(2) + Log(1/Cm) + Log( 1 + (Bx-1))
+//
+// If you take the significand of x, set the exponent to true 0, then Cm is
+// the frcpa. We tabulate the Log(1/Cm) values. There are 256 of them.
+// The frcpa table is indexed by 8 bits, the x_1 thru x_8.
+// m = x_1x_2...x_8 is an 8-bit index.
+//
+//      Log(1/Cm) = log(1/frcpa(1+m/256)) where m goes from 0 to 255.
+//
+// We tabluate as two doubles, T and t, where T +t is the value itself.
+//
+//      Log(x)   = (K Log(2)_hi + T) + (Log(2)_hi + t) + Log( 1 + (Bx-1))
+//      Log(x)   =  G + delta           + Log( 1 + (Bx-1))
+//
+// The Log( 1 + (Bx-1)) can be calculated as a series in r = Bx-1.
+//
+//      Log( 1 + (Bx-1)) = r - rsq/2 + p
+//
+// Then,
+//
+//      yLog(x) = yG + y delta + y(r-rsq/2) + yp
+//      yLog(x) = Z1 + e3      + Z2         + Z3 + (e2 + e3)
+//
+//
+//     exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
+//
+//
+//       exp(Z3) is another series.
+//       exp(e1 + e2 + e3) is approximated as f3 = 1 + (e1 + e2 + e3)
+//
+//       Z1 (128/log2) = number of log2/128 in Z1 is N1
+//       Z2 (128/log2) = number of log2/128 in Z2 is N2
+//
+//       s1 = Z1 - N1 log2/128
+//       s2 = Z2 - N2 log2/128
+//
+//       s = s1 + s2
+//       N = N1 + N2
+//
+//       exp(Z1 + Z2) = exp(Z)
+//       exp(Z)       = exp(s) exp(N log2/128)
+//
+//       exp(r)       = exp(Z - N log2/128)
+//
+//      r = s + d = (Z - N (log2/128)_hi) -N (log2/128)_lo
+//                =  Z - N (log2/128)
+//
+//      Z         = s+d +N (log2/128)
+//
+//      exp(Z)    = exp(s) (1+d) exp(N log2/128)
+//
+//      N = M 128 + n
+//
+//      N log2/128 = M log2 + n log2/128
+//
+//      n is 8 binary digits = n_7n_6...n_1
+//
+//      n log2/128 = n_7n_6n_5 16 log2/128 + n_4n_3n_2n_1 log2/128
+//      n log2/128 = n_7n_6n_5 log2/8 + n_4n_3n_2n_1 log2/128
+//      n log2/128 = I2 log2/8 + I1 log2/128
+//
+//      N log2/128 = M log2 + I2 log2/8 + I1 log2/128
+//
+//      exp(Z)    = exp(s) (1+d) exp(log(2^M) + log(2^I2/8) + log(2^I1/128))
+//      exp(Z)    = exp(s) (1+d1) (1+d2)(2^M) 2^I2/8 2^I1/128
+//      exp(Z)    = exp(s) f1 f2 (2^M) 2^I2/8 2^I1/128
+//
+// I1, I2 are table indices. Use a series for exp(s).
+// Then get exp(Z)
+//
+//     exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
+//     exp(yLog(x)) = exp(Z) exp(Z3) f3
+//     exp(yLog(x)) = exp(Z)f3 exp(Z3)
+//     exp(yLog(x)) = A exp(Z3)
+//
+// We actually calculate exp(Z3) -1.
+// Then,
+//     exp(yLog(x)) = A + A( exp(Z3)   -1)
+//
+
+// Table Generation
+//==============================================================
+
+// The log values
+// ==============
+// The operation (K*log2_hi) must be exact. K is the true exponent of x.
+// If we allow gradual underflow (denormals), K can be represented in 12 bits
+// (as a two's complement number). We assume 13 bits as an engineering
+// precaution.
+//
+//           +------------+----------------+-+
+//           |  13 bits   | 50 bits        | |
+//           +------------+----------------+-+
+//           0            1                66
+//                        2                34
+//
+// So we want the lsb(log2_hi) to be 2^-50
+// We get log2 as a quad-extended (15-bit exponent, 128-bit significand)
+//
+//      0 fffe b17217f7d1cf79ab c9e3b39803f2f6af (4...)
+//
+// Consider numbering the bits left to right, starting at 0 thru 127.
+// Bit 0 is the 2^-1 bit; bit 49 is the 2^-50 bit.
+//
+//  ...79ab
+//     0111 1001 1010 1011
+//     44
+//     89
+//
+// So if we shift off the rightmost 14 bits, then (shift back only
+// the top half) we get
+//
+//      0 fffe b17217f7d1cf4000 e6af278ece600fcb dabc000000000000
+//
+// Put the right 64-bit signficand in an FR register, convert to double;
+// it is exact. Put the next 128 bits into a quad register and round to double.
+// The true exponent of the low part is -51.
+//
+// hi is 0 fffe b17217f7d1cf4000
+// lo is 0 ffcc e6af278ece601000
+//
+// Convert to double memory format and get
+//
+// hi is 0x3fe62e42fefa39e8
+// lo is 0x3cccd5e4f1d9cc02
+//
+// log2_hi + log2_lo is an accurate value for log2.
+//
+//
+// The T and t values
+// ==================
+// A similar method is used to generate the T and t values.
+//
+// K * log2_hi + T  must be exact.
+//
+// Smallest T,t
+// ----------
+// The smallest T,t is
+//       T                   t
+// 0x3f60040155d58800, 0x3c93bce0ce3ddd81  log(1/frcpa(1+0/256))=  +1.95503e-003
+//
+// The exponent is 0x3f6 (biased)  or -9 (true).
+// For the smallest T value, what we want is to clip the significand such that
+// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the
+// specific for the first entry. In general, it is 0xffff - (biased 15-bit
+// exponent).
+
+// Independently, what we have calculated is the table value as a quad
+// precision number.
+// Table entry 1 is
+// 0 fff6 80200aaeac44ef38 338f77605fdf8000
+//
+// We store this quad precision number in a data structure that is
+//    sign:           1
+//    exponent:      15
+//    signficand_hi: 64 (includes explicit bit)
+//    signficand_lo: 49
+// Because the explicit bit is included, the significand is 113 bits.
+//
+// Consider significand_hi for table entry 1.
+//
+//
+// +-+--- ... -------+--------------------+
+// | |
+// +-+--- ... -------+--------------------+
+// 0 1               4444444455555555556666
+//                   2345678901234567890123
+//
+// Labeled as above, bit 0 is 2^0, bit 1 is 2^-1, etc.
+// Bit 42 is 2^-42. If we shift to the right by 9, the bit in
+// bit 42 goes in 51.
+//
+// So what we want to do is shift bits 43 thru 63 into significand_lo.
+// This is shifting bit 42 into bit 63, taking care to retain shifted-off bits.
+// Then shifting (just with signficaand_hi) back into bit 42.
+//
+// The shift_value is 63-42 = 21. In general, this is
+//      63 - (51 -(0xffff - 0xfff6))
+// For this example, it is
+//      63 - (51 - 9) = 63 - 42  = 21
+//
+// This means we are shifting 21 bits into significand_lo. We must maintain more
+// that a 128-bit signficand not to lose bits. So before the shift we put the
+// 128-bit significand into a 256-bit signficand and then shift.
+// The 256-bit significand has four parts: hh, hl, lh, and ll.
+//
+// Start off with
+//      hh         hl         lh         ll
+//      <64>       <49><15_0> <64_0>     <64_0>
+//
+// After shift by 21 (then return for significand_hi),
+//      <43><21_0> <21><43>   <6><58_0>  <64_0>
+//
+// Take the hh part and convert to a double. There is no rounding here.
+// The conversion is exact. The true exponent of the high part is the same as
+// the true exponent of the input quad.
+//
+// We have some 64 plus significand bits for the low part. In this example, we
+// have 70 bits. We want to round this to a double. Put them in a quad and then
+// do a quad fnorm.
+// For this example the true exponent of the low part is
+//      true_exponent_of_high - 43 = true_exponent_of_high - (64-21)
+// In general, this is
+//      true_exponent_of_high - (64 - shift_value)
+//
+//
+// Largest T,t
+// ----------
+// The largest T,t is
+// 0x3fe62643fecf9742, 0x3c9e3147684bd37d  log(1/frcpa(1+255/256))=+6.92171e-001
+//
+// Table entry 256 is
+// 0 fffe b1321ff67cba178c 51da12f4df5a0000
+//
+// The shift value is
+//      63 - (51 -(0xffff - 0xfffe)) = 13
+//
+// The true exponent of the low part is
+//      true_exponent_of_high - (64 - shift_value)
+//      -1 - (64-13) = -52
+// Biased as a double, this is 0x3cb
+//
+//
+//
+// So then lsb(T) must be >= 2^-51
+// msb(Klog2_hi) <= 2^12
+//
+//              +--------+---------+
+//              |       51 bits    | <== largest T
+//              +--------+---------+
+//              | 9 bits | 42 bits | <== smallest T
+// +------------+----------------+-+
+// |  13 bits   | 50 bits        | |
+// +------------+----------------+-+
+
+
+// Special Cases
+//==============================================================
+
+//                                   double     float
+// overflow                          error 24   30
+
+// underflow                         error 25   31
+
+// X zero  Y zero
+//  +0     +0                 +1     error 26   32
+//  -0     +0                 +1     error 26   32
+//  +0     -0                 +1     error 26   32
+//  -0     -0                 +1     error 26   32
+
+// X zero  Y negative
+//  +0     -odd integer       +inf   error 27   33  divide-by-zero
+//  -0     -odd integer       -inf   error 27   33  divide-by-zero
+//  +0     !-odd integer      +inf   error 27   33  divide-by-zero
+//  -0     !-odd integer      +inf   error 27   33  divide-by-zero
+//  +0     -inf               +inf   error 27   33  divide-by-zero
+//  -0     -inf               +inf   error 27   33  divide-by-zero
+
+// X zero  Y positve
+//  +0     +odd integer       +0
+//  -0     +odd integer       -0
+//  +0     !+odd integer      +0
+//  -0     !+odd integer      +0
+//  +0     +inf               +0
+//  -0     +inf               +0
+//  +0     Y NaN              quiet Y               invalid if Y SNaN
+//  -0     Y NaN              quiet Y               invalid if Y SNaN
+
+// X one
+//  -1     Y inf              +1
+//  -1     Y NaN              quiet Y               invalid if Y SNaN
+//  +1     Y NaN              +1                    invalid if Y SNaN
+//  +1     Y any else         +1
+
+// X -     Y not integer      QNAN   error 28   34  invalid
+
+// X NaN   Y 0                +1     error 29   35
+// X NaN   Y NaN              quiet X               invalid if X or Y SNaN
+// X NaN   Y any else         quiet X               invalid if X SNaN
+// X !+1   Y NaN              quiet Y               invalid if Y SNaN
+
+
+// X +inf  Y >0               +inf
+// X -inf  Y >0, !odd integer +inf
+// X -inf  Y >0, odd integer  -inf
+
+// X +inf  Y <0               +0
+// X -inf  Y <0, !odd integer +0
+// X -inf  Y <0, odd integer  -0
+
+// X +inf  Y =0               +1
+// X -inf  Y =0               +1
+
+// |X|<1   Y +inf             +0
+// |X|<1   Y -inf             +inf
+// |X|>1   Y +inf             +inf
+// |X|>1   Y -inf             +0
+
+// X any   Y =0               +1
+
+// Assembly macros
+//==============================================================
+
+// integer registers used
+
+pow_GR_signexp_X          = r14
+pow_GR_17ones             = r15
+pow_AD_P                  = r16
+pow_GR_exp_2tom8          = r17
+pow_GR_sig_X              = r18
+pow_GR_10033              = r19
+pow_GR_16ones             = r20
+
+pow_AD_Tt                 = r21
+pow_GR_exp_X              = r22
+pow_AD_Q                  = r23
+pow_GR_true_exp_X         = r24
+pow_GR_y_zero             = r25
+
+pow_GR_exp_Y              = r26
+pow_AD_tbl1               = r27
+pow_AD_tbl2               = r28
+pow_GR_offset             = r29
+pow_GR_exp_Xm1            = r30
+pow_GR_xneg_yodd          = r31
+
+pow_GR_signexp_Xm1        = r35
+pow_GR_int_W1             = r36
+pow_GR_int_W2             = r37
+pow_GR_int_N              = r38
+pow_GR_index1             = r39
+pow_GR_index2             = r40
+
+pow_AD_T1                 = r41
+pow_AD_T2                 = r42
+pow_int_GR_M              = r43
+pow_GR_sig_int_Y          = r44
+pow_GR_sign_Y_Gpr         = r45
+
+pow_GR_17ones_m1          = r46
+pow_GR_one                = r47
+pow_GR_sign_Y             = r48
+pow_GR_signexp_Y_Gpr      = r49
+pow_GR_exp_Y_Gpr          = r50
+
+pow_GR_true_exp_Y_Gpr     = r51
+pow_GR_signexp_Y          = r52
+pow_GR_x_one              = r53
+pow_GR_exp_2toM63         = r54
+pow_GR_big_pos            = r55
+
+pow_GR_big_neg            = r56
+
+GR_SAVE_B0                = r50
+GR_SAVE_GP                = r51
+GR_SAVE_PFS               = r52
+
+GR_Parameter_X            = r53
+GR_Parameter_Y            = r54
+GR_Parameter_RESULT       = r55
+pow_GR_tag                = r56
+
+
+// floating point registers used
+
+POW_B                     = f32
+POW_NORM_X                = f33
+POW_Xm1                   = f34
+POW_r1                    = f34
+POW_P4                    = f35
+
+POW_P5                    = f36
+POW_NORM_Y                = f37
+POW_Q2                    = f38
+POW_Q3                    = f39
+POW_P2                    = f40
+
+POW_P3                    = f41
+POW_P0                    = f42
+POW_log2_lo               = f43
+POW_r                     = f44
+POW_Q0_half               = f45
+
+POW_Q1                    = f46
+POW_tmp                   = f47
+POW_log2_hi               = f48
+POW_Q4                    = f49
+POW_P1                    = f50
+
+POW_log2_by_128_hi        = f51
+POW_inv_log2_by_128       = f52
+POW_rsq                   = f53
+POW_Yrcub                 = f54
+POW_log2_by_128_lo        = f55
+
+POW_v6                    = f56
+POW_xsq                   = f57
+POW_v4                    = f58
+POW_v2                    = f59
+POW_T                     = f60
+
+POW_Tt                    = f61
+POW_RSHF                  = f62
+POW_v21ps                 = f63
+POW_s4                    = f64
+POW_twoV                  = f65
+
+POW_U                     = f66
+POW_G                     = f67
+POW_delta                 = f68
+POW_v3                    = f69
+POW_V                     = f70
+
+POW_p                     = f71
+POW_Z1                    = f72
+POW_e3                    = f73
+POW_e2                    = f74
+POW_Z2                    = f75
+
+POW_e1                    = f76
+POW_W1                    = f77
+POW_UmZ2                  = f78
+POW_W2                    = f79
+POW_Z3                    = f80
+
+POW_int_W1                = f81
+POW_e12                   = f82
+POW_int_W2                = f83
+POW_UmZ2pV                = f84
+POW_Z3sq                  = f85
+
+POW_e123                  = f86
+POW_N1float               = f87
+POW_N2float               = f88
+POW_f3                    = f89
+POW_q                     = f90
+
+POW_s1                    = f91
+POW_Nfloat                = f92
+POW_s2                    = f93
+POW_f2                    = f94
+POW_f1                    = f95
+
+POW_T1                    = f96
+POW_T2                    = f97
+POW_2M                    = f98
+POW_s                     = f99
+POW_f12                   = f100
+
+POW_ssq                   = f101
+POW_T1T2                  = f102
+POW_1ps                   = f103
+POW_A                     = f104
+POW_es                    = f105
+
+POW_Xp1                   = f106
+POW_int_K                 = f107
+POW_K                     = f108
+POW_f123                  = f109
+POW_Gpr                   = f110
+
+POW_Y_Gpr                 = f111
+POW_int_Y                 = f112
+POW_abs_q                 = f114
+POW_2toM63                = f115
+
+POW_float_int_Y           = f116
+POW_ftz_urm_f8            = f117
+POW_wre_urm_f8            = f118
+POW_big_neg               = f119
+POW_big_pos               = f120
+
+POW_GY_Z2                 = f121
+POW_pYrcub_e3             = f122
+POW_d                     = f123
+POW_d2                    = f124
+POW_poly_d_hi             = f121
+POW_poly_d_lo             = f122
+POW_poly_d                = f121
+
+// Data tables
+//==============================================================
+
+RODATA
+
+.align 16
+
+LOCAL_OBJECT_START(pow_table_P)
+data8 0x8000F7B249FF332D, 0x0000BFFC  // P_5
+data8 0xAAAAAAA9E7902C7F, 0x0000BFFC  // P_3
+data8 0x80000000000018E5, 0x0000BFFD  // P_1
+data8 0xb8aa3b295c17f0bc, 0x00004006  // inv_ln2_by_128
+//
+//
+data8 0x3FA5555555554A9E // Q_2
+data8 0x3F8111124F4DD9F9 // Q_3
+data8 0x3FE0000000000000 // Q_0
+data8 0x3FC5555555554733 // Q_1
+data8 0x3F56C16D9360FFA0 // Q_4
+data8 0x43e8000000000000 // Right shift constant for exp
+data8 0xc9e3b39803f2f6af, 0x00003fb7  // ln2_by_128_lo
+data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
+data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
+LOCAL_OBJECT_END(pow_table_P)
+
+LOCAL_OBJECT_START(pow_table_Q)
+data8 0x9249FE7F0DC423CF, 0x00003FFC  // P_4
+data8 0xCCCCCCCC4ED2BA7F, 0x00003FFC  // P_2
+data8 0xAAAAAAAAAAAAB505, 0x00003FFD  // P_0
+data8 0x3fe62e42fefa39e8, 0x3cccd5e4f1d9cc02 // log2 hi lo =  +6.93147e-001
+data8 0xb17217f7d1cf79ab, 0x00003ff7  // ln2_by_128_hi
+LOCAL_OBJECT_END(pow_table_Q)
+
+
+LOCAL_OBJECT_START(pow_Tt)
+data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 // log(1/frcpa(1+0/256))=  +1.95503e-003
+data8 0x3f78121214586a00, 0x3cb540e0a5cfc9bc // log(1/frcpa(1+1/256))=  +5.87661e-003
+data8 0x3f841929f9683200, 0x3cbdf1d57404da1f // log(1/frcpa(1+2/256))=  +9.81362e-003
+data8 0x3f8c317384c75f00, 0x3c69806208c04c22 // log(1/frcpa(1+3/256))=  +1.37662e-002
+data8 0x3f91a6b91ac73380, 0x3c7874daa716eb32 // log(1/frcpa(1+4/256))=  +1.72376e-002
+data8 0x3f95ba9a5d9ac000, 0x3cacbb84e08d78ac // log(1/frcpa(1+5/256))=  +2.12196e-002
+data8 0x3f99d2a807432580, 0x3cbcf80538b441e1 // log(1/frcpa(1+6/256))=  +2.52177e-002
+data8 0x3f9d6b2725979800, 0x3c6095e5c8f8f359 // log(1/frcpa(1+7/256))=  +2.87291e-002
+data8 0x3fa0c58fa19dfa80, 0x3cb4c5d4e9d0dda2 // log(1/frcpa(1+8/256))=  +3.27573e-002
+data8 0x3fa2954c78cbce00, 0x3caa932b860ab8d6 // log(1/frcpa(1+9/256))=  +3.62953e-002
+data8 0x3fa4a94d2da96c40, 0x3ca670452b76bbd5 // log(1/frcpa(1+10/256))=  +4.03542e-002
+data8 0x3fa67c94f2d4bb40, 0x3ca84104f9941798 // log(1/frcpa(1+11/256))=  +4.39192e-002
+data8 0x3fa85188b630f040, 0x3cb40a882cbf0153 // log(1/frcpa(1+12/256))=  +4.74971e-002
+data8 0x3faa6b8abe73af40, 0x3c988d46e25c9059 // log(1/frcpa(1+13/256))=  +5.16017e-002
+data8 0x3fac441e06f72a80, 0x3cae3e930a1a2a96 // log(1/frcpa(1+14/256))=  +5.52072e-002
+data8 0x3fae1e6713606d00, 0x3c8a796f6283b580 // log(1/frcpa(1+15/256))=  +5.88257e-002
+data8 0x3faffa6911ab9300, 0x3c5193070351e88a // log(1/frcpa(1+16/256))=  +6.24574e-002
+data8 0x3fb0ec139c5da600, 0x3c623f2a75eb992d // log(1/frcpa(1+17/256))=  +6.61022e-002
+data8 0x3fb1dbd2643d1900, 0x3ca649b2ef8927f0 // log(1/frcpa(1+18/256))=  +6.97605e-002
+data8 0x3fb2cc7284fe5f00, 0x3cbc5e86599513e2 // log(1/frcpa(1+19/256))=  +7.34321e-002
+data8 0x3fb3bdf5a7d1ee60, 0x3c90bd4bb69dada3 // log(1/frcpa(1+20/256))=  +7.71173e-002
+data8 0x3fb4b05d7aa012e0, 0x3c54e377c9b8a54f // log(1/frcpa(1+21/256))=  +8.08161e-002
+data8 0x3fb580db7ceb5700, 0x3c7fdb2f98354cde // log(1/frcpa(1+22/256))=  +8.39975e-002
+data8 0x3fb674f089365a60, 0x3cb9994c9d3301c1 // log(1/frcpa(1+23/256))=  +8.77219e-002
+data8 0x3fb769ef2c6b5680, 0x3caaec639db52a79 // log(1/frcpa(1+24/256))=  +9.14602e-002
+data8 0x3fb85fd927506a40, 0x3c9f9f99a3cf8e25 // log(1/frcpa(1+25/256))=  +9.52125e-002
+data8 0x3fb9335e5d594980, 0x3ca15c3abd47d99a // log(1/frcpa(1+26/256))=  +9.84401e-002
+data8 0x3fba2b0220c8e5e0, 0x3cb4ca639adf6fc3 // log(1/frcpa(1+27/256))=  +1.02219e-001
+data8 0x3fbb0004ac1a86a0, 0x3ca7cb81bf959a59 // log(1/frcpa(1+28/256))=  +1.05469e-001
+data8 0x3fbbf968769fca00, 0x3cb0c646c121418e // log(1/frcpa(1+29/256))=  +1.09274e-001
+data8 0x3fbccfedbfee13a0, 0x3ca0465fce24ab4b // log(1/frcpa(1+30/256))=  +1.12548e-001
+data8 0x3fbda727638446a0, 0x3c82803f4e2e6603 // log(1/frcpa(1+31/256))=  +1.15832e-001
+data8 0x3fbea3257fe10f60, 0x3cb986a3f2313d1a // log(1/frcpa(1+32/256))=  +1.19677e-001
+data8 0x3fbf7be9fedbfde0, 0x3c97d16a6a621cf4 // log(1/frcpa(1+33/256))=  +1.22985e-001
+data8 0x3fc02ab352ff25f0, 0x3c9cc6baad365600 // log(1/frcpa(1+34/256))=  +1.26303e-001
+data8 0x3fc097ce579d2040, 0x3cb9ba16d329440b // log(1/frcpa(1+35/256))=  +1.29633e-001
+data8 0x3fc1178e8227e470, 0x3cb7bc671683f8e6 // log(1/frcpa(1+36/256))=  +1.33531e-001
+data8 0x3fc185747dbecf30, 0x3c9d1116f66d2345 // log(1/frcpa(1+37/256))=  +1.36885e-001
+data8 0x3fc1f3b925f25d40, 0x3c8162c9ef939ac6 // log(1/frcpa(1+38/256))=  +1.40250e-001
+data8 0x3fc2625d1e6ddf50, 0x3caad3a1ec384fc3 // log(1/frcpa(1+39/256))=  +1.43627e-001
+data8 0x3fc2d1610c868130, 0x3cb3ad997036941b // log(1/frcpa(1+40/256))=  +1.47015e-001
+data8 0x3fc340c597411420, 0x3cbc2308262c7998 // log(1/frcpa(1+41/256))=  +1.50414e-001
+data8 0x3fc3b08b6757f2a0, 0x3cb2170d6cdf0526 // log(1/frcpa(1+42/256))=  +1.53825e-001
+data8 0x3fc40dfb08378000, 0x3c9bb453c4f7b685 // log(1/frcpa(1+43/256))=  +1.56677e-001
+data8 0x3fc47e74e8ca5f70, 0x3cb836a48fdfce9d // log(1/frcpa(1+44/256))=  +1.60109e-001
+data8 0x3fc4ef51f6466de0, 0x3ca07a43919aa64b // log(1/frcpa(1+45/256))=  +1.63553e-001
+data8 0x3fc56092e02ba510, 0x3ca85006899d97b0 // log(1/frcpa(1+46/256))=  +1.67010e-001
+data8 0x3fc5d23857cd74d0, 0x3ca30a5ba6e7abbe // log(1/frcpa(1+47/256))=  +1.70478e-001
+data8 0x3fc6313a37335d70, 0x3ca905586f0ac97e // log(1/frcpa(1+48/256))=  +1.73377e-001
+data8 0x3fc6a399dabbd380, 0x3c9b2c6657a96684 // log(1/frcpa(1+49/256))=  +1.76868e-001
+data8 0x3fc70337dd3ce410, 0x3cb50bc52f55cdd8 // log(1/frcpa(1+50/256))=  +1.79786e-001
+data8 0x3fc77654128f6120, 0x3cad2eb7c9a39efe // log(1/frcpa(1+51/256))=  +1.83299e-001
+data8 0x3fc7e9d82a0b0220, 0x3cba127e90393c01 // log(1/frcpa(1+52/256))=  +1.86824e-001
+data8 0x3fc84a6b759f5120, 0x3cbd7fd52079f706 // log(1/frcpa(1+53/256))=  +1.89771e-001
+data8 0x3fc8ab47d5f5a300, 0x3cbfae141751a3de // log(1/frcpa(1+54/256))=  +1.92727e-001
+data8 0x3fc91fe490965810, 0x3cb69cf30a1c319e // log(1/frcpa(1+55/256))=  +1.96286e-001
+data8 0x3fc981634011aa70, 0x3ca5bb3d208bc42a // log(1/frcpa(1+56/256))=  +1.99261e-001
+data8 0x3fc9f6c407089660, 0x3ca04d68658179a0 // log(1/frcpa(1+57/256))=  +2.02843e-001
+data8 0x3fca58e729348f40, 0x3c99f5411546c286 // log(1/frcpa(1+58/256))=  +2.05838e-001
+data8 0x3fcabb55c31693a0, 0x3cb9a5350eb327d5 // log(1/frcpa(1+59/256))=  +2.08842e-001
+data8 0x3fcb1e104919efd0, 0x3c18965fcce7c406 // log(1/frcpa(1+60/256))=  +2.11855e-001
+data8 0x3fcb94ee93e367c0, 0x3cb503716da45184 // log(1/frcpa(1+61/256))=  +2.15483e-001
+data8 0x3fcbf851c0675550, 0x3cbdf1b3f7ab5378 // log(1/frcpa(1+62/256))=  +2.18516e-001
+data8 0x3fcc5c0254bf23a0, 0x3ca7aab9ed0b1d7b // log(1/frcpa(1+63/256))=  +2.21558e-001
+data8 0x3fccc000c9db3c50, 0x3c92a7a2a850072a // log(1/frcpa(1+64/256))=  +2.24609e-001
+data8 0x3fcd244d99c85670, 0x3c9f6019120edf4c // log(1/frcpa(1+65/256))=  +2.27670e-001
+data8 0x3fcd88e93fb2f450, 0x3c6affb96815e081 // log(1/frcpa(1+66/256))=  +2.30741e-001
+data8 0x3fcdedd437eaef00, 0x3c72553595897976 // log(1/frcpa(1+67/256))=  +2.33820e-001
+data8 0x3fce530effe71010, 0x3c90913b020fa182 // log(1/frcpa(1+68/256))=  +2.36910e-001
+data8 0x3fceb89a1648b970, 0x3c837ba4045bfd25 // log(1/frcpa(1+69/256))=  +2.40009e-001
+data8 0x3fcf1e75fadf9bd0, 0x3cbcea6d13e0498d // log(1/frcpa(1+70/256))=  +2.43117e-001
+data8 0x3fcf84a32ead7c30, 0x3ca5e3a67b3c6d77 // log(1/frcpa(1+71/256))=  +2.46235e-001
+data8 0x3fcfeb2233ea07c0, 0x3cba0c6f0049c5a6 // log(1/frcpa(1+72/256))=  +2.49363e-001
+data8 0x3fd028f9c7035c18, 0x3cb0a30b06677ff6 // log(1/frcpa(1+73/256))=  +2.52501e-001
+data8 0x3fd05c8be0d96358, 0x3ca0f1c77ccb5865 // log(1/frcpa(1+74/256))=  +2.55649e-001
+data8 0x3fd085eb8f8ae790, 0x3cbd513f45fe7a97 // log(1/frcpa(1+75/256))=  +2.58174e-001
+data8 0x3fd0b9c8e32d1910, 0x3c927449047ca006 // log(1/frcpa(1+76/256))=  +2.61339e-001
+data8 0x3fd0edd060b78080, 0x3c89b52d8435f53e // log(1/frcpa(1+77/256))=  +2.64515e-001
+data8 0x3fd122024cf00638, 0x3cbdd976fabda4bd // log(1/frcpa(1+78/256))=  +2.67701e-001
+data8 0x3fd14be2927aecd0, 0x3cb02f90ad0bc471 // log(1/frcpa(1+79/256))=  +2.70257e-001
+data8 0x3fd180618ef18ad8, 0x3cbd003792c71a98 // log(1/frcpa(1+80/256))=  +2.73461e-001
+data8 0x3fd1b50bbe2fc638, 0x3ca9ae64c6403ead // log(1/frcpa(1+81/256))=  +2.76675e-001
+data8 0x3fd1df4cc7cf2428, 0x3cb43f0455f7e395 // log(1/frcpa(1+82/256))=  +2.79254e-001
+data8 0x3fd214456d0eb8d0, 0x3cb0fbd748d75d30 // log(1/frcpa(1+83/256))=  +2.82487e-001
+data8 0x3fd23ec5991eba48, 0x3c906edd746b77e2 // log(1/frcpa(1+84/256))=  +2.85081e-001
+data8 0x3fd2740d9f870af8, 0x3ca9802e6a00a670 // log(1/frcpa(1+85/256))=  +2.88333e-001
+data8 0x3fd29ecdabcdfa00, 0x3cacecef70890cfa // log(1/frcpa(1+86/256))=  +2.90943e-001
+data8 0x3fd2d46602adcce8, 0x3cb97911955f3521 // log(1/frcpa(1+87/256))=  +2.94214e-001
+data8 0x3fd2ff66b04ea9d0, 0x3cb12dabe191d1c9 // log(1/frcpa(1+88/256))=  +2.96838e-001
+data8 0x3fd335504b355a30, 0x3cbdf9139df924ec // log(1/frcpa(1+89/256))=  +3.00129e-001
+data8 0x3fd360925ec44f58, 0x3cb253e68977a1e3 // log(1/frcpa(1+90/256))=  +3.02769e-001
+data8 0x3fd38bf1c3337e70, 0x3cb3d283d2a2da21 // log(1/frcpa(1+91/256))=  +3.05417e-001
+data8 0x3fd3c25277333180, 0x3cadaa5b035eae27 // log(1/frcpa(1+92/256))=  +3.08735e-001
+data8 0x3fd3edf463c16838, 0x3cb983d680d3c108 // log(1/frcpa(1+93/256))=  +3.11399e-001
+data8 0x3fd419b423d5e8c0, 0x3cbc86dd921c139d // log(1/frcpa(1+94/256))=  +3.14069e-001
+data8 0x3fd44591e0539f48, 0x3c86a76d6dc2782e // log(1/frcpa(1+95/256))=  +3.16746e-001
+data8 0x3fd47c9175b6f0a8, 0x3cb59a2e013c6b5f // log(1/frcpa(1+96/256))=  +3.20103e-001
+data8 0x3fd4a8b341552b08, 0x3c93f1e86e468694 // log(1/frcpa(1+97/256))=  +3.22797e-001
+data8 0x3fd4d4f390890198, 0x3cbf5e4ea7c5105a // log(1/frcpa(1+98/256))=  +3.25498e-001
+data8 0x3fd501528da1f960, 0x3cbf58da53e9ad10 // log(1/frcpa(1+99/256))=  +3.28206e-001
+data8 0x3fd52dd06347d4f0, 0x3cb98a28cebf6eef // log(1/frcpa(1+100/256))=  +3.30921e-001
+data8 0x3fd55a6d3c7b8a88, 0x3c9c76b67c2d1fd4 // log(1/frcpa(1+101/256))=  +3.33644e-001
+data8 0x3fd5925d2b112a58, 0x3c9029616a4331b8 // log(1/frcpa(1+102/256))=  +3.37058e-001
+data8 0x3fd5bf406b543db0, 0x3c9fb8292ecfc820 // log(1/frcpa(1+103/256))=  +3.39798e-001
+data8 0x3fd5ec433d5c35a8, 0x3cb71a1229d17eec // log(1/frcpa(1+104/256))=  +3.42545e-001
+data8 0x3fd61965cdb02c18, 0x3cbba94fe1dbb8d2 // log(1/frcpa(1+105/256))=  +3.45300e-001
+data8 0x3fd646a84935b2a0, 0x3c9ee496d2c9ae57 // log(1/frcpa(1+106/256))=  +3.48063e-001
+data8 0x3fd6740add31de90, 0x3cb1da3a6c7a9dfd // log(1/frcpa(1+107/256))=  +3.50833e-001
+data8 0x3fd6a18db74a58c0, 0x3cb494c257add8dc // log(1/frcpa(1+108/256))=  +3.53610e-001
+data8 0x3fd6cf31058670e8, 0x3cb0b244a70a8da9 // log(1/frcpa(1+109/256))=  +3.56396e-001
+data8 0x3fd6f180e852f0b8, 0x3c9db7aefa866720 // log(1/frcpa(1+110/256))=  +3.58490e-001
+data8 0x3fd71f5d71b894e8, 0x3cbe91c4bf324957 // log(1/frcpa(1+111/256))=  +3.61289e-001
+data8 0x3fd74d5aefd66d58, 0x3cb06b3d9bfac023 // log(1/frcpa(1+112/256))=  +3.64096e-001
+data8 0x3fd77b79922bd378, 0x3cb727d8804491f4 // log(1/frcpa(1+113/256))=  +3.66911e-001
+data8 0x3fd7a9b9889f19e0, 0x3ca2ef22df5bc543 // log(1/frcpa(1+114/256))=  +3.69734e-001
+data8 0x3fd7d81b037eb6a0, 0x3cb8fd3ba07a7ece // log(1/frcpa(1+115/256))=  +3.72565e-001
+data8 0x3fd8069e33827230, 0x3c8bd1e25866e61a // log(1/frcpa(1+116/256))=  +3.75404e-001
+data8 0x3fd82996d3ef8bc8, 0x3ca5aab9f5928928 // log(1/frcpa(1+117/256))=  +3.77538e-001
+data8 0x3fd85855776dcbf8, 0x3ca56f33337789d6 // log(1/frcpa(1+118/256))=  +3.80391e-001
+data8 0x3fd8873658327cc8, 0x3cbb8ef0401db49d // log(1/frcpa(1+119/256))=  +3.83253e-001
+data8 0x3fd8aa75973ab8c8, 0x3cbb9961f509a680 // log(1/frcpa(1+120/256))=  +3.85404e-001
+data8 0x3fd8d992dc8824e0, 0x3cb220512a53732d // log(1/frcpa(1+121/256))=  +3.88280e-001
+data8 0x3fd908d2ea7d9510, 0x3c985f0e513bfb5c // log(1/frcpa(1+122/256))=  +3.91164e-001
+data8 0x3fd92c59e79c0e50, 0x3cb82e073fd30d63 // log(1/frcpa(1+123/256))=  +3.93332e-001
+data8 0x3fd95bd750ee3ed0, 0x3ca4aa7cdb6dd8a8 // log(1/frcpa(1+124/256))=  +3.96231e-001
+data8 0x3fd98b7811a3ee58, 0x3caa93a5b660893e // log(1/frcpa(1+125/256))=  +3.99138e-001
+data8 0x3fd9af47f33d4068, 0x3cac294b3b3190ba // log(1/frcpa(1+126/256))=  +4.01323e-001
+data8 0x3fd9df270c1914a0, 0x3cbe1a58fd0cd67e // log(1/frcpa(1+127/256))=  +4.04245e-001
+data8 0x3fda0325ed14fda0, 0x3cb1efa7950fb57e // log(1/frcpa(1+128/256))=  +4.06442e-001
+data8 0x3fda33440224fa78, 0x3c8915fe75e7d477 // log(1/frcpa(1+129/256))=  +4.09379e-001
+data8 0x3fda57725e80c380, 0x3ca72bd1062b1b7f // log(1/frcpa(1+130/256))=  +4.11587e-001
+data8 0x3fda87d0165dd198, 0x3c91f7845f58dbad // log(1/frcpa(1+131/256))=  +4.14539e-001
+data8 0x3fdaac2e6c03f890, 0x3cb6f237a911c509 // log(1/frcpa(1+132/256))=  +4.16759e-001
+data8 0x3fdadccc6fdf6a80, 0x3c90ddc4b7687169 // log(1/frcpa(1+133/256))=  +4.19726e-001
+data8 0x3fdb015b3eb1e790, 0x3c692dd7d90e1e8e // log(1/frcpa(1+134/256))=  +4.21958e-001
+data8 0x3fdb323a3a635948, 0x3c6f85655cbe14de // log(1/frcpa(1+135/256))=  +4.24941e-001
+data8 0x3fdb56fa04462908, 0x3c95252d841994de // log(1/frcpa(1+136/256))=  +4.27184e-001
+data8 0x3fdb881aa659bc90, 0x3caa53a745a3642f // log(1/frcpa(1+137/256))=  +4.30182e-001
+data8 0x3fdbad0bef3db160, 0x3cb32f2540dcc16a // log(1/frcpa(1+138/256))=  +4.32437e-001
+data8 0x3fdbd21297781c28, 0x3cbd8e891e106f1d // log(1/frcpa(1+139/256))=  +4.34697e-001
+data8 0x3fdc039236f08818, 0x3c809435af522ba7 // log(1/frcpa(1+140/256))=  +4.37718e-001
+data8 0x3fdc28cb1e4d32f8, 0x3cb3944752fbd81e // log(1/frcpa(1+141/256))=  +4.39990e-001
+data8 0x3fdc4e19b84723c0, 0x3c9a465260cd3fe5 // log(1/frcpa(1+142/256))=  +4.42267e-001
+data8 0x3fdc7ff9c74554c8, 0x3c92447d5b6ca369 // log(1/frcpa(1+143/256))=  +4.45311e-001
+data8 0x3fdca57b64e9db00, 0x3cb44344a8a00c82 // log(1/frcpa(1+144/256))=  +4.47600e-001
+data8 0x3fdccb130a5ceba8, 0x3cbefaddfb97b73f // log(1/frcpa(1+145/256))=  +4.49895e-001
+data8 0x3fdcf0c0d18f3268, 0x3cbd3e7bfee57898 // log(1/frcpa(1+146/256))=  +4.52194e-001
+data8 0x3fdd232075b5a200, 0x3c9222599987447c // log(1/frcpa(1+147/256))=  +4.55269e-001
+data8 0x3fdd490246defa68, 0x3cabafe9a767a80d // log(1/frcpa(1+148/256))=  +4.57581e-001
+data8 0x3fdd6efa918d25c8, 0x3cb58a2624e1c6fd // log(1/frcpa(1+149/256))=  +4.59899e-001
+data8 0x3fdd9509707ae528, 0x3cbdc3babce578e7 // log(1/frcpa(1+150/256))=  +4.62221e-001
+data8 0x3fddbb2efe92c550, 0x3cb0ac0943c434a4 // log(1/frcpa(1+151/256))=  +4.64550e-001
+data8 0x3fddee2f3445e4a8, 0x3cbba9d07ce820e8 // log(1/frcpa(1+152/256))=  +4.67663e-001
+data8 0x3fde148a1a2726c8, 0x3cb6537e3375b205 // log(1/frcpa(1+153/256))=  +4.70004e-001
+data8 0x3fde3afc0a49ff38, 0x3cbfed5518dbc20e // log(1/frcpa(1+154/256))=  +4.72350e-001
+data8 0x3fde6185206d5168, 0x3cb6572601f73d5c // log(1/frcpa(1+155/256))=  +4.74702e-001
+data8 0x3fde882578823d50, 0x3c9b24abd4584d1a // log(1/frcpa(1+156/256))=  +4.77060e-001
+data8 0x3fdeaedd2eac9908, 0x3cb0ceb5e4d2c8f7 // log(1/frcpa(1+157/256))=  +4.79423e-001
+data8 0x3fded5ac5f436be0, 0x3ca72f21f1f5238e // log(1/frcpa(1+158/256))=  +4.81792e-001
+data8 0x3fdefc9326d16ab8, 0x3c85081a1639a45c // log(1/frcpa(1+159/256))=  +4.84166e-001
+data8 0x3fdf2391a21575f8, 0x3cbf11015bdd297a // log(1/frcpa(1+160/256))=  +4.86546e-001
+data8 0x3fdf4aa7ee031928, 0x3cb3795bc052a2d1 // log(1/frcpa(1+161/256))=  +4.88932e-001
+data8 0x3fdf71d627c30bb0, 0x3c35c61f0f5a88f3 // log(1/frcpa(1+162/256))=  +4.91323e-001
+data8 0x3fdf991c6cb3b378, 0x3c97d99419be6028 // log(1/frcpa(1+163/256))=  +4.93720e-001
+data8 0x3fdfc07ada69a908, 0x3cbfe9341ded70b1 // log(1/frcpa(1+164/256))=  +4.96123e-001
+data8 0x3fdfe7f18eb03d38, 0x3cb85718a640c33f // log(1/frcpa(1+165/256))=  +4.98532e-001
+data8 0x3fe007c053c5002c, 0x3cb3addc9c065f09 // log(1/frcpa(1+166/256))=  +5.00946e-001
+data8 0x3fe01b942198a5a0, 0x3c9d5aa4c77da6ac // log(1/frcpa(1+167/256))=  +5.03367e-001
+data8 0x3fe02f74400c64e8, 0x3cb5a0ee4450ef52 // log(1/frcpa(1+168/256))=  +5.05793e-001
+data8 0x3fe04360be7603ac, 0x3c9dd00c35630fe0 // log(1/frcpa(1+169/256))=  +5.08225e-001
+data8 0x3fe05759ac47fe30, 0x3cbd063e1f0bd82c // log(1/frcpa(1+170/256))=  +5.10663e-001
+data8 0x3fe06b5f1911cf50, 0x3cae8da674af5289 // log(1/frcpa(1+171/256))=  +5.13107e-001
+data8 0x3fe078bf0533c568, 0x3c62241edf5fd1f7 // log(1/frcpa(1+172/256))=  +5.14740e-001
+data8 0x3fe08cd9687e7b0c, 0x3cb3007febcca227 // log(1/frcpa(1+173/256))=  +5.17194e-001
+data8 0x3fe0a10074cf9018, 0x3ca496e84603816b // log(1/frcpa(1+174/256))=  +5.19654e-001
+data8 0x3fe0b5343a234474, 0x3cb46098d14fc90a // log(1/frcpa(1+175/256))=  +5.22120e-001
+data8 0x3fe0c974c89431cc, 0x3cac0a7cdcbb86c6 // log(1/frcpa(1+176/256))=  +5.24592e-001
+data8 0x3fe0ddc2305b9884, 0x3cb2f753210410ff // log(1/frcpa(1+177/256))=  +5.27070e-001
+data8 0x3fe0eb524bafc918, 0x3c88affd6682229e // log(1/frcpa(1+178/256))=  +5.28726e-001
+data8 0x3fe0ffb54213a474, 0x3cadeefbab9af993 // log(1/frcpa(1+179/256))=  +5.31214e-001
+data8 0x3fe114253da97d9c, 0x3cbaf1c2b8bc160a // log(1/frcpa(1+180/256))=  +5.33709e-001
+data8 0x3fe128a24f1d9afc, 0x3cb9cf4df375e650 // log(1/frcpa(1+181/256))=  +5.36210e-001
+data8 0x3fe1365252bf0864, 0x3c985a621d4be111 // log(1/frcpa(1+182/256))=  +5.37881e-001
+data8 0x3fe14ae558b4a92c, 0x3ca104c4aa8977d1 // log(1/frcpa(1+183/256))=  +5.40393e-001
+data8 0x3fe15f85a19c7658, 0x3cbadf26e540f375 // log(1/frcpa(1+184/256))=  +5.42910e-001
+data8 0x3fe16d4d38c119f8, 0x3cb3aea11caec416 // log(1/frcpa(1+185/256))=  +5.44592e-001
+data8 0x3fe18203c20dd130, 0x3cba82d1211d1d6d // log(1/frcpa(1+186/256))=  +5.47121e-001
+data8 0x3fe196c7bc4b1f38, 0x3cb6267acc4f4f4a // log(1/frcpa(1+187/256))=  +5.49656e-001
+data8 0x3fe1a4a738b7a33c, 0x3c858930213c987d // log(1/frcpa(1+188/256))=  +5.51349e-001
+data8 0x3fe1b981c0c9653c, 0x3c9bc2a4a30f697b // log(1/frcpa(1+189/256))=  +5.53895e-001
+data8 0x3fe1ce69e8bb1068, 0x3cb7ae6199cf2a00 // log(1/frcpa(1+190/256))=  +5.56447e-001
+data8 0x3fe1dc619de06944, 0x3c6b50bb38388177 // log(1/frcpa(1+191/256))=  +5.58152e-001
+data8 0x3fe1f160a2ad0da0, 0x3cbd05b2778a5e1d // log(1/frcpa(1+192/256))=  +5.60715e-001
+data8 0x3fe2066d7740737c, 0x3cb32e828f9c6bd6 // log(1/frcpa(1+193/256))=  +5.63285e-001
+data8 0x3fe2147dba47a390, 0x3cbd579851b8b672 // log(1/frcpa(1+194/256))=  +5.65001e-001
+data8 0x3fe229a1bc5ebac0, 0x3cbb321be5237ce8 // log(1/frcpa(1+195/256))=  +5.67582e-001
+data8 0x3fe237c1841a502c, 0x3cb3b56e0915ea64 // log(1/frcpa(1+196/256))=  +5.69306e-001
+data8 0x3fe24cfce6f80d98, 0x3cb34a4d1a422919 // log(1/frcpa(1+197/256))=  +5.71898e-001
+data8 0x3fe25b2c55cd5760, 0x3cb237401ea5015e // log(1/frcpa(1+198/256))=  +5.73630e-001
+data8 0x3fe2707f4d5f7c40, 0x3c9d30f20acc8341 // log(1/frcpa(1+199/256))=  +5.76233e-001
+data8 0x3fe285e0842ca380, 0x3cbc4d866d5f21c0 // log(1/frcpa(1+200/256))=  +5.78842e-001
+data8 0x3fe294294708b770, 0x3cb85e14d5dc54fa // log(1/frcpa(1+201/256))=  +5.80586e-001
+data8 0x3fe2a9a2670aff0c, 0x3c7e6f8f468bbf91 // log(1/frcpa(1+202/256))=  +5.83207e-001
+data8 0x3fe2b7fb2c8d1cc0, 0x3c930ffcf63c8b65 // log(1/frcpa(1+203/256))=  +5.84959e-001
+data8 0x3fe2c65a6395f5f4, 0x3ca0afe20b53d2d2 // log(1/frcpa(1+204/256))=  +5.86713e-001
+data8 0x3fe2dbf557b0df40, 0x3cb646be1188fbc9 // log(1/frcpa(1+205/256))=  +5.89350e-001
+data8 0x3fe2ea64c3f97654, 0x3c96516fa8df33b2 // log(1/frcpa(1+206/256))=  +5.91113e-001
+data8 0x3fe3001823684d70, 0x3cb96d64e16d1360 // log(1/frcpa(1+207/256))=  +5.93762e-001
+data8 0x3fe30e97e9a8b5cc, 0x3c98ef96bc97cca0 // log(1/frcpa(1+208/256))=  +5.95531e-001
+data8 0x3fe32463ebdd34e8, 0x3caef1dc9a56c1bf // log(1/frcpa(1+209/256))=  +5.98192e-001
+data8 0x3fe332f4314ad794, 0x3caa4f0ac5d5fa11 // log(1/frcpa(1+210/256))=  +5.99970e-001
+data8 0x3fe348d90e7464cc, 0x3cbe7889f0516acd // log(1/frcpa(1+211/256))=  +6.02643e-001
+data8 0x3fe35779f8c43d6c, 0x3ca96bbab7245411 // log(1/frcpa(1+212/256))=  +6.04428e-001
+data8 0x3fe36621961a6a98, 0x3ca31f32262db9fb // log(1/frcpa(1+213/256))=  +6.06217e-001
+data8 0x3fe37c299f3c3668, 0x3cb15c72c107ee29 // log(1/frcpa(1+214/256))=  +6.08907e-001
+data8 0x3fe38ae2171976e4, 0x3cba42a2554b2dd4 // log(1/frcpa(1+215/256))=  +6.10704e-001
+data8 0x3fe399a157a603e4, 0x3cb99c62286d8919 // log(1/frcpa(1+216/256))=  +6.12504e-001
+data8 0x3fe3afccfe77b9d0, 0x3ca11048f96a43bd // log(1/frcpa(1+217/256))=  +6.15210e-001
+data8 0x3fe3be9d503533b4, 0x3ca4022f47588c3e // log(1/frcpa(1+218/256))=  +6.17018e-001
+data8 0x3fe3cd7480b4a8a0, 0x3cb4ba7afc2dc56a // log(1/frcpa(1+219/256))=  +6.18830e-001
+data8 0x3fe3e3c43918f76c, 0x3c859673d064b8ba // log(1/frcpa(1+220/256))=  +6.21554e-001
+data8 0x3fe3f2acb27ed6c4, 0x3cb55c6b452a16a8 // log(1/frcpa(1+221/256))=  +6.23373e-001
+data8 0x3fe4019c2125ca90, 0x3cb8c367879c5a31 // log(1/frcpa(1+222/256))=  +6.25197e-001
+data8 0x3fe4181061389720, 0x3cb2c17a79c5cc6c // log(1/frcpa(1+223/256))=  +6.27937e-001
+data8 0x3fe42711518df544, 0x3ca5f38d47012fc5 // log(1/frcpa(1+224/256))=  +6.29769e-001
+data8 0x3fe436194e12b6bc, 0x3cb9854d65a9b426 // log(1/frcpa(1+225/256))=  +6.31604e-001
+data8 0x3fe445285d68ea68, 0x3ca3ff9b3a81cd81 // log(1/frcpa(1+226/256))=  +6.33442e-001
+data8 0x3fe45bcc464c8938, 0x3cb0a2d8011a6c05 // log(1/frcpa(1+227/256))=  +6.36206e-001
+data8 0x3fe46aed21f117fc, 0x3c8a2be41f8e9f3d // log(1/frcpa(1+228/256))=  +6.38053e-001
+data8 0x3fe47a1527e8a2d0, 0x3cba4a83594fab09 // log(1/frcpa(1+229/256))=  +6.39903e-001
+data8 0x3fe489445efffcc8, 0x3cbf306a23dcbcde // log(1/frcpa(1+230/256))=  +6.41756e-001
+data8 0x3fe4a018bcb69834, 0x3ca46c9285029fd1 // log(1/frcpa(1+231/256))=  +6.44543e-001
+data8 0x3fe4af5a0c9d65d4, 0x3cbbc1db897580e3 // log(1/frcpa(1+232/256))=  +6.46405e-001
+data8 0x3fe4bea2a5bdbe84, 0x3cb84d880d7ef775 // log(1/frcpa(1+233/256))=  +6.48271e-001
+data8 0x3fe4cdf28f10ac44, 0x3cb3ec4b7893ce1f // log(1/frcpa(1+234/256))=  +6.50140e-001
+data8 0x3fe4dd49cf994058, 0x3c897224d59d3408 // log(1/frcpa(1+235/256))=  +6.52013e-001
+data8 0x3fe4eca86e64a680, 0x3cbccf620f24f0cd // log(1/frcpa(1+236/256))=  +6.53889e-001
+data8 0x3fe503c43cd8eb68, 0x3c3f872c65971084 // log(1/frcpa(1+237/256))=  +6.56710e-001
+data8 0x3fe513356667fc54, 0x3cb9ca64cc3d52c8 // log(1/frcpa(1+238/256))=  +6.58595e-001
+data8 0x3fe522ae0738a3d4, 0x3cbe708164c75968 // log(1/frcpa(1+239/256))=  +6.60483e-001
+data8 0x3fe5322e26867854, 0x3cb9988ba4aea615 // log(1/frcpa(1+240/256))=  +6.62376e-001
+data8 0x3fe541b5cb979808, 0x3ca1662e3a6b95f5 // log(1/frcpa(1+241/256))=  +6.64271e-001
+data8 0x3fe55144fdbcbd60, 0x3cb3acd4ca45c1e0 // log(1/frcpa(1+242/256))=  +6.66171e-001
+data8 0x3fe560dbc45153c4, 0x3cb4988947959fed // log(1/frcpa(1+243/256))=  +6.68074e-001
+data8 0x3fe5707a26bb8c64, 0x3cb3017fe6607ba9 // log(1/frcpa(1+244/256))=  +6.69980e-001
+data8 0x3fe587f60ed5b8fc, 0x3cbe7a3266366ed4 // log(1/frcpa(1+245/256))=  +6.72847e-001
+data8 0x3fe597a7977c8f30, 0x3ca1e12b9959a90e // log(1/frcpa(1+246/256))=  +6.74763e-001
+data8 0x3fe5a760d634bb88, 0x3cb7c365e53d9602 // log(1/frcpa(1+247/256))=  +6.76682e-001
+data8 0x3fe5b721d295f10c, 0x3cb716c2551ccbf0 // log(1/frcpa(1+248/256))=  +6.78605e-001
+data8 0x3fe5c6ea94431ef8, 0x3ca02b2ed0e28261 // log(1/frcpa(1+249/256))=  +6.80532e-001
+data8 0x3fe5d6bb22ea86f4, 0x3caf43a8bbb2f974 // log(1/frcpa(1+250/256))=  +6.82462e-001
+data8 0x3fe5e6938645d38c, 0x3cbcedc98821b333 // log(1/frcpa(1+251/256))=  +6.84397e-001
+data8 0x3fe5f673c61a2ed0, 0x3caa385eef5f2789 // log(1/frcpa(1+252/256))=  +6.86335e-001
+data8 0x3fe6065bea385924, 0x3cb11624f165c5b4 // log(1/frcpa(1+253/256))=  +6.88276e-001
+data8 0x3fe6164bfa7cc068, 0x3cbad884f87073fa // log(1/frcpa(1+254/256))=  +6.90222e-001
+data8 0x3fe62643fecf9740, 0x3cb78c51da12f4df // log(1/frcpa(1+255/256))=  +6.92171e-001
+LOCAL_OBJECT_END(pow_Tt)
+
+
+// Table 1 is 2^(index_1/128) where
+// index_1 goes from 0 to 15
+LOCAL_OBJECT_START(pow_tbl1)
+data8 0x8000000000000000 , 0x00003FFF
+data8 0x80B1ED4FD999AB6C , 0x00003FFF
+data8 0x8164D1F3BC030773 , 0x00003FFF
+data8 0x8218AF4373FC25EC , 0x00003FFF
+data8 0x82CD8698AC2BA1D7 , 0x00003FFF
+data8 0x8383594EEFB6EE37 , 0x00003FFF
+data8 0x843A28C3ACDE4046 , 0x00003FFF
+data8 0x84F1F656379C1A29 , 0x00003FFF
+data8 0x85AAC367CC487B15 , 0x00003FFF
+data8 0x8664915B923FBA04 , 0x00003FFF
+data8 0x871F61969E8D1010 , 0x00003FFF
+data8 0x87DB357FF698D792 , 0x00003FFF
+data8 0x88980E8092DA8527 , 0x00003FFF
+data8 0x8955EE03618E5FDD , 0x00003FFF
+data8 0x8A14D575496EFD9A , 0x00003FFF
+data8 0x8AD4C6452C728924 , 0x00003FFF
+LOCAL_OBJECT_END(pow_tbl1)
+
+
+// Table 2 is 2^(index_1/8) where
+// index_2 goes from 0 to 7
+LOCAL_OBJECT_START(pow_tbl2)
+data8 0x8000000000000000 , 0x00003FFF
+data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
+data8 0x9837F0518DB8A96F , 0x00003FFF
+data8 0xA5FED6A9B15138EA , 0x00003FFF
+data8 0xB504F333F9DE6484 , 0x00003FFF
+data8 0xC5672A115506DADD , 0x00003FFF
+data8 0xD744FCCAD69D6AF4 , 0x00003FFF
+data8 0xEAC0C6E7DD24392F , 0x00003FFF
+LOCAL_OBJECT_END(pow_tbl2)
+
+.section .text
+GLOBAL_LIBM_ENTRY(pow)
+
+// Get exponent of x.  Will be used to calculate K.
+{ .mfi
+          getf.exp     pow_GR_signexp_X = f8
+          fms.s1 POW_Xm1 = f8,f1,f1     // Will be used for r1 if x>0
+          mov           pow_GR_17ones   = 0x1FFFF
+}
+{ .mfi
+          addl          pow_AD_P        = @ltoff(pow_table_P), gp
+          fma.s1 POW_Xp1 = f8,f1,f1     // Will be used for r1 if x<0
+          nop.i 999
+;;
+}
+
+// Get significand of x.  Will be used to get index to fetch T, Tt.
+{ .mfi
+          getf.sig      pow_GR_sig_X    = f8
+          frcpa.s1      POW_B, p6       = f1,f8
+          nop.i 999
+}
+{ .mfi
+          ld8 pow_AD_P = [pow_AD_P]
+          fma.s1        POW_NORM_X      = f8,f1,f0
+          mov          pow_GR_exp_2tom8 = 0xFFF7
+}
+;;
+
+// p13 = TRUE ==> X is unorm
+// DOUBLE 0x10033  exponent limit at which y is an integer
+{ .mfi
+          nop.m 999
+          fclass.m  p13,p0              = f8, 0x0b  // Test for x unorm
+          addl pow_GR_10033             = 0x10033, r0
+}
+{ .mfi
+          mov           pow_GR_16ones   = 0xFFFF
+          fma.s1        POW_NORM_Y      = f9,f1,f0
+          nop.i 999
+}
+;;
+
+// p14 = TRUE ==> X is ZERO
+{ .mfi
+          adds          pow_AD_Tt       = pow_Tt - pow_table_P,  pow_AD_P
+          fclass.m  p14,p0              = f8, 0x07
+          and           pow_GR_exp_X    = pow_GR_signexp_X, pow_GR_17ones
+}
+{ .mfi
+          adds          pow_AD_Q        = pow_table_Q - pow_table_P,  pow_AD_P
+          nop.f 999
+          nop.i 999
+}
+;;
+
+{ .mfi
+          ldfe          POW_P5          = [pow_AD_P], 16
+          fcmp.lt.s1 p8,p9 = f8, f0     // Test for x<0
+          nop.i 999
+}
+{ .mib
+          ldfe          POW_P4          = [pow_AD_Q], 16
+          sub       pow_GR_true_exp_X   = pow_GR_exp_X, pow_GR_16ones
+(p13)     br.cond.spnt POW_X_DENORM
+}
+;;
+
+// Continue normal and denormal paths here
+POW_COMMON:
+// p11 = TRUE ==> Y is a NAN
+{ .mfi
+          ldfe          POW_P3          = [pow_AD_P], 16
+          fclass.m  p11,p0              = f9, 0xc3
+          nop.i 999
+}
+{ .mfi
+          ldfe          POW_P2          = [pow_AD_Q], 16
+          nop.f 999
+          mov pow_GR_y_zero = 0
+}
+;;
+
+// Note POW_Xm1 and POW_r1 are used interchangably
+{ .mfi
+          alloc         r32=ar.pfs,2,19,4,0
+          fms.s1        POW_r           = POW_B, POW_NORM_X,f1
+          nop.i 999
+}
+{ .mfi
+          setf.sig POW_int_K            = pow_GR_true_exp_X
+(p8)      fnma.s1        POW_Xm1        = POW_Xp1,f1,f0
+          nop.i 999
+}
+;;
+
+// p12 = TRUE if Y is ZERO
+// Compute xsq to decide later if |x|=1
+{ .mfi
+          ldfe          POW_P1          = [pow_AD_P], 16
+          fclass.m      p12,p0          = f9, 0x07
+          shl           pow_GR_offset   = pow_GR_sig_X, 1
+}
+{ .mfb
+          ldfe          POW_P0          = [pow_AD_Q], 16
+          fma.s1        POW_xsq = POW_NORM_X, POW_NORM_X, f0
+(p11)     br.cond.spnt  POW_Y_NAN       // Branch if y=nan
+}
+;;
+
+// Get exponent of |x|-1 to use in comparison to 2^-8
+{ .mfi
+          getf.exp  pow_GR_signexp_Xm1  = POW_Xm1
+          fcvt.fx.s1   POW_int_Y        = POW_NORM_Y
+          shr.u     pow_GR_offset       = pow_GR_offset,56
+}
+;;
+
+// p11 = TRUE ==> X is a NAN
+{ .mfi
+          ldfpd         POW_log2_hi, POW_log2_lo  = [pow_AD_Q], 16
+          fclass.m      p11,p0          = f8, 0xc3
+          shladd pow_AD_Tt = pow_GR_offset, 4, pow_AD_Tt
+}
+{ .mfi
+          ldfe          POW_inv_log2_by_128 = [pow_AD_P], 16
+          fma.s1 POW_delta              = f0,f0,f0 // delta=0 in case |x| near 1
+(p12)     mov pow_GR_y_zero = 1
+}
+;;
+
+{ .mfi
+          ldfpd  POW_Q2, POW_Q3         = [pow_AD_P], 16
+          fma.s1 POW_G                  = f0,f0,f0  // G=0 in case |x| near 1
+          and       pow_GR_exp_Xm1      = pow_GR_signexp_Xm1, pow_GR_17ones
+}
+;;
+
+// Determine if we will use the |x| near 1 path (p6) or normal path (p7)
+{ .mfi
+          getf.exp  pow_GR_signexp_Y    = POW_NORM_Y
+          nop.f 999
+          cmp.lt p6,p7                  = pow_GR_exp_Xm1, pow_GR_exp_2tom8
+}
+{ .mfb
+          ldfpd  POW_T, POW_Tt          = [pow_AD_Tt], 16
+          fma.s1        POW_rsq         = POW_r, POW_r,f0
+(p11)     br.cond.spnt  POW_X_NAN       // Branch if x=nan and y not nan
+}
+;;
+
+// If on the x near 1 path, assign r1 to r and r1*r1 to rsq
+{ .mfi
+          ldfpd  POW_Q0_half, POW_Q1    = [pow_AD_P], 16
+(p6)      fma.s1    POW_r               = POW_r1, f1, f0
+          nop.i 999
+}
+{ .mfb
+          nop.m 999
+(p6)      fma.s1    POW_rsq             = POW_r1, POW_r1, f0
+(p14)     br.cond.spnt POW_X_0          // Branch if x zero and y not nan
+}
+;;
+
+{ .mfi
+          ldfpd   POW_Q4, POW_RSHF      = [pow_AD_P], 16
+(p7)      fma.s1 POW_v6                 = POW_r,  POW_P5, POW_P4
+          nop.i 999
+}
+{ .mfi
+          mov pow_GR_exp_2toM63         = 0xffc0  // Exponent of 2^-63
+(p6)      fma.s1 POW_v6                 = POW_r1, POW_P5, POW_P4
+          nop.i 999
+}
+;;
+
+{ .mfi
+          setf.exp POW_2toM63 = pow_GR_exp_2toM63  // Form 2^-63 for test of q
+(p7)      fma.s1 POW_v4                 = POW_P3, POW_r,  POW_P2
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+(p6)      fma.s1 POW_v4                 = POW_P3, POW_r1, POW_P2
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fcvt.xf POW_K                 = POW_int_K
+          nop.i 999
+}
+;;
+
+{ .mfi
+          getf.sig pow_GR_sig_int_Y     = POW_int_Y
+          fnma.s1 POW_twoV              = POW_NORM_Y, POW_rsq,f0
+          and pow_GR_exp_Y              = pow_GR_signexp_Y, pow_GR_17ones
+}
+{ .mfb
+          andcm pow_GR_sign_Y           = pow_GR_signexp_Y, pow_GR_17ones
+          fma.s1 POW_U                  = POW_NORM_Y,POW_r,f0
+(p12)     br.cond.spnt POW_Y_0   // Branch if y=zero, x not zero or nan
+}
+;;
+
+// p11 = TRUE ==> X is NEGATIVE but not inf
+{ .mfi
+          ldfe      POW_log2_by_128_lo  = [pow_AD_P], 16
+          fclass.m  p11,p0              = f8, 0x1a
+          nop.i 999
+}
+{ .mfi
+          ldfe      POW_log2_by_128_hi  = [pow_AD_Q], 16
+          fma.s1 POW_v2                 = POW_P1, POW_r,  POW_P0
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fcvt.xf   POW_float_int_Y     = POW_int_Y
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_v3                 = POW_v6, POW_rsq,  POW_v4
+          adds          pow_AD_tbl1     = pow_tbl1 - pow_Tt,  pow_AD_Q
+}
+;;
+
+{ .mfi
+          nop.m 999
+(p7)      fma.s1 POW_delta              = POW_K, POW_log2_lo, POW_Tt
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+(p7)      fma.s1 POW_G                  = POW_K, POW_log2_hi, POW_T
+          adds pow_AD_tbl2              = pow_tbl2 - pow_tbl1,  pow_AD_tbl1
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fms.s1 POW_e2                 = POW_NORM_Y, POW_r, POW_U
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_Z2                 = POW_twoV, POW_Q0_half, POW_U
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_Yrcub              = POW_rsq, POW_U, f0
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_p                  = POW_rsq, POW_v3, POW_v2
+          nop.i 999
+}
+;;
+
+// p11 = TRUE ==> X is NEGATIVE but not inf
+//    p12 = TRUE ==> X is NEGATIVE  AND  Y  already even int
+//    p13 = TRUE ==> X is NEGATIVE  AND  Y possible int
+{ .mfi
+          nop.m 999
+          fma.s1 POW_Z1                 = POW_NORM_Y, POW_G, f0
+(p11)     cmp.gt.unc  p12,p13           = pow_GR_exp_Y, pow_GR_10033
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_Gpr                = POW_G, f1, POW_r
+          nop.i 999
+}
+;;
+
+// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
+{ .mfi
+          nop.m 999
+          fma.s1 POW_W2  = POW_Z2, POW_inv_log2_by_128, POW_RSHF
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fms.s1 POW_UmZ2               = POW_U, f1, POW_Z2
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_e3                 = POW_NORM_Y, POW_delta, f0
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_Z3                 = POW_p, POW_Yrcub, f0
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_GY_Z2              = POW_G, POW_NORM_Y, POW_Z2
+          nop.i 999
+}
+;;
+
+// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
+{ .mfi
+          nop.m 999
+          fms.s1 POW_e1                 = POW_NORM_Y, POW_G, POW_Z1
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_W1  = POW_Z1, POW_inv_log2_by_128, POW_RSHF
+          nop.i 999
+}
+;;
+
+// p13 = TRUE ==> X is NEGATIVE  AND  Y possible int
+//     p10 = TRUE ==> X is NEG and Y is an int
+//     p12 = TRUE ==> X is NEG and Y is not an int
+{ .mfi
+          nop.m 999
+(p13)     fcmp.eq.unc.s1 p10,p12        = POW_float_int_Y,  POW_NORM_Y
+          mov pow_GR_xneg_yodd = 0
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_Y_Gpr              = POW_NORM_Y, POW_Gpr, f0
+          nop.i 999
+}
+;;
+
+// By subtracting RSHF we get rounded integer POW_N2float
+{ .mfi
+          nop.m 999
+          fms.s1 POW_N2float  = POW_W2, f1, POW_RSHF
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_UmZ2pV             = POW_twoV,POW_Q0_half,POW_UmZ2
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_Z3sq               = POW_Z3, POW_Z3, f0
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_v4                 = POW_Z3, POW_Q3, POW_Q2
+          nop.i 999
+}
+;;
+
+// Extract rounded integer from rightmost significand of POW_W2
+// By subtracting RSHF we get rounded integer POW_N1float
+{ .mfi
+          getf.sig pow_GR_int_W2        = POW_W2
+          fms.s1 POW_N1float  = POW_W1, f1, POW_RSHF
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_v2                 = POW_Z3, POW_Q1, POW_Q0_half
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fnma.s1 POW_s2 = POW_N2float, POW_log2_by_128_hi, POW_Z2
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_e2                 = POW_e2,f1,POW_UmZ2pV
+          nop.i 999
+}
+;;
+
+// Extract rounded integer from rightmost significand of POW_W1
+// Test if x inf
+{ .mfi
+          getf.sig pow_GR_int_W1        = POW_W1
+          fclass.m p15,p0 = POW_NORM_X,  0x23
+          nop.i 999
+}
+{ .mfb
+          nop.m 999
+          fnma.s1 POW_f2  = POW_N2float, POW_log2_by_128_lo, f1
+(p12)     br.cond.spnt POW_X_NEG_Y_NONINT  // Branch if x neg, y not integer
+}
+;;
+
+// p11 = TRUE ==> X is +1.0
+// p12 = TRUE ==> X is NEGATIVE  AND Y is an odd integer
+{ .mfi
+          getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
+          fcmp.eq.s1 p11,p0 = POW_NORM_X, f1
+(p10)     tbit.nz.unc  p12,p0           = pow_GR_sig_int_Y,0
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_v3                 = POW_Z3sq, POW_Q4, POW_v4
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fnma.s1 POW_f1  = POW_N1float, POW_log2_by_128_lo, f1
+          nop.i 999
+}
+{ .mfb
+          nop.m 999
+          fnma.s1 POW_s1  = POW_N1float, POW_log2_by_128_hi, POW_Z1
+(p15)     br.cond.spnt POW_X_INF
+}
+;;
+
+// Test x and y and flag denormal
+{ .mfi
+          nop.m 999
+          fcmp.eq.s0 p15,p0 = f8,f9
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_pYrcub_e3          = POW_p, POW_Yrcub, POW_e3
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1  // Test for y=1.0
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1  POW_e12               = POW_e1,f1,POW_e2
+          nop.i 999
+}
+;;
+
+{ .mfi
+          add pow_GR_int_N              = pow_GR_int_W1, pow_GR_int_W2
+(p11)     fma.d.s0 f8 = f1,f1,f0    // If x=1, result is +1
+          nop.i 999
+}
+{ .mib
+(p12)     mov pow_GR_xneg_yodd = 1
+          nop.i 999
+(p11)     br.ret.spnt b0            // Early exit if x=1.0, result is +1
+}
+;;
+
+{ .mfi
+          and pow_GR_index1             = 0x0f, pow_GR_int_N
+          fma.s1 POW_q                  = POW_Z3sq, POW_v3, POW_v2
+          shr pow_int_GR_M              = pow_GR_int_N, 7    // M = N/128
+}
+{ .mib
+          and pow_GR_index2             = 0x70, pow_GR_int_N
+          cmp.eq p6, p0                 = pow_GR_xneg_yodd, r0
+(p7)      br.ret.spnt b0        // Early exit if y=1.0, result is x
+}
+;;
+
+{ .mfi
+          shladd pow_AD_T1              = pow_GR_index1, 4, pow_AD_tbl1
+          fma.s1 POW_s                  = POW_s1, f1, POW_s2
+          add pow_int_GR_M              = pow_GR_16ones, pow_int_GR_M
+}
+{ .mfi
+          add pow_AD_T2                 = pow_AD_tbl2, pow_GR_index2
+          fma.s1 POW_f12                = POW_f1, POW_f2,f0
+          and pow_GR_exp_Y_Gpr          = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+}
+;;
+
+{ .mmi
+          ldfe POW_T1                   = [pow_AD_T1]
+          ldfe POW_T2                   = [pow_AD_T2]
+          sub pow_GR_true_exp_Y_Gpr     = pow_GR_exp_Y_Gpr, pow_GR_16ones
+}
+;;
+
+{ .mfi
+          setf.exp POW_2M               = pow_int_GR_M
+          fma.s1 POW_e123               = POW_e12, f1, POW_e3
+          nop.i 999
+}
+{ .mfb
+(p6)      cmp.gt p6, p0                 = -11, pow_GR_true_exp_Y_Gpr
+          fma.s1 POW_d                  = POW_GY_Z2, f1, POW_pYrcub_e3
+(p6)      br.cond.spnt POW_NEAR_ONE // branch if |y*log(x)| < 2^(-11)
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_q                  = POW_Z3sq, POW_q, POW_Z3
+          nop.i 999
+}
+;;
+
+// p8 TRUE ==> |Y(G + r)| >= 10
+
+// double
+//     -2^10  -2^9             2^9   2^10
+// -----+-----+----+ ... +-----+-----+-----
+//  p8  |             p9             |  p8
+//      |     |       p10      |     |
+
+// Form signexp of constants to indicate overflow
+{ .mfi
+          mov         pow_GR_big_pos    = 0x103ff
+          fma.s1 POW_ssq                = POW_s, POW_s, f0
+          cmp.le p8,p9                  = 10, pow_GR_true_exp_Y_Gpr
+}
+{ .mfi
+          mov         pow_GR_big_neg    = 0x303ff
+          fma.s1 POW_v4                 = POW_s, POW_Q3, POW_Q2
+          andcm pow_GR_sign_Y_Gpr       = pow_GR_signexp_Y_Gpr, pow_GR_17ones
+}
+;;
+
+// Form big positive and negative constants to test for possible overflow
+{ .mfi
+          setf.exp POW_big_pos          = pow_GR_big_pos
+          fma.s1 POW_v2                 = POW_s, POW_Q1, POW_Q0_half
+(p9)      cmp.le.unc p0,p10             = 9, pow_GR_true_exp_Y_Gpr
+}
+{ .mfb
+          setf.exp POW_big_neg          = pow_GR_big_neg
+          fma.s1 POW_1ps                = f1,f1,POW_s
+(p8)      br.cond.spnt POW_OVER_UNDER_X_NOT_INF
+}
+;;
+
+// f123 = f12*(e123+1) = f12*e123+f12
+{ .mfi
+          nop.m 999
+          fma.s1 POW_f123               = POW_e123,POW_f12,POW_f12
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_T1T2               = POW_T1, POW_T2, f0
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_v3                 = POW_ssq, POW_Q4, POW_v4
+          cmp.ne p12,p13 = pow_GR_xneg_yodd, r0
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_v21ps              = POW_ssq, POW_v2, POW_1ps
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_s4                 = POW_ssq, POW_ssq, f0
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+(p12)     fnma.s1 POW_A                 =  POW_2M, POW_f123, f0
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+(p13)     fma.s1 POW_A                  =  POW_2M, POW_f123, f0
+          cmp.eq p14,p11 = r0,r0   // Initialize p14 on, p11 off
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fmerge.s POW_abs_q = f0, POW_q // Form |q| so can test its size
+          nop.i 999
+}
+;;
+
+{ .mfi
+(p10)     cmp.eq p0,p14 = r0,r0    // Turn off p14 if no overflow
+          fma.s1 POW_es                 = POW_s4,  POW_v3, POW_v21ps
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_A                  = POW_A, POW_T1T2, f0
+          nop.i 999
+}
+;;
+
+{ .mfi
+// Test for |q| < 2^-63.  If so then reverse last two steps of the result
+// to avoid monotonicity problems for results near 1.0 in round up/down/zero.
+// p11 will be set if need to reverse the order, p14 if not.
+          nop.m 999
+(p10)     fcmp.lt.s0 p11,p14 = POW_abs_q, POW_2toM63 // Test |q| <2^-63
+          nop.i 999
+}
+;;
+
+.pred.rel "mutex",p11,p14
+{ .mfi
+          nop.m 999
+(p14)     fma.s1 POW_A                  = POW_A, POW_es, f0
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+(p11)     fma.s1 POW_A                  = POW_A, POW_q, POW_A
+          nop.i 999
+}
+;;
+
+// Dummy op to set inexact if |q| < 2^-63
+{ .mfi
+          nop.m 999
+(p11)     fma.d.s0 POW_tmp              = POW_A, POW_q, POW_A
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+(p14)     fma.d.s0 f8                   = POW_A, POW_q, POW_A
+          nop.i 999
+}
+{ .mfb
+          nop.m 999
+(p11)     fma.d.s0 f8                   = POW_A, POW_es, f0
+(p10)     br.ret.sptk     b0            // Exit main branch if no over/underflow
+}
+;;
+
+// POSSIBLE_OVER_UNDER
+// p6 = TRUE ==> Y_Gpr negative
+// Result is already computed.  We just need to know if over/underflow occurred.
+
+{ .mfb
+        cmp.eq p0,p6                    = pow_GR_sign_Y_Gpr, r0
+        nop.f 999
+(p6)    br.cond.spnt POW_POSSIBLE_UNDER
+}
+;;
+
+// POSSIBLE_OVER
+// We got an answer.
+// overflow is a possibility, not a certainty
+
+
+// We define an overflow when the answer with
+//    WRE set
+//    user-defined rounding mode
+
+// double
+// Largest double is 7FE (biased double)
+//                   7FE - 3FF + FFFF = 103FE
+// Create + largest_double_plus_ulp
+// Create - largest_double_plus_ulp
+// Calculate answer with WRE set.
+
+// single
+// Largest single is FE (biased double)
+//                   FE - 7F + FFFF = 1007E
+// Create + largest_single_plus_ulp
+// Create - largest_single_plus_ulp
+// Calculate answer with WRE set.
+
+// Cases when answer is ldn+1  are as follows:
+//  ldn                   ldn+1
+// --+----------|----------+------------
+//              |
+//    +inf          +inf      -inf
+//                  RN         RN
+//                             RZ
+
+// Put in s2 (td set, wre set)
+{ .mfi
+        nop.m 999
+        fsetc.s2 0x7F,0x42
+        nop.i 999
+}
+;;
+
+{ .mfi
+        nop.m 999
+        fma.d.s2 POW_wre_urm_f8         = POW_A, POW_q, POW_A
+        nop.i 999
+}
+;;
+
+// Return s2 to default
+{ .mfi
+        nop.m 999
+        fsetc.s2 0x7F,0x40
+        nop.i 999
+}
+;;
+
+// p7 = TRUE ==> yes, we have an overflow
+{ .mfi
+        nop.m 999
+        fcmp.ge.s1 p7, p8               =  POW_wre_urm_f8, POW_big_pos
+        nop.i 999
+}
+;;
+
+{ .mfi
+        nop.m 999
+(p8)    fcmp.le.s1 p7, p0               =  POW_wre_urm_f8, POW_big_neg
+        nop.i 999
+}
+;;
+
+{ .mbb
+(p7)   mov pow_GR_tag                   = 24
+(p7)   br.cond.spnt __libm_error_region // Branch if overflow
+       br.ret.sptk     b0               // Exit if did not overflow
+}
+;;
+
+// Here if |y*log(x)| < 2^(-11)
+// pow(x,y) ~ exp(d) ~ 1 + d + 0.5*d^2 + Q1*d^3 + Q2*d^4, where d = y*log(x)
+.align 32
+POW_NEAR_ONE:
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_d2                 = POW_d, POW_d, f0
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_poly_d_hi          = POW_d, POW_Q0_half, f1
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+          fma.s1 POW_poly_d_lo          = POW_d, POW_Q2, POW_Q1
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fma.s1 POW_poly_d             = POW_d2, POW_poly_d_lo, POW_poly_d_hi
+          nop.i 999
+}
+;;
+
+{ .mfb
+          nop.m 999
+          fma.d.s0 f8                   = POW_d, POW_poly_d, f1
+          br.ret.sptk b0 // exit function for arguments |y*log(x)| < 2^(-11)
+}
+;;
+
+POW_POSSIBLE_UNDER:
+// We got an answer. input was < -2^9 but > -2^10 (double)
+// We got an answer. input was < -2^6 but > -2^7  (float)
+// underflow is a possibility, not a certainty
+
+// We define an underflow when the answer with
+//    ftz set
+// is zero (tiny numbers become zero)
+// Notice (from below) that if we have an unlimited exponent range,
+// then there is an extra machine number E between the largest denormal and
+// the smallest normal.
+// So if with unbounded exponent we round to E or below, then we are
+// tiny and underflow has occurred.
+// But notice that you can be in a situation where we are tiny, namely
+// rounded to E, but when the exponent is bounded we round to smallest
+// normal. So the answer can be the smallest normal with underflow.
+//                           E
+// -----+--------------------+--------------------+-----
+//      |                    |                    |
+//   1.1...10 2^-3fff    1.1...11 2^-3fff    1.0...00 2^-3ffe
+//   0.1...11 2^-3ffe                                   (biased, 1)
+//    largest dn                               smallest normal
+
+// Put in s2 (td set, ftz set)
+{ .mfi
+        nop.m 999
+        fsetc.s2 0x7F,0x41
+        nop.i 999
+}
+;;
+
+{ .mfi
+        nop.m 999
+        fma.d.s2 POW_ftz_urm_f8         = POW_A, POW_q, POW_A
+        nop.i 999
+}
+;;
+
+// Return s2 to default
+{ .mfi
+        nop.m 999
+        fsetc.s2 0x7F,0x40
+        nop.i 999
+}
+;;
+
+// p7 = TRUE ==> yes, we have an underflow
+{ .mfi
+        nop.m 999
+        fcmp.eq.s1 p7, p0               =  POW_ftz_urm_f8, f0
+        nop.i 999
+}
+;;
+
+{ .mbb
+(p7)    mov pow_GR_tag                  = 25
+(p7)    br.cond.spnt __libm_error_region // Branch if underflow
+        br.ret.sptk     b0               // Exit if did not underflow
+}
+;;
+
+POW_X_DENORM:
+// Here if x unorm. Use the NORM_X for getf instructions, and then back
+// to normal path
+{ .mfi
+        getf.exp      pow_GR_signexp_X  = POW_NORM_X
+        nop.f 999
+        nop.i 999
+}
+;;
+
+{ .mmi
+        getf.sig      pow_GR_sig_X      = POW_NORM_X
+;;
+        and           pow_GR_exp_X      = pow_GR_signexp_X, pow_GR_17ones
+        nop.i 999
+}
+;;
+
+{ .mib
+        sub       pow_GR_true_exp_X     = pow_GR_exp_X, pow_GR_16ones
+        nop.i 999
+        br.cond.sptk    POW_COMMON
+}
+;;
+
+POW_X_0:
+// Here if x=0 and y not nan
+//
+// We have the following cases:
+//  p6  x=0  and  y>0 and is an integer (may be even or odd)
+//  p7  x=0  and  y>0 and is NOT an integer, return +0
+//  p8  x=0  and  y>0 and so big as to always be an even integer, return +0
+//  p9  x=0  and  y>0 and may not be integer
+//  p10 x=0  and  y>0 and is an odd  integer, return x
+//  p11 x=0  and  y>0 and is an even integer, return +0
+//  p12 used in dummy fcmp to set denormal flag if y=unorm
+//  p13 x=0  and  y>0
+//  p14 x=0  and  y=0, branch to code for calling error handling
+//  p15 x=0  and  y<0, branch to code for calling error handling
+//
+{ .mfi
+        getf.sig pow_GR_sig_int_Y = POW_int_Y // Get signif of int_Y
+        fcmp.lt.s1 p15,p13 = f9, f0           // Test for y<0
+        and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
+}
+{ .mfb
+        cmp.ne p14,p0 = pow_GR_y_zero,r0      // Test for y=0
+        fcvt.xf   POW_float_int_Y = POW_int_Y
+(p14)   br.cond.spnt POW_X_0_Y_0              // Branch if x=0 and y=0
+}
+;;
+
+// If x=0 and y>0, test y and flag denormal
+{ .mfb
+(p13)   cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 // Test y +big = even int
+(p13)   fcmp.eq.s0 p12,p0 = f9,f0    // If x=0, y>0 dummy op to flag denormal
+(p15)   br.cond.spnt POW_X_0_Y_NEG // Branch if x=0 and y<0
+}
+;;
+
+// Here if x=0 and y>0
+{ .mfi
+        nop.m 999
+(p9)    fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y,  POW_NORM_Y // Test y=int
+        nop.i 999
+}
+{ .mfi
+        nop.m 999
+(p8)    fma.d.s0 f8 = f0,f0,f0 // If x=0, y>0 and large even int, return +0
+        nop.i 999
+}
+;;
+
+{ .mfi
+        nop.m 999
+(p7)    fma.d.s0 f8  = f0,f0,f0   // Result +0 if x=0 and y>0 and not integer
+(p6)    tbit.nz.unc p10,p11 = pow_GR_sig_int_Y,0 // If y>0 int, test y even/odd
+}
+;;
+
+// Note if x=0, y>0 and odd integer, just return x
+{ .mfb
+        nop.m 999
+(p11)   fma.d.s0 f8  = f0,f0,f0   // Result +0 if x=0 and y even integer
+        br.ret.sptk b0            // Exit if x=0 and y>0
+}
+;;
+
+POW_X_0_Y_0:
+// When X is +-0 and Y is +-0, IEEE returns 1.0
+// We call error support with this value
+
+{ .mfb
+        mov pow_GR_tag                  = 26
+        fma.d.s0 f8                     = f1,f1,f0
+        br.cond.sptk __libm_error_region
+}
+;;
+
+POW_X_0_Y_NEG:
+// When X is +-0 and Y is negative, IEEE returns
+// X     Y           answer
+// +0    -odd int    +inf
+// -0    -odd int    -inf
+
+// +0    !-odd int   +inf
+// -0    !-odd int   +inf
+
+// p6 == Y is a floating point number outside the integer.
+//       Hence it is an integer and is even.
+//       return +inf
+
+// p7 == Y is a floating point number within the integer range.
+//      p9  == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
+//           p11 odd
+//              return (sign_of_x)inf
+//           p12 even
+//              return +inf
+//      p10 == Y is not an integer
+//         return +inf
+//
+
+{ .mfi
+          nop.m 999
+          nop.f 999
+          cmp.gt  p6,p7                 = pow_GR_exp_Y, pow_GR_10033
+}
+;;
+
+{ .mfi
+          mov pow_GR_tag                = 27
+(p7)      fcmp.eq.unc.s1 p9,p10         = POW_float_int_Y,  POW_NORM_Y
+          nop.i 999
+}
+;;
+
+{ .mfb
+          nop.m 999
+(p6)      frcpa.s0 f8,p13               = f1, f0
+(p6)      br.cond.sptk __libm_error_region   // x=0, y<0, y large neg int
+}
+;;
+
+{ .mfb
+          nop.m 999
+(p10)     frcpa.s0 f8,p13               = f1, f0
+(p10)     br.cond.sptk __libm_error_region   // x=0, y<0, y not int
+}
+;;
+
+// x=0, y<0, y an int
+{ .mib
+          nop.m 999
+(p9)      tbit.nz.unc p11,p12           = pow_GR_sig_int_Y,0
+          nop.b 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+(p12)     frcpa.s0 f8,p13               = f1,f0
+          nop.i 999
+}
+;;
+
+{ .mfb
+          nop.m 999
+(p11)     frcpa.s0 f8,p13               = f1,f8
+          br.cond.sptk __libm_error_region
+}
+;;
+
+
+POW_Y_0:
+// Here for y zero, x anything but zero and nan
+// Set flag if x denormal
+// Result is +1.0
+{ .mfi
+        nop.m 999
+        fcmp.eq.s0 p6,p0 = f8,f0    // Sets flag if x denormal
+        nop.i 999
+}
+{ .mfb
+        nop.m 999
+        fma.d.s0 f8 = f1,f1,f0
+        br.ret.sptk b0
+}
+;;
+
+
+POW_X_INF:
+// Here when X is +-inf
+
+// X +inf  Y +inf             +inf
+// X -inf  Y +inf             +inf
+
+// X +inf  Y >0               +inf
+// X -inf  Y >0, !odd integer +inf     <== (-inf)^0.5 = +inf !!
+// X -inf  Y >0,  odd integer -inf
+
+// X +inf  Y -inf             +0
+// X -inf  Y -inf             +0
+
+// X +inf  Y <0               +0
+// X -inf  Y <0, !odd integer +0
+// X -inf  Y <0, odd integer  -0
+
+// X + inf Y=+0                +1
+// X + inf Y=-0                +1
+// X - inf Y=+0                +1
+// X - inf Y=-0                +1
+
+// p13 == Y negative
+// p14 == Y positive
+
+// p6 == Y is a floating point number outside the integer.
+//       Hence it is an integer and is even.
+//       p13 == (Y negative)
+//          return +inf
+//       p14 == (Y positive)
+//          return +0
+
+// p7 == Y is a floating point number within the integer range.
+//      p9  == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
+//           p11 odd
+//              p13 == (Y negative)
+//                 return (sign_of_x)inf
+//              p14 == (Y positive)
+//                 return (sign_of_x)0
+//           pxx even
+//              p13 == (Y negative)
+//                 return +inf
+//              p14 == (Y positive)
+//                 return +0
+
+//      pxx == Y is not an integer
+//           p13 == (Y negative)
+//                 return +inf
+//           p14 == (Y positive)
+//                 return +0
+//
+
+// If x=inf, test y and flag denormal
+{ .mfi
+          nop.m 999
+          fcmp.eq.s0 p10,p11 = f9,f0
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fcmp.lt.s0 p13,p14            = POW_NORM_Y,f0
+          cmp.gt  p6,p7                 = pow_GR_exp_Y, pow_GR_10033
+}
+{ .mfi
+          nop.m 999
+          fclass.m p12,p0               = f9, 0x23 //@inf
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          fclass.m p15,p0               = f9, 0x07 //@zero
+          nop.i 999
+}
+;;
+
+{ .mfb
+          nop.m 999
+(p15)     fmerge.s f8 = f1,f1      // Return +1.0 if x=inf, y=0
+(p15)     br.ret.spnt b0           // Exit if x=inf, y=0
+}
+;;
+
+{ .mfi
+          nop.m 999
+(p14)     frcpa.s1 f8,p10 = f1,f0  // If x=inf, y>0, assume result +inf
+          nop.i 999
+}
+{ .mfb
+          nop.m 999
+(p13)     fma.d.s0 f8 = f0,f0,f0   // If x=inf, y<0, assume result +0.0
+(p12)     br.ret.spnt b0           // Exit if x=inf, y=inf
+}
+;;
+
+// Here if x=inf, and 0 < |y| < inf.  Need to correct results if y odd integer.
+{ .mfi
+          nop.m 999
+(p7)      fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y,  POW_NORM_Y // Is y integer?
+          nop.i 999
+}
+;;
+
+{ .mfi
+          nop.m 999
+          nop.f 999
+(p9)      tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0  // Test for y odd integer
+}
+;;
+
+{ .mfb
+          nop.m 999
+(p11)     fmerge.s f8 = POW_NORM_X,f8    // If y odd integer use sign of x
+          br.ret.sptk b0                 // Exit for x=inf, 0 < |y| < inf
+}
+;;
+
+
+POW_X_NEG_Y_NONINT:
+// When X is negative and Y is a non-integer, IEEE
+// returns a qnan indefinite.
+// We call error support with this value
+
+{ .mfb
+         mov pow_GR_tag                 = 28
+         frcpa.s0 f8,p6                 = f0,f0
+         br.cond.sptk __libm_error_region
+}
+;;
+
+POW_X_NAN:
+// Here if x=nan, y not nan
+{ .mfi
+         nop.m 999
+         fclass.m  p9,p13 = f9, 0x07 // Test y=zero
+         nop.i 999
+}
+;;
+
+{ .mfb
+         nop.m 999
+(p13)    fma.d.s0 f8 = f8,f1,f0
+(p13)    br.ret.sptk  b0            // Exit if x nan, y anything but zero or nan
+}
+;;
+
+POW_X_NAN_Y_0:
+// When X is a NAN and Y is zero, IEEE returns 1.
+// We call error support with this value.
+{ .mfi
+         nop.m 999
+         fcmp.eq.s0 p6,p0 = f8,f0       // Dummy op to set invalid on snan
+         nop.i 999
+}
+{ .mfb
+         mov pow_GR_tag                 = 29
+         fma.d.s0 f8 = f0,f0,f1
+         br.cond.sptk __libm_error_region
+}
+;;
+
+
+POW_OVER_UNDER_X_NOT_INF:
+
+// p8 is TRUE for overflow
+// p9 is TRUE for underflow
+
+// if y is infinity, we should not over/underflow
+
+{ .mfi
+          nop.m 999
+          fcmp.eq.s1     p14, p13       = POW_xsq,f1  // Test |x|=1
+          cmp.eq p8,p9                  = pow_GR_sign_Y_Gpr, r0
+}
+;;
+
+{ .mfi
+          nop.m 999
+(p14)     fclass.m.unc       p15, p0    = f9, 0x23 // If |x|=1, test y=inf
+          nop.i 999
+}
+{ .mfi
+          nop.m 999
+(p13)     fclass.m.unc       p11,p0     = f9, 0x23 // If |x| not 1, test y=inf
+          nop.i 999
+}
+;;
+
+// p15 = TRUE if |x|=1, y=inf, return +1
+{ .mfb
+          nop.m 999
+(p15)     fma.d.s0          f8          = f1,f1,f0 // If |x|=1, y=inf, result +1
+(p15)     br.ret.spnt b0                // Exit if |x|=1, y=inf
+}
+;;
+
+.pred.rel "mutex",p8,p9
+{  .mfb
+(p8)      setf.exp           f8 = pow_GR_17ones // If exp(+big), result inf
+(p9)      fmerge.s           f8 = f0,f0         // If exp(-big), result 0
+(p11)     br.ret.sptk b0                // Exit if |x| not 1, y=inf
+}
+;;
+
+{ .mfb
+          nop.m 999
+          nop.f 999
+          br.cond.sptk POW_OVER_UNDER_ERROR // Branch if y not inf
+}
+;;
+
+
+POW_Y_NAN:
+// Here if y=nan, x anything
+// If x = +1 then result is +1, else result is quiet Y
+{ .mfi
+       nop.m 999
+       fcmp.eq.s1         p10,p9        = POW_NORM_X, f1
+       nop.i 999
+}
+;;
+
+{ .mfi
+       nop.m 999
+(p10)  fcmp.eq.s0 p6,p0 = f9,f1   // Set invalid, even if x=+1
+       nop.i 999
+}
+;;
+
+{ .mfi
+       nop.m 999
+(p10)  fma.d.s0 f8 = f1,f1,f0
+       nop.i 999
+}
+{ .mfb
+       nop.m 999
+(p9)   fma.d.s0 f8 = f9,f8,f0
+       br.ret.sptk b0             // Exit y=nan
+}
+;;
+
+
+POW_OVER_UNDER_ERROR:
+// Here if we have overflow or underflow.
+// Enter with p12 true if x negative and y odd int to force -0 or -inf
+
+{ .mfi
+         sub   pow_GR_17ones_m1         = pow_GR_17ones, r0, 1
+         nop.f 999
+         mov pow_GR_one                 = 0x1
+}
+;;
+
+// overflow, force inf with O flag
+{ .mmb
+(p8)     mov pow_GR_tag                 = 24
+(p8)     setf.exp POW_tmp               = pow_GR_17ones_m1
+         nop.b 999
+}
+;;
+
+// underflow, force zero with I, U flags
+{ .mmi
+(p9)    mov pow_GR_tag                  = 25
+(p9)    setf.exp POW_tmp                = pow_GR_one
+        nop.i 999
+}
+;;
+
+{ .mfi
+        nop.m 999
+        fma.d.s0 f8                     = POW_tmp, POW_tmp, f0
+        nop.i 999
+}
+;;
+
+// p12 x is negative and y is an odd integer, change sign of result
+{ .mfi
+        nop.m 999
+(p12)   fnma.d.s0 f8                    = POW_tmp, POW_tmp, f0
+        nop.i 999
+}
+;;
+
+GLOBAL_LIBM_END(pow)
+
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
+
+.prologue
+{ .mfi
+        add   GR_Parameter_Y=-32,sp     // Parameter 2 value
+        nop.f 0
+.save   ar.pfs,GR_SAVE_PFS
+        mov  GR_SAVE_PFS=ar.pfs         // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+        add sp=-64,sp                   // Create new stack
+        nop.f 0
+        mov GR_SAVE_GP=gp               // Save gp
+};;
+
+{ .mmi
+        stfd [GR_Parameter_Y] = POW_NORM_Y,16 // STORE Parameter 2 on stack
+        add GR_Parameter_X = 16,sp      // Parameter 1 address
+.save   b0, GR_SAVE_B0
+        mov GR_SAVE_B0=b0               // Save b0
+};;
+
+.body
+{ .mib
+        stfd [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
+        add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
+        nop.b 0
+}
+{ .mib
+        stfd [GR_Parameter_Y] = f8      // STORE Parameter 3 on stack
+        add   GR_Parameter_Y = -16,GR_Parameter_Y
+        br.call.sptk b0=__libm_error_support# // Call error handling function
+};;
+
+{ .mmi
+        add   GR_Parameter_RESULT = 48,sp
+        nop.m 0
+        nop.i 0
+};;
+
+{ .mmi
+        ldfd  f8 = [GR_Parameter_RESULT] // Get return result off stack
+.restore sp
+        add   sp = 64,sp                 // Restore stack pointer
+        mov   b0 = GR_SAVE_B0            // Restore return address
+};;
+
+{ .mib
+        mov   gp = GR_SAVE_GP            // Restore gp
+        mov   ar.pfs = GR_SAVE_PFS       // Restore ar.pfs
+        br.ret.sptk     b0               // Return
+};;
+
+LOCAL_LIBM_END(__libm_error_region)
+
+.type   __libm_error_support#,@function
+.global __libm_error_support#