about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_logf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_logf.S')
-rw-r--r--sysdeps/ia64/fpu/e_logf.S1787
1 files changed, 795 insertions, 992 deletions
diff --git a/sysdeps/ia64/fpu/e_logf.S b/sysdeps/ia64/fpu/e_logf.S
index 0ca6d3f2c8..829d0abed0 100644
--- a/sysdeps/ia64/fpu/e_logf.S
+++ b/sysdeps/ia64/fpu/e_logf.S
@@ -1,10 +1,10 @@
 .file "logf.s"
 
-
-// Copyright (c) 2000 - 2003, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
 // All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// 
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
 //
 // Redistribution and use in source and binary forms, with or without
 // modification, are permitted provided that the following conditions are
@@ -20,1072 +20,861 @@
 // * The name of Intel Corporation may not be used to endorse or promote
 // products derived from this software without specific prior written
 // permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
+// 
 // Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// problem reports or change requests be submitted to it directly at 
+// http://developer.intel.com/opensource.
 //
 // History
 //==============================================================
-// 03/01/00 Initial version
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+// 3/01/00  Initial version
+// 8/15/00  Bundle added after call to __libm_error_support to properly
 //          set [the previously overwritten] GR_Parameter_RESULT.
-// 01/10/01 Improved speed, fixed flags for neg denormals
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 05/23/02 Modified algorithm. Now only one polynomial is used
-//          for |x-1| >= 1/256 and for |x-1| < 1/256
-// 02/10/03 Reordered header: .section, .global, .proc, .align
+// 1/10/01  Improved speed, fixed flags for neg denormals
+//
 //
 // API
 //==============================================================
 // float logf(float)
 // float log10f(float)
 //
-//
 // Overview of operation
 //==============================================================
 // Background
-// ----------
 //
-// This algorithm is based on fact that
-// log(a b) = log(a) + log(b).
+// Consider  x = 2^N 1.f1 f2 f3 f4...f63
+// Log(x) = log(frcpa(x) x/frcpa(x))
+//        = log(1/frcpa(x)) + log(frcpa(x) x)
+//        = -log(frcpa(x)) + log(frcpa(x) x)
 //
-// In our case we have x = 2^N f, where 1 <= f < 2.
-// So
-//   log(x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
+// frcpa(x)       = 2^-N frcpa((1.f1 f2 ... f63)
 //
-// To calculate log(f) we do following
-//   log(f) = log(f * frcpa(f) / frcpa(f)) =
-//          = log(f * frcpa(f)) + log(1/frcpa(f))
+// -log(frcpa(x)) = -log(C) 
+//                = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
 //
-// According to definition of IA-64's frcpa instruction it's a
-// floating point that approximates 1/f using a lookup on the
-// top of 8 bits of the input number's significand with relative
-// error < 2^(-8.886). So we have following
+// -log(frcpa(x)) = -log(C) 
+//                = +Nlog2 - log(frcpa(1.f1 f2 ... f63))
 //
-// |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
+// -log(frcpa(x)) = -log(C) 
+//                = +Nlog2 + log(frcpa(1.f1 f2 ... f63))
 //
-// and
-//
-// log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
-//        = log(1 + r) + T
-//
-// The first value can be computed by polynomial P(r) approximating
-// log(1 + r) on |r| < 1/256 and the second is precomputed tabular
-// value defined by top 8 bit of f.
-//
-// Finally we have that  log(x) ~ (N*log(2) + T) + P(r)
-//
-// Note that if input argument is close to 1.0 (in our case it means
-// that |1 - x| < 1/256) we can use just polynomial approximation
-// because x = 2^0 * f = f = 1 + r and
-// log(x) = log(1 + r) ~ P(r)
-//
-//
-// To compute log10(x) we just use identity:
+// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
+
+// Log(x) =  +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
+// Log(x) =  +Nlog2 - log(/frcpa(1.f1 f2 ... f63))   + log(frcpa(x) x)
+// Log(x) =  +Nlog2 + T                              + log(frcpa(x) x)
 //
-//  log10(x) = log(x)/log(10)
+// Log(x) =  +Nlog2 + T                     + log(C x)
 //
-// so we have that
+// Cx = 1 + r
 //
-//  log10(x) = (N*log(2) + T  + log(1+r)) / log(10) =
-//           = N*(log(2)/log(10)) + (T/log(10)) + log(1 + r)/log(10)
+// Log(x) =  +Nlog2 + T  + log(1+r)
+// Log(x) =  +Nlog2 + T  + Series( r - r^2/2 + r^3/3 - r^4/4 ....)
 //
+// 1.f1 f2 ... f8 has 256 entries.
+// They are 1 + k/2^8, k = 0 ... 255
+// These 256 values are the table entries.
 //
 // Implementation
-// --------------
-// It can be seen that formulas for log and log10 differ from one another
-// only by coefficients and tabular values. Namely as log as log10 are
-// calculated as (N*L1 + T) + L2*Series(r) where in case of log
-//   L1 = log(2)
-//   T  = log(1/frcpa(x))
-//   L2 = 1.0
-// and in case of log10
-//   L1 = log(2)/log(10)
-//   T  = log(1/frcpa(x))/log(10)
-//   L2 = 1.0/log(10)
-//
-// So common code with two different entry points those set pointers
-// to the base address of coresponding data sets containing values
-// of L2,T and prepare integer representation of L1 needed for following
-// setf instruction can be used.
-//
-// Note that both log and log10 use common approximation polynomial
-// it means we need only one set of coefficients of approximation.
-//
-// 1. Computation of log(x) for |x-1| >= 1/256
-//   InvX = frcpa(x)
-//   r = InvX*x - 1
-//   P(r) = r*((1 - A2*r) + r^2*(A3 - A4*r)) = r*P2(r),
-//   A4,A3,A2 are created with setf inctruction.
-//   We use Taylor series and so A4 = 1/4, A3 = 1/3,
-//   A2 = 1/2 rounded to double.
-//
-//   N = float(n) where n is true unbiased exponent of x
-//
-//   T is tabular value of log(1/frcpa(x)) calculated in quad precision
-//   and rounded to double. To T we get bits from 55 to 62 of register
-//   format significand of x and calculate address
-//     ad_T = table_base_addr + 8 * index
-//
-//   L2 (1.0 or 1.0/log(10) depending on function) is calculated in quad
-//   precision and rounded to double; it's loaded from memory
-//
-//   L1 (log(2) or log10(2) depending on function) is calculated in quad
-//   precision and rounded to double; it's created with setf.
-//
-//   And final result = P2(r)*(r*L2) + (T + N*L1)
-//
-//
-// 2. Computation of log(x) for |x-1| < 1/256
-//   r = x - 1
-//   P(r) = r*((1 - A2*r) + r^2*(A3 - A4*r)) = r*P2(r),
-//   A4,A3,A2 are the same as in case |x-1| >= 1/256
-//
-//   And final result = P2(r)*(r*L2)
-//
-// 3. How we define is input argument such that |x-1| < 1/256 or not.
-//
-//    To do it we analyze biased exponent and significand of input argment.
+//===============
+// CASE 1:  |x-1| >= 2^-8
+// C = frcpa(x)
+// r = C * x - 1
 //
-//      a) First we test is biased exponent equal to 0xFFFE or 0xFFFF (i.e.
-//         we test is 0.5 <= x < 2). This comparison can be performed using
-//         unsigned version of cmp instruction in such a way
-//         biased_exponent_of_x - 0xFFFE < 2
+// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4
 //
+// x = f * 2*n where f is 1.f_1f_2f_3....f_63
+// Nfloat = float(n)  where n is the true unbiased exponent
+// pre-index = f_1f_2....f_8
+// index = pre_index * 16
+// get the dxt table entry at index + offset = T
 //
-//      b) Second (in case when result of a) is true) we need to compare x
-//         with 1-1/256 and 1+1/256 or in register format representation with
-//         0xFFFEFF00000000000000 and 0xFFFF8080000000000000 correspondingly.
-//         As far as biased exponent of x here can be equal only to 0xFFFE or
-//         0xFFFF we need to test only last bit of it. Also signifigand always
-//         has implicit bit set to 1 that can be exluded from comparison.
-//         Thus it's quite enough to generate 64-bit integer bits of that are
-//         ix[63] = biased_exponent_of_x[0] and ix[62-0] = significand_of_x[62-0]
-//         and compare it with 0x7F00000000000000 and 0x80800000000000000 (those
-//         obtained like ix from register representatinos of 255/256 and
-//         257/256). This comparison can be made like in a), using unsigned
-//         version of cmp i.e. ix - 0x7F00000000000000 < 0x0180000000000000.
-//         0x0180000000000000 is difference between 0x80800000000000000 and
-//         0x7F00000000000000.
+// result = (T + Nfloat * log(2)) + rseries
 //
-//    Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
-//          filtered and processed on special branches.
+// The T table is calculated as follows
+// Form x_k = 1 + k/2^8 where k goes from 0... 255
+//      y_k = frcpa(x_k)
+//      log(1/y_k)  in quad and round to double
+
+// CASE 2:  |x-1| < 2^-6
+// w = x - 1
 //
+// Form wseries = w + Q1*w^2 + Q2*w^3 + Q3*w^4
 //
-// Special values
+// result = wseries
+
+// Special values 
 //==============================================================
-//
-// logf(+0)    = -inf
-// logf(-0)    = -inf
-//
-// logf(+qnan) = +qnan
-// logf(-qnan) = -qnan
-// logf(+snan) = +qnan
-// logf(-snan) = -qnan
-//
-// logf(-n)    = QNAN Indefinite
-// logf(-inf)  = QNAN Indefinite
-//
-// logf(+inf)  = +inf
-//
+
+
+// log(+0)    = -inf
+// log(-0)    = -inf
+
+// log(+qnan) = +qnan 
+// log(-qnan) = -qnan 
+// log(+snan) = +qnan 
+// log(-snan) = -qnan 
+
+// log(-n)    = QNAN Indefinite
+// log(-inf)  = QNAN Indefinite 
+
+// log(+inf)  = +inf
+
 // Registers used
 //==============================================================
-// Floating Point registers used:
+// Floating Point registers used: 
 // f8, input
-// f12 -> f14,  f33 -> f39
-//
-// General registers used:
-// r8  -> r11
-// r14 -> r19
-//
+// f9 -> f15,  f32 -> f47
+
+// General registers used:  
+// r32 -> r51
+
 // Predicate registers used:
-// p6 -> p12
+// p6 -> p15
 
+// p8 log base e
+// p6 log base e special
+// p9 used in the frcpa
+// p13 log base e large W
+// p14 log base e small w
+
+// p7 log base 10
+// p10 log base 10 large W
+// p11 log base 10 small w
+// p12 log base 10 special
+
+#include "libm_support.h"
 
 // Assembly macros
 //==============================================================
 
-GR_TAG                 = r8
-GR_ad_T                = r8
-GR_N                   = r9
-GR_Exp                 = r10
-GR_Sig                 = r11
-
-GR_025                 = r14
-GR_05                  = r15
-GR_A3                  = r16
-GR_Ind                 = r17
-GR_dx                  = r15
-GR_Ln2                 = r19
-GR_de                  = r20
-GR_x                   = r21
-GR_xorg                = r22
-
-GR_SAVE_B0             = r33
-GR_SAVE_PFS            = r34
-GR_SAVE_GP             = r35
-GR_SAVE_SP             = r36
-
-GR_Parameter_X         = r37
-GR_Parameter_Y         = r38
-GR_Parameter_RESULT    = r39
-GR_Parameter_TAG       = r40
-
-
-FR_A2                  = f12
-FR_A3                  = f13
-FR_A4                  = f14
-
-FR_RcpX                = f33
-FR_r                   = f34
-FR_r2                  = f35
-FR_tmp                 = f35
-FR_Ln2                 = f36
-FR_T                   = f37
-FR_N                   = f38
-FR_NxLn2pT             = f38
-FR_NormX               = f39
-FR_InvLn10             = f40
-
-
-FR_Y                   = f1
-FR_X                   = f10
-FR_RESULT              = f8
+log_int_Nfloat   = f9 
+log_Nfloat       = f10 
+
+log_P3           = f11 
+log_P2           = f12 
+log_P1           = f13 
+log_inv_ln10     = f14
+log_log2         = f15 
+
+log_w            = f32
+log_T            = f33 
+log_rp_p32       = f34 
+log_rp_p2        = f35 
+log_rp_p10       = f36
+log_rsq          = f37 
+log_T_plus_Nlog2 = f38 
+log_r            = f39
+log_C            = f40
+log_rp_q32       = f41
+log_rp_q2        = f42
+log_rp_q10       = f43
+log_wsq          = f44
+log_Q            = f45
+log_inv_ln10     = f46
+log_NORM_f8      = f47
+
+// ===================================
+
+log_GR_exp_17_ones               = r33
+log_GR_exp_16_ones               = r34
+log_GR_exp_f8                    = r35
+log_GR_signexp_f8                = r36
+log_GR_true_exp_f8               = r37
+log_GR_significand_f8            = r38
+log_GR_index                     = r39
+log_AD_1                         = r40
+log_GR_signexp_w                 = r41
+log_GR_fff7                      = r42
+log_AD_2                         = r43
+log_GR_exp_w                     = r44
+
+GR_SAVE_B0                       = r45
+GR_SAVE_GP                       = r46
+GR_SAVE_PFS                      = r47
+
+GR_Parameter_X                   = r48
+GR_Parameter_Y                   = r49
+GR_Parameter_RESULT              = r50
+log_GR_tag                       = r51
 
 
 // Data tables
 //==============================================================
-RODATA
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
 .align 16
-LOCAL_OBJECT_START(logf_data)
-data8 0x3FF0000000000000 // 1.0
-//
-// ln(1/frcpa(1+i/256)), i=0...255
-data8 0x3F60040155D5889E // 0
-data8 0x3F78121214586B54 // 1
-data8 0x3F841929F96832F0 // 2
-data8 0x3F8C317384C75F06 // 3
-data8 0x3F91A6B91AC73386 // 4
-data8 0x3F95BA9A5D9AC039 // 5
-data8 0x3F99D2A8074325F4 // 6
-data8 0x3F9D6B2725979802 // 7
-data8 0x3FA0C58FA19DFAAA // 8
-data8 0x3FA2954C78CBCE1B // 9
-data8 0x3FA4A94D2DA96C56 // 10
-data8 0x3FA67C94F2D4BB58 // 11
-data8 0x3FA85188B630F068 // 12
-data8 0x3FAA6B8ABE73AF4C // 13
-data8 0x3FAC441E06F72A9E // 14
-data8 0x3FAE1E6713606D07 // 15
-data8 0x3FAFFA6911AB9301 // 16
-data8 0x3FB0EC139C5DA601 // 17
-data8 0x3FB1DBD2643D190B // 18
-data8 0x3FB2CC7284FE5F1C // 19
-data8 0x3FB3BDF5A7D1EE64 // 20
-data8 0x3FB4B05D7AA012E0 // 21
-data8 0x3FB580DB7CEB5702 // 22
-data8 0x3FB674F089365A7A // 23
-data8 0x3FB769EF2C6B568D // 24
-data8 0x3FB85FD927506A48 // 25
-data8 0x3FB9335E5D594989 // 26
-data8 0x3FBA2B0220C8E5F5 // 27
-data8 0x3FBB0004AC1A86AC // 28
-data8 0x3FBBF968769FCA11 // 29
-data8 0x3FBCCFEDBFEE13A8 // 30
-data8 0x3FBDA727638446A2 // 31
-data8 0x3FBEA3257FE10F7A // 32
-data8 0x3FBF7BE9FEDBFDE6 // 33
-data8 0x3FC02AB352FF25F4 // 34
-data8 0x3FC097CE579D204D // 35
-data8 0x3FC1178E8227E47C // 36
-data8 0x3FC185747DBECF34 // 37
-data8 0x3FC1F3B925F25D41 // 38
-data8 0x3FC2625D1E6DDF57 // 39
-data8 0x3FC2D1610C86813A // 40
-data8 0x3FC340C59741142E // 41
-data8 0x3FC3B08B6757F2A9 // 42
-data8 0x3FC40DFB08378003 // 43
-data8 0x3FC47E74E8CA5F7C // 44
-data8 0x3FC4EF51F6466DE4 // 45
-data8 0x3FC56092E02BA516 // 46
-data8 0x3FC5D23857CD74D5 // 47
-data8 0x3FC6313A37335D76 // 48
-data8 0x3FC6A399DABBD383 // 49
-data8 0x3FC70337DD3CE41B // 50
-data8 0x3FC77654128F6127 // 51
-data8 0x3FC7E9D82A0B022D // 52
-data8 0x3FC84A6B759F512F // 53
-data8 0x3FC8AB47D5F5A310 // 54
-data8 0x3FC91FE49096581B // 55
-data8 0x3FC981634011AA75 // 56
-data8 0x3FC9F6C407089664 // 57
-data8 0x3FCA58E729348F43 // 58
-data8 0x3FCABB55C31693AD // 59
-data8 0x3FCB1E104919EFD0 // 60
-data8 0x3FCB94EE93E367CB // 61
-data8 0x3FCBF851C067555F // 62
-data8 0x3FCC5C0254BF23A6 // 63
-data8 0x3FCCC000C9DB3C52 // 64
-data8 0x3FCD244D99C85674 // 65
-data8 0x3FCD88E93FB2F450 // 66
-data8 0x3FCDEDD437EAEF01 // 67
-data8 0x3FCE530EFFE71012 // 68
-data8 0x3FCEB89A1648B971 // 69
-data8 0x3FCF1E75FADF9BDE // 70
-data8 0x3FCF84A32EAD7C35 // 71
-data8 0x3FCFEB2233EA07CD // 72
-data8 0x3FD028F9C7035C1C // 73
-data8 0x3FD05C8BE0D9635A // 74
-data8 0x3FD085EB8F8AE797 // 75
-data8 0x3FD0B9C8E32D1911 // 76
-data8 0x3FD0EDD060B78081 // 77
-data8 0x3FD122024CF0063F // 78
-data8 0x3FD14BE2927AECD4 // 79
-data8 0x3FD180618EF18ADF // 80
-data8 0x3FD1B50BBE2FC63B // 81
-data8 0x3FD1DF4CC7CF242D // 82
-data8 0x3FD214456D0EB8D4 // 83
-data8 0x3FD23EC5991EBA49 // 84
-data8 0x3FD2740D9F870AFB // 85
-data8 0x3FD29ECDABCDFA04 // 86
-data8 0x3FD2D46602ADCCEE // 87
-data8 0x3FD2FF66B04EA9D4 // 88
-data8 0x3FD335504B355A37 // 89
-data8 0x3FD360925EC44F5D // 90
-data8 0x3FD38BF1C3337E75 // 91
-data8 0x3FD3C25277333184 // 92
-data8 0x3FD3EDF463C1683E // 93
-data8 0x3FD419B423D5E8C7 // 94
-data8 0x3FD44591E0539F49 // 95
-data8 0x3FD47C9175B6F0AD // 96
-data8 0x3FD4A8B341552B09 // 97
-data8 0x3FD4D4F3908901A0 // 98
-data8 0x3FD501528DA1F968 // 99
-data8 0x3FD52DD06347D4F6 // 100
-data8 0x3FD55A6D3C7B8A8A // 101
-data8 0x3FD5925D2B112A59 // 102
-data8 0x3FD5BF406B543DB2 // 103
-data8 0x3FD5EC433D5C35AE // 104
-data8 0x3FD61965CDB02C1F // 105
-data8 0x3FD646A84935B2A2 // 106
-data8 0x3FD6740ADD31DE94 // 107
-data8 0x3FD6A18DB74A58C5 // 108
-data8 0x3FD6CF31058670EC // 109
-data8 0x3FD6F180E852F0BA // 110
-data8 0x3FD71F5D71B894F0 // 111
-data8 0x3FD74D5AEFD66D5C // 112
-data8 0x3FD77B79922BD37E // 113
-data8 0x3FD7A9B9889F19E2 // 114
-data8 0x3FD7D81B037EB6A6 // 115
-data8 0x3FD8069E33827231 // 116
-data8 0x3FD82996D3EF8BCB // 117
-data8 0x3FD85855776DCBFB // 118
-data8 0x3FD8873658327CCF // 119
-data8 0x3FD8AA75973AB8CF // 120
-data8 0x3FD8D992DC8824E5 // 121
-data8 0x3FD908D2EA7D9512 // 122
-data8 0x3FD92C59E79C0E56 // 123
-data8 0x3FD95BD750EE3ED3 // 124
-data8 0x3FD98B7811A3EE5B // 125
-data8 0x3FD9AF47F33D406C // 126
-data8 0x3FD9DF270C1914A8 // 127
-data8 0x3FDA0325ED14FDA4 // 128
-data8 0x3FDA33440224FA79 // 129
-data8 0x3FDA57725E80C383 // 130
-data8 0x3FDA87D0165DD199 // 131
-data8 0x3FDAAC2E6C03F896 // 132
-data8 0x3FDADCCC6FDF6A81 // 133
-data8 0x3FDB015B3EB1E790 // 134
-data8 0x3FDB323A3A635948 // 135
-data8 0x3FDB56FA04462909 // 136
-data8 0x3FDB881AA659BC93 // 137
-data8 0x3FDBAD0BEF3DB165 // 138
-data8 0x3FDBD21297781C2F // 139
-data8 0x3FDC039236F08819 // 140
-data8 0x3FDC28CB1E4D32FD // 141
-data8 0x3FDC4E19B84723C2 // 142
-data8 0x3FDC7FF9C74554C9 // 143
-data8 0x3FDCA57B64E9DB05 // 144
-data8 0x3FDCCB130A5CEBB0 // 145
-data8 0x3FDCF0C0D18F326F // 146
-data8 0x3FDD232075B5A201 // 147
-data8 0x3FDD490246DEFA6B // 148
-data8 0x3FDD6EFA918D25CD // 149
-data8 0x3FDD9509707AE52F // 150
-data8 0x3FDDBB2EFE92C554 // 151
-data8 0x3FDDEE2F3445E4AF // 152
-data8 0x3FDE148A1A2726CE // 153
-data8 0x3FDE3AFC0A49FF40 // 154
-data8 0x3FDE6185206D516E // 155
-data8 0x3FDE882578823D52 // 156
-data8 0x3FDEAEDD2EAC990C // 157
-data8 0x3FDED5AC5F436BE3 // 158
-data8 0x3FDEFC9326D16AB9 // 159
-data8 0x3FDF2391A2157600 // 160
-data8 0x3FDF4AA7EE03192D // 161
-data8 0x3FDF71D627C30BB0 // 162
-data8 0x3FDF991C6CB3B379 // 163
-data8 0x3FDFC07ADA69A910 // 164
-data8 0x3FDFE7F18EB03D3E // 165
-data8 0x3FE007C053C5002E // 166
-data8 0x3FE01B942198A5A1 // 167
-data8 0x3FE02F74400C64EB // 168
-data8 0x3FE04360BE7603AD // 169
-data8 0x3FE05759AC47FE34 // 170
-data8 0x3FE06B5F1911CF52 // 171
-data8 0x3FE078BF0533C568 // 172
-data8 0x3FE08CD9687E7B0E // 173
-data8 0x3FE0A10074CF9019 // 174
-data8 0x3FE0B5343A234477 // 175
-data8 0x3FE0C974C89431CE // 176
-data8 0x3FE0DDC2305B9886 // 177
-data8 0x3FE0EB524BAFC918 // 178
-data8 0x3FE0FFB54213A476 // 179
-data8 0x3FE114253DA97D9F // 180
-data8 0x3FE128A24F1D9AFF // 181
-data8 0x3FE1365252BF0865 // 182
-data8 0x3FE14AE558B4A92D // 183
-data8 0x3FE15F85A19C765B // 184
-data8 0x3FE16D4D38C119FA // 185
-data8 0x3FE18203C20DD133 // 186
-data8 0x3FE196C7BC4B1F3B // 187
-data8 0x3FE1A4A738B7A33C // 188
-data8 0x3FE1B981C0C9653D // 189
-data8 0x3FE1CE69E8BB106B // 190
-data8 0x3FE1DC619DE06944 // 191
-data8 0x3FE1F160A2AD0DA4 // 192
-data8 0x3FE2066D7740737E // 193
-data8 0x3FE2147DBA47A394 // 194
-data8 0x3FE229A1BC5EBAC3 // 195
-data8 0x3FE237C1841A502E // 196
-data8 0x3FE24CFCE6F80D9A // 197
-data8 0x3FE25B2C55CD5762 // 198
-data8 0x3FE2707F4D5F7C41 // 199
-data8 0x3FE285E0842CA384 // 200
-data8 0x3FE294294708B773 // 201
-data8 0x3FE2A9A2670AFF0C // 202
-data8 0x3FE2B7FB2C8D1CC1 // 203
-data8 0x3FE2C65A6395F5F5 // 204
-data8 0x3FE2DBF557B0DF43 // 205
-data8 0x3FE2EA64C3F97655 // 206
-data8 0x3FE3001823684D73 // 207
-data8 0x3FE30E97E9A8B5CD // 208
-data8 0x3FE32463EBDD34EA // 209
-data8 0x3FE332F4314AD796 // 210
-data8 0x3FE348D90E7464D0 // 211
-data8 0x3FE35779F8C43D6E // 212
-data8 0x3FE36621961A6A99 // 213
-data8 0x3FE37C299F3C366A // 214
-data8 0x3FE38AE2171976E7 // 215
-data8 0x3FE399A157A603E7 // 216
-data8 0x3FE3AFCCFE77B9D1 // 217
-data8 0x3FE3BE9D503533B5 // 218
-data8 0x3FE3CD7480B4A8A3 // 219
-data8 0x3FE3E3C43918F76C // 220
-data8 0x3FE3F2ACB27ED6C7 // 221
-data8 0x3FE4019C2125CA93 // 222
-data8 0x3FE4181061389722 // 223
-data8 0x3FE42711518DF545 // 224
-data8 0x3FE436194E12B6BF // 225
-data8 0x3FE445285D68EA69 // 226
-data8 0x3FE45BCC464C893A // 227
-data8 0x3FE46AED21F117FC // 228
-data8 0x3FE47A1527E8A2D3 // 229
-data8 0x3FE489445EFFFCCC // 230
-data8 0x3FE4A018BCB69835 // 231
-data8 0x3FE4AF5A0C9D65D7 // 232
-data8 0x3FE4BEA2A5BDBE87 // 233
-data8 0x3FE4CDF28F10AC46 // 234
-data8 0x3FE4DD49CF994058 // 235
-data8 0x3FE4ECA86E64A684 // 236
-data8 0x3FE503C43CD8EB68 // 237
-data8 0x3FE513356667FC57 // 238
-data8 0x3FE522AE0738A3D8 // 239
-data8 0x3FE5322E26867857 // 240
-data8 0x3FE541B5CB979809 // 241
-data8 0x3FE55144FDBCBD62 // 242
-data8 0x3FE560DBC45153C7 // 243
-data8 0x3FE5707A26BB8C66 // 244
-data8 0x3FE587F60ED5B900 // 245
-data8 0x3FE597A7977C8F31 // 246
-data8 0x3FE5A760D634BB8B // 247
-data8 0x3FE5B721D295F10F // 248
-data8 0x3FE5C6EA94431EF9 // 249
-data8 0x3FE5D6BB22EA86F6 // 250
-data8 0x3FE5E6938645D390 // 251
-data8 0x3FE5F673C61A2ED2 // 252
-data8 0x3FE6065BEA385926 // 253
-data8 0x3FE6164BFA7CC06B // 254
-data8 0x3FE62643FECF9743 // 255
-LOCAL_OBJECT_END(logf_data)
-
-LOCAL_OBJECT_START(log10f_data)
-data8 0x3FDBCB7B1526E50E // 1/ln(10)
-//
-// ln(1/frcpa(1+i/256))/ln(10), i=0...255
-data8 0x3F4BD27045BFD025 // 0
-data8 0x3F64E84E793A474A // 1
-data8 0x3F7175085AB85FF0 // 2
-data8 0x3F787CFF9D9147A5 // 3
-data8 0x3F7EA9D372B89FC8 // 4
-data8 0x3F82DF9D95DA961C // 5
-data8 0x3F866DF172D6372C // 6
-data8 0x3F898D79EF5EEDF0 // 7
-data8 0x3F8D22ADF3F9579D // 8
-data8 0x3F9024231D30C398 // 9
-data8 0x3F91F23A98897D4A // 10
-data8 0x3F93881A7B818F9E // 11
-data8 0x3F951F6E1E759E35 // 12
-data8 0x3F96F2BCE7ADC5B4 // 13
-data8 0x3F988D362CDF359E // 14
-data8 0x3F9A292BAF010982 // 15
-data8 0x3F9BC6A03117EB97 // 16
-data8 0x3F9D65967DE3AB09 // 17
-data8 0x3F9F061167FC31E8 // 18
-data8 0x3FA05409E4F7819C // 19
-data8 0x3FA125D0432EA20E // 20
-data8 0x3FA1F85D440D299B // 21
-data8 0x3FA2AD755749617D // 22
-data8 0x3FA381772A00E604 // 23
-data8 0x3FA45643E165A70B // 24
-data8 0x3FA52BDD034475B8 // 25
-data8 0x3FA5E3966B7E9295 // 26
-data8 0x3FA6BAAF47C5B245 // 27
-data8 0x3FA773B3E8C4F3C8 // 28
-data8 0x3FA84C51EBEE8D15 // 29
-data8 0x3FA906A6786FC1CB // 30
-data8 0x3FA9C197ABF00DD7 // 31
-data8 0x3FAA9C78712191F7 // 32
-data8 0x3FAB58C09C8D637C // 33
-data8 0x3FAC15A8BCDD7B7E // 34
-data8 0x3FACD331E2C2967C // 35
-data8 0x3FADB11ED766ABF4 // 36
-data8 0x3FAE70089346A9E6 // 37
-data8 0x3FAF2F96C6754AEE // 38
-data8 0x3FAFEFCA8D451FD6 // 39
-data8 0x3FB0585283764178 // 40
-data8 0x3FB0B913AAC7D3A7 // 41
-data8 0x3FB11A294F2569F6 // 42
-data8 0x3FB16B51A2696891 // 43
-data8 0x3FB1CD03ADACC8BE // 44
-data8 0x3FB22F0BDD7745F5 // 45
-data8 0x3FB2916ACA38D1E8 // 46
-data8 0x3FB2F4210DF7663D // 47
-data8 0x3FB346A6C3C49066 // 48
-data8 0x3FB3A9FEBC60540A // 49
-data8 0x3FB3FD0C10A3AA54 // 50
-data8 0x3FB46107D3540A82 // 51
-data8 0x3FB4C55DD16967FE // 52
-data8 0x3FB51940330C000B // 53
-data8 0x3FB56D620EE7115E // 54
-data8 0x3FB5D2ABCF26178E // 55
-data8 0x3FB6275AA5DEBF81 // 56
-data8 0x3FB68D4EAF26D7EE // 57
-data8 0x3FB6E28C5C54A28D // 58
-data8 0x3FB7380B9665B7C8 // 59
-data8 0x3FB78DCCC278E85B // 60
-data8 0x3FB7F50C2CF2557A // 61
-data8 0x3FB84B5FD5EAEFD8 // 62
-data8 0x3FB8A1F6BAB2B226 // 63
-data8 0x3FB8F8D144557BDF // 64
-data8 0x3FB94FEFDCD61D92 // 65
-data8 0x3FB9A752EF316149 // 66
-data8 0x3FB9FEFAE7611EE0 // 67
-data8 0x3FBA56E8325F5C87 // 68
-data8 0x3FBAAF1B3E297BB4 // 69
-data8 0x3FBB079479C372AD // 70
-data8 0x3FBB6054553B12F7 // 71
-data8 0x3FBBB95B41AB5CE6 // 72
-data8 0x3FBC12A9B13FE079 // 73
-data8 0x3FBC6C4017382BEA // 74
-data8 0x3FBCB41FBA42686D // 75
-data8 0x3FBD0E38CE73393F // 76
-data8 0x3FBD689B2193F133 // 77
-data8 0x3FBDC3472B1D2860 // 78
-data8 0x3FBE0C06300D528B // 79
-data8 0x3FBE6738190E394C // 80
-data8 0x3FBEC2B50D208D9B // 81
-data8 0x3FBF0C1C2B936828 // 82
-data8 0x3FBF68216C9CC727 // 83
-data8 0x3FBFB1F6381856F4 // 84
-data8 0x3FC00742AF4CE5F8 // 85
-data8 0x3FC02C64906512D2 // 86
-data8 0x3FC05AF1E63E03B4 // 87
-data8 0x3FC0804BEA723AA9 // 88
-data8 0x3FC0AF1FD6711527 // 89
-data8 0x3FC0D4B2A8805A00 // 90
-data8 0x3FC0FA5EF136A06C // 91
-data8 0x3FC1299A4FB3E306 // 92
-data8 0x3FC14F806253C3ED // 93
-data8 0x3FC175805D1587C1 // 94
-data8 0x3FC19B9A637CA295 // 95
-data8 0x3FC1CB5FC26EDE17 // 96
-data8 0x3FC1F1B4E65F2590 // 97
-data8 0x3FC218248B5DC3E5 // 98
-data8 0x3FC23EAED62ADC76 // 99
-data8 0x3FC26553EBD337BD // 100
-data8 0x3FC28C13F1B11900 // 101
-data8 0x3FC2BCAA14381386 // 102
-data8 0x3FC2E3A740B7800F // 103
-data8 0x3FC30ABFD8F333B6 // 104
-data8 0x3FC331F403985097 // 105
-data8 0x3FC35943E7A60690 // 106
-data8 0x3FC380AFAC6E7C07 // 107
-data8 0x3FC3A8377997B9E6 // 108
-data8 0x3FC3CFDB771C9ADB // 109
-data8 0x3FC3EDA90D39A5DF // 110
-data8 0x3FC4157EC09505CD // 111
-data8 0x3FC43D7113FB04C1 // 112
-data8 0x3FC4658030AD1CCF // 113
-data8 0x3FC48DAC404638F6 // 114
-data8 0x3FC4B5F56CBBB869 // 115
-data8 0x3FC4DE5BE05E7583 // 116
-data8 0x3FC4FCBC0776FD85 // 117
-data8 0x3FC525561E9256EE // 118
-data8 0x3FC54E0DF3198865 // 119
-data8 0x3FC56CAB7112BDE2 // 120
-data8 0x3FC59597BA735B15 // 121
-data8 0x3FC5BEA23A506FDA // 122
-data8 0x3FC5DD7E08DE382F // 123
-data8 0x3FC606BDD3F92355 // 124
-data8 0x3FC6301C518A501F // 125
-data8 0x3FC64F3770618916 // 126
-data8 0x3FC678CC14C1E2D8 // 127
-data8 0x3FC6981005ED2947 // 128
-data8 0x3FC6C1DB5F9BB336 // 129
-data8 0x3FC6E1488ECD2881 // 130
-data8 0x3FC70B4B2E7E41B9 // 131
-data8 0x3FC72AE209146BF9 // 132
-data8 0x3FC7551C81BD8DCF // 133
-data8 0x3FC774DD76CC43BE // 134
-data8 0x3FC79F505DB00E88 // 135
-data8 0x3FC7BF3BDE099F30 // 136
-data8 0x3FC7E9E7CAC437F9 // 137
-data8 0x3FC809FE4902D00D // 138
-data8 0x3FC82A2757995CBE // 139
-data8 0x3FC85525C625E098 // 140
-data8 0x3FC8757A79831887 // 141
-data8 0x3FC895E2058D8E03 // 142
-data8 0x3FC8C13437695532 // 143
-data8 0x3FC8E1C812EF32BE // 144
-data8 0x3FC9026F112197E8 // 145
-data8 0x3FC923294888880B // 146
-data8 0x3FC94EEA4B8334F3 // 147
-data8 0x3FC96FD1B639FC09 // 148
-data8 0x3FC990CCA66229AC // 149
-data8 0x3FC9B1DB33334843 // 150
-data8 0x3FC9D2FD740E6607 // 151
-data8 0x3FC9FF49EEDCB553 // 152
-data8 0x3FCA209A84FBCFF8 // 153
-data8 0x3FCA41FF1E43F02B // 154
-data8 0x3FCA6377D2CE9378 // 155
-data8 0x3FCA8504BAE0D9F6 // 156
-data8 0x3FCAA6A5EEEBEFE3 // 157
-data8 0x3FCAC85B878D7879 // 158
-data8 0x3FCAEA259D8FFA0B // 159
-data8 0x3FCB0C0449EB4B6B // 160
-data8 0x3FCB2DF7A5C50299 // 161
-data8 0x3FCB4FFFCA70E4D1 // 162
-data8 0x3FCB721CD17157E3 // 163
-data8 0x3FCB944ED477D4ED // 164
-data8 0x3FCBB695ED655C7D // 165
-data8 0x3FCBD8F2364AEC0F // 166
-data8 0x3FCBFB63C969F4FF // 167
-data8 0x3FCC1DEAC134D4E9 // 168
-data8 0x3FCC4087384F4F80 // 169
-data8 0x3FCC6339498F09E2 // 170
-data8 0x3FCC86010FFC076C // 171
-data8 0x3FCC9D3D065C5B42 // 172
-data8 0x3FCCC029375BA07A // 173
-data8 0x3FCCE32B66978BA4 // 174
-data8 0x3FCD0643AFD51404 // 175
-data8 0x3FCD29722F0DEA45 // 176
-data8 0x3FCD4CB70070FE44 // 177
-data8 0x3FCD6446AB3F8C96 // 178
-data8 0x3FCD87B0EF71DB45 // 179
-data8 0x3FCDAB31D1FE99A7 // 180
-data8 0x3FCDCEC96FDC888F // 181
-data8 0x3FCDE6908876357A // 182
-data8 0x3FCE0A4E4A25C200 // 183
-data8 0x3FCE2E2315755E33 // 184
-data8 0x3FCE461322D1648A // 185
-data8 0x3FCE6A0E95C7787B // 186
-data8 0x3FCE8E216243DD60 // 187
-data8 0x3FCEA63AF26E007C // 188
-data8 0x3FCECA74ED15E0B7 // 189
-data8 0x3FCEEEC692CCD25A // 190
-data8 0x3FCF070A36B8D9C1 // 191
-data8 0x3FCF2B8393E34A2D // 192
-data8 0x3FCF5014EF538A5B // 193
-data8 0x3FCF68833AF1B180 // 194
-data8 0x3FCF8D3CD9F3F04F // 195
-data8 0x3FCFA5C61ADD93E9 // 196
-data8 0x3FCFCAA8567EBA7A // 197
-data8 0x3FCFE34CC8743DD8 // 198
-data8 0x3FD0042BFD74F519 // 199
-data8 0x3FD016BDF6A18017 // 200
-data8 0x3FD023262F907322 // 201
-data8 0x3FD035CCED8D32A1 // 202
-data8 0x3FD042430E869FFC // 203
-data8 0x3FD04EBEC842B2E0 // 204
-data8 0x3FD06182E84FD4AC // 205
-data8 0x3FD06E0CB609D383 // 206
-data8 0x3FD080E60BEC8F12 // 207
-data8 0x3FD08D7E0D894735 // 208
-data8 0x3FD0A06CC96A2056 // 209
-data8 0x3FD0AD131F3B3C55 // 210
-data8 0x3FD0C01771E775FB // 211
-data8 0x3FD0CCCC3CAD6F4B // 212
-data8 0x3FD0D986D91A34A9 // 213
-data8 0x3FD0ECA9B8861A2D // 214
-data8 0x3FD0F972F87FF3D6 // 215
-data8 0x3FD106421CF0E5F7 // 216
-data8 0x3FD11983EBE28A9D // 217
-data8 0x3FD12661E35B785A // 218
-data8 0x3FD13345D2779D3B // 219
-data8 0x3FD146A6F597283A // 220
-data8 0x3FD15399E81EA83D // 221
-data8 0x3FD16092E5D3A9A6 // 222
-data8 0x3FD17413C3B7AB5E // 223
-data8 0x3FD1811BF629D6FB // 224
-data8 0x3FD18E2A47B46686 // 225
-data8 0x3FD19B3EBE1A4418 // 226
-data8 0x3FD1AEE9017CB450 // 227
-data8 0x3FD1BC0CED7134E2 // 228
-data8 0x3FD1C93712ABC7FF // 229
-data8 0x3FD1D66777147D3F // 230
-data8 0x3FD1EA3BD1286E1C // 231
-data8 0x3FD1F77BED932C4C // 232
-data8 0x3FD204C25E1B031F // 233
-data8 0x3FD2120F28CE69B1 // 234
-data8 0x3FD21F6253C48D01 // 235
-data8 0x3FD22CBBE51D60AA // 236
-data8 0x3FD240CE4C975444 // 237
-data8 0x3FD24E37F8ECDAE8 // 238
-data8 0x3FD25BA8215AF7FC // 239
-data8 0x3FD2691ECC29F042 // 240
-data8 0x3FD2769BFFAB2E00 // 241
-data8 0x3FD2841FC23952C9 // 242
-data8 0x3FD291AA1A384978 // 243
-data8 0x3FD29F3B0E15584B // 244
-data8 0x3FD2B3A0EE479DF7 // 245
-data8 0x3FD2C142842C09E6 // 246
-data8 0x3FD2CEEACCB7BD6D // 247
-data8 0x3FD2DC99CE82FF21 // 248
-data8 0x3FD2EA4F902FD7DA // 249
-data8 0x3FD2F80C186A25FD // 250
-data8 0x3FD305CF6DE7B0F7 // 251
-data8 0x3FD3139997683CE7 // 252
-data8 0x3FD3216A9BB59E7C // 253
-data8 0x3FD32F4281A3CEFF // 254
-data8 0x3FD33D2150110092 // 255
-LOCAL_OBJECT_END(log10f_data)
-
-
-// Code
-//==============================================================
+
+log_table_1:
+ASM_TYPE_DIRECTIVE(log_table_1,@object)
+data8 0xbfd0001008f39d59    // p3
+data8 0x3fd5556073e0c45a    // p2
+ASM_SIZE_DIRECTIVE(log_table_1)
+
+log_table_2:
+ASM_TYPE_DIRECTIVE(log_table_2,@object)
+data8 0xbfdffffffffaea15    // p1
+data8 0x3fdbcb7b1526e50e    // 1/ln10
+data8 0x3fe62e42fefa39ef    // Log(2)
+data8 0x0                   // pad
+
+data8 0x3F60040155D5889E    //log(1/frcpa(1+   0/256)
+data8 0x3F78121214586B54    //log(1/frcpa(1+   1/256)
+data8 0x3F841929F96832F0    //log(1/frcpa(1+   2/256)
+data8 0x3F8C317384C75F06    //log(1/frcpa(1+   3/256)
+data8 0x3F91A6B91AC73386    //log(1/frcpa(1+   4/256)
+data8 0x3F95BA9A5D9AC039    //log(1/frcpa(1+   5/256)
+data8 0x3F99D2A8074325F4    //log(1/frcpa(1+   6/256)
+data8 0x3F9D6B2725979802    //log(1/frcpa(1+   7/256)
+data8 0x3FA0C58FA19DFAAA    //log(1/frcpa(1+   8/256)
+data8 0x3FA2954C78CBCE1B    //log(1/frcpa(1+   9/256)
+data8 0x3FA4A94D2DA96C56    //log(1/frcpa(1+  10/256)
+data8 0x3FA67C94F2D4BB58    //log(1/frcpa(1+  11/256)
+data8 0x3FA85188B630F068    //log(1/frcpa(1+  12/256)
+data8 0x3FAA6B8ABE73AF4C    //log(1/frcpa(1+  13/256)
+data8 0x3FAC441E06F72A9E    //log(1/frcpa(1+  14/256)
+data8 0x3FAE1E6713606D07    //log(1/frcpa(1+  15/256)
+data8 0x3FAFFA6911AB9301    //log(1/frcpa(1+  16/256)
+data8 0x3FB0EC139C5DA601    //log(1/frcpa(1+  17/256)
+data8 0x3FB1DBD2643D190B    //log(1/frcpa(1+  18/256)
+data8 0x3FB2CC7284FE5F1C    //log(1/frcpa(1+  19/256)
+data8 0x3FB3BDF5A7D1EE64    //log(1/frcpa(1+  20/256)
+data8 0x3FB4B05D7AA012E0    //log(1/frcpa(1+  21/256)
+data8 0x3FB580DB7CEB5702    //log(1/frcpa(1+  22/256)
+data8 0x3FB674F089365A7A    //log(1/frcpa(1+  23/256)
+data8 0x3FB769EF2C6B568D    //log(1/frcpa(1+  24/256)
+data8 0x3FB85FD927506A48    //log(1/frcpa(1+  25/256)
+data8 0x3FB9335E5D594989    //log(1/frcpa(1+  26/256)
+data8 0x3FBA2B0220C8E5F5    //log(1/frcpa(1+  27/256)
+data8 0x3FBB0004AC1A86AC    //log(1/frcpa(1+  28/256)
+data8 0x3FBBF968769FCA11    //log(1/frcpa(1+  29/256)
+data8 0x3FBCCFEDBFEE13A8    //log(1/frcpa(1+  30/256)
+data8 0x3FBDA727638446A2    //log(1/frcpa(1+  31/256)
+data8 0x3FBEA3257FE10F7A    //log(1/frcpa(1+  32/256)
+data8 0x3FBF7BE9FEDBFDE6    //log(1/frcpa(1+  33/256)
+data8 0x3FC02AB352FF25F4    //log(1/frcpa(1+  34/256)
+data8 0x3FC097CE579D204D    //log(1/frcpa(1+  35/256)
+data8 0x3FC1178E8227E47C    //log(1/frcpa(1+  36/256)
+data8 0x3FC185747DBECF34    //log(1/frcpa(1+  37/256)
+data8 0x3FC1F3B925F25D41    //log(1/frcpa(1+  38/256)
+data8 0x3FC2625D1E6DDF57    //log(1/frcpa(1+  39/256)
+data8 0x3FC2D1610C86813A    //log(1/frcpa(1+  40/256)
+data8 0x3FC340C59741142E    //log(1/frcpa(1+  41/256)
+data8 0x3FC3B08B6757F2A9    //log(1/frcpa(1+  42/256)
+data8 0x3FC40DFB08378003    //log(1/frcpa(1+  43/256)
+data8 0x3FC47E74E8CA5F7C    //log(1/frcpa(1+  44/256)
+data8 0x3FC4EF51F6466DE4    //log(1/frcpa(1+  45/256)
+data8 0x3FC56092E02BA516    //log(1/frcpa(1+  46/256)
+data8 0x3FC5D23857CD74D5    //log(1/frcpa(1+  47/256)
+data8 0x3FC6313A37335D76    //log(1/frcpa(1+  48/256)
+data8 0x3FC6A399DABBD383    //log(1/frcpa(1+  49/256)
+data8 0x3FC70337DD3CE41B    //log(1/frcpa(1+  50/256)
+data8 0x3FC77654128F6127    //log(1/frcpa(1+  51/256)
+data8 0x3FC7E9D82A0B022D    //log(1/frcpa(1+  52/256)
+data8 0x3FC84A6B759F512F    //log(1/frcpa(1+  53/256)
+data8 0x3FC8AB47D5F5A310    //log(1/frcpa(1+  54/256)
+data8 0x3FC91FE49096581B    //log(1/frcpa(1+  55/256)
+data8 0x3FC981634011AA75    //log(1/frcpa(1+  56/256)
+data8 0x3FC9F6C407089664    //log(1/frcpa(1+  57/256)
+data8 0x3FCA58E729348F43    //log(1/frcpa(1+  58/256)
+data8 0x3FCABB55C31693AD    //log(1/frcpa(1+  59/256)
+data8 0x3FCB1E104919EFD0    //log(1/frcpa(1+  60/256)
+data8 0x3FCB94EE93E367CB    //log(1/frcpa(1+  61/256)
+data8 0x3FCBF851C067555F    //log(1/frcpa(1+  62/256)
+data8 0x3FCC5C0254BF23A6    //log(1/frcpa(1+  63/256)
+data8 0x3FCCC000C9DB3C52    //log(1/frcpa(1+  64/256)
+data8 0x3FCD244D99C85674    //log(1/frcpa(1+  65/256)
+data8 0x3FCD88E93FB2F450    //log(1/frcpa(1+  66/256)
+data8 0x3FCDEDD437EAEF01    //log(1/frcpa(1+  67/256)
+data8 0x3FCE530EFFE71012    //log(1/frcpa(1+  68/256)
+data8 0x3FCEB89A1648B971    //log(1/frcpa(1+  69/256)
+data8 0x3FCF1E75FADF9BDE    //log(1/frcpa(1+  70/256)
+data8 0x3FCF84A32EAD7C35    //log(1/frcpa(1+  71/256)
+data8 0x3FCFEB2233EA07CD    //log(1/frcpa(1+  72/256)
+data8 0x3FD028F9C7035C1C    //log(1/frcpa(1+  73/256)
+data8 0x3FD05C8BE0D9635A    //log(1/frcpa(1+  74/256)
+data8 0x3FD085EB8F8AE797    //log(1/frcpa(1+  75/256)
+data8 0x3FD0B9C8E32D1911    //log(1/frcpa(1+  76/256)
+data8 0x3FD0EDD060B78081    //log(1/frcpa(1+  77/256)
+data8 0x3FD122024CF0063F    //log(1/frcpa(1+  78/256)
+data8 0x3FD14BE2927AECD4    //log(1/frcpa(1+  79/256)
+data8 0x3FD180618EF18ADF    //log(1/frcpa(1+  80/256)
+data8 0x3FD1B50BBE2FC63B    //log(1/frcpa(1+  81/256)
+data8 0x3FD1DF4CC7CF242D    //log(1/frcpa(1+  82/256)
+data8 0x3FD214456D0EB8D4    //log(1/frcpa(1+  83/256)
+data8 0x3FD23EC5991EBA49    //log(1/frcpa(1+  84/256)
+data8 0x3FD2740D9F870AFB    //log(1/frcpa(1+  85/256)
+data8 0x3FD29ECDABCDFA04    //log(1/frcpa(1+  86/256)
+data8 0x3FD2D46602ADCCEE    //log(1/frcpa(1+  87/256)
+data8 0x3FD2FF66B04EA9D4    //log(1/frcpa(1+  88/256)
+data8 0x3FD335504B355A37    //log(1/frcpa(1+  89/256)
+data8 0x3FD360925EC44F5D    //log(1/frcpa(1+  90/256)
+data8 0x3FD38BF1C3337E75    //log(1/frcpa(1+  91/256)
+data8 0x3FD3C25277333184    //log(1/frcpa(1+  92/256)
+data8 0x3FD3EDF463C1683E    //log(1/frcpa(1+  93/256)
+data8 0x3FD419B423D5E8C7    //log(1/frcpa(1+  94/256)
+data8 0x3FD44591E0539F49    //log(1/frcpa(1+  95/256)
+data8 0x3FD47C9175B6F0AD    //log(1/frcpa(1+  96/256)
+data8 0x3FD4A8B341552B09    //log(1/frcpa(1+  97/256)
+data8 0x3FD4D4F3908901A0    //log(1/frcpa(1+  98/256)
+data8 0x3FD501528DA1F968    //log(1/frcpa(1+  99/256)
+data8 0x3FD52DD06347D4F6    //log(1/frcpa(1+ 100/256)
+data8 0x3FD55A6D3C7B8A8A    //log(1/frcpa(1+ 101/256)
+data8 0x3FD5925D2B112A59    //log(1/frcpa(1+ 102/256)
+data8 0x3FD5BF406B543DB2    //log(1/frcpa(1+ 103/256)
+data8 0x3FD5EC433D5C35AE    //log(1/frcpa(1+ 104/256)
+data8 0x3FD61965CDB02C1F    //log(1/frcpa(1+ 105/256)
+data8 0x3FD646A84935B2A2    //log(1/frcpa(1+ 106/256)
+data8 0x3FD6740ADD31DE94    //log(1/frcpa(1+ 107/256)
+data8 0x3FD6A18DB74A58C5    //log(1/frcpa(1+ 108/256)
+data8 0x3FD6CF31058670EC    //log(1/frcpa(1+ 109/256)
+data8 0x3FD6F180E852F0BA    //log(1/frcpa(1+ 110/256)
+data8 0x3FD71F5D71B894F0    //log(1/frcpa(1+ 111/256)
+data8 0x3FD74D5AEFD66D5C    //log(1/frcpa(1+ 112/256)
+data8 0x3FD77B79922BD37E    //log(1/frcpa(1+ 113/256)
+data8 0x3FD7A9B9889F19E2    //log(1/frcpa(1+ 114/256)
+data8 0x3FD7D81B037EB6A6    //log(1/frcpa(1+ 115/256)
+data8 0x3FD8069E33827231    //log(1/frcpa(1+ 116/256)
+data8 0x3FD82996D3EF8BCB    //log(1/frcpa(1+ 117/256)
+data8 0x3FD85855776DCBFB    //log(1/frcpa(1+ 118/256)
+data8 0x3FD8873658327CCF    //log(1/frcpa(1+ 119/256)
+data8 0x3FD8AA75973AB8CF    //log(1/frcpa(1+ 120/256)
+data8 0x3FD8D992DC8824E5    //log(1/frcpa(1+ 121/256)
+data8 0x3FD908D2EA7D9512    //log(1/frcpa(1+ 122/256)
+data8 0x3FD92C59E79C0E56    //log(1/frcpa(1+ 123/256)
+data8 0x3FD95BD750EE3ED3    //log(1/frcpa(1+ 124/256)
+data8 0x3FD98B7811A3EE5B    //log(1/frcpa(1+ 125/256)
+data8 0x3FD9AF47F33D406C    //log(1/frcpa(1+ 126/256)
+data8 0x3FD9DF270C1914A8    //log(1/frcpa(1+ 127/256)
+data8 0x3FDA0325ED14FDA4    //log(1/frcpa(1+ 128/256)
+data8 0x3FDA33440224FA79    //log(1/frcpa(1+ 129/256)
+data8 0x3FDA57725E80C383    //log(1/frcpa(1+ 130/256)
+data8 0x3FDA87D0165DD199    //log(1/frcpa(1+ 131/256)
+data8 0x3FDAAC2E6C03F896    //log(1/frcpa(1+ 132/256)
+data8 0x3FDADCCC6FDF6A81    //log(1/frcpa(1+ 133/256)
+data8 0x3FDB015B3EB1E790    //log(1/frcpa(1+ 134/256)
+data8 0x3FDB323A3A635948    //log(1/frcpa(1+ 135/256)
+data8 0x3FDB56FA04462909    //log(1/frcpa(1+ 136/256)
+data8 0x3FDB881AA659BC93    //log(1/frcpa(1+ 137/256)
+data8 0x3FDBAD0BEF3DB165    //log(1/frcpa(1+ 138/256)
+data8 0x3FDBD21297781C2F    //log(1/frcpa(1+ 139/256)
+data8 0x3FDC039236F08819    //log(1/frcpa(1+ 140/256)
+data8 0x3FDC28CB1E4D32FD    //log(1/frcpa(1+ 141/256)
+data8 0x3FDC4E19B84723C2    //log(1/frcpa(1+ 142/256)
+data8 0x3FDC7FF9C74554C9    //log(1/frcpa(1+ 143/256)
+data8 0x3FDCA57B64E9DB05    //log(1/frcpa(1+ 144/256)
+data8 0x3FDCCB130A5CEBB0    //log(1/frcpa(1+ 145/256)
+data8 0x3FDCF0C0D18F326F    //log(1/frcpa(1+ 146/256)
+data8 0x3FDD232075B5A201    //log(1/frcpa(1+ 147/256)
+data8 0x3FDD490246DEFA6B    //log(1/frcpa(1+ 148/256)
+data8 0x3FDD6EFA918D25CD    //log(1/frcpa(1+ 149/256)
+data8 0x3FDD9509707AE52F    //log(1/frcpa(1+ 150/256)
+data8 0x3FDDBB2EFE92C554    //log(1/frcpa(1+ 151/256)
+data8 0x3FDDEE2F3445E4AF    //log(1/frcpa(1+ 152/256)
+data8 0x3FDE148A1A2726CE    //log(1/frcpa(1+ 153/256)
+data8 0x3FDE3AFC0A49FF40    //log(1/frcpa(1+ 154/256)
+data8 0x3FDE6185206D516E    //log(1/frcpa(1+ 155/256)
+data8 0x3FDE882578823D52    //log(1/frcpa(1+ 156/256)
+data8 0x3FDEAEDD2EAC990C    //log(1/frcpa(1+ 157/256)
+data8 0x3FDED5AC5F436BE3    //log(1/frcpa(1+ 158/256)
+data8 0x3FDEFC9326D16AB9    //log(1/frcpa(1+ 159/256)
+data8 0x3FDF2391A2157600    //log(1/frcpa(1+ 160/256)
+data8 0x3FDF4AA7EE03192D    //log(1/frcpa(1+ 161/256)
+data8 0x3FDF71D627C30BB0    //log(1/frcpa(1+ 162/256)
+data8 0x3FDF991C6CB3B379    //log(1/frcpa(1+ 163/256)
+data8 0x3FDFC07ADA69A910    //log(1/frcpa(1+ 164/256)
+data8 0x3FDFE7F18EB03D3E    //log(1/frcpa(1+ 165/256)
+data8 0x3FE007C053C5002E    //log(1/frcpa(1+ 166/256)
+data8 0x3FE01B942198A5A1    //log(1/frcpa(1+ 167/256)
+data8 0x3FE02F74400C64EB    //log(1/frcpa(1+ 168/256)
+data8 0x3FE04360BE7603AD    //log(1/frcpa(1+ 169/256)
+data8 0x3FE05759AC47FE34    //log(1/frcpa(1+ 170/256)
+data8 0x3FE06B5F1911CF52    //log(1/frcpa(1+ 171/256)
+data8 0x3FE078BF0533C568    //log(1/frcpa(1+ 172/256)
+data8 0x3FE08CD9687E7B0E    //log(1/frcpa(1+ 173/256)
+data8 0x3FE0A10074CF9019    //log(1/frcpa(1+ 174/256)
+data8 0x3FE0B5343A234477    //log(1/frcpa(1+ 175/256)
+data8 0x3FE0C974C89431CE    //log(1/frcpa(1+ 176/256)
+data8 0x3FE0DDC2305B9886    //log(1/frcpa(1+ 177/256)
+data8 0x3FE0EB524BAFC918    //log(1/frcpa(1+ 178/256)
+data8 0x3FE0FFB54213A476    //log(1/frcpa(1+ 179/256)
+data8 0x3FE114253DA97D9F    //log(1/frcpa(1+ 180/256)
+data8 0x3FE128A24F1D9AFF    //log(1/frcpa(1+ 181/256)
+data8 0x3FE1365252BF0865    //log(1/frcpa(1+ 182/256)
+data8 0x3FE14AE558B4A92D    //log(1/frcpa(1+ 183/256)
+data8 0x3FE15F85A19C765B    //log(1/frcpa(1+ 184/256)
+data8 0x3FE16D4D38C119FA    //log(1/frcpa(1+ 185/256)
+data8 0x3FE18203C20DD133    //log(1/frcpa(1+ 186/256)
+data8 0x3FE196C7BC4B1F3B    //log(1/frcpa(1+ 187/256)
+data8 0x3FE1A4A738B7A33C    //log(1/frcpa(1+ 188/256)
+data8 0x3FE1B981C0C9653D    //log(1/frcpa(1+ 189/256)
+data8 0x3FE1CE69E8BB106B    //log(1/frcpa(1+ 190/256)
+data8 0x3FE1DC619DE06944    //log(1/frcpa(1+ 191/256)
+data8 0x3FE1F160A2AD0DA4    //log(1/frcpa(1+ 192/256)
+data8 0x3FE2066D7740737E    //log(1/frcpa(1+ 193/256)
+data8 0x3FE2147DBA47A394    //log(1/frcpa(1+ 194/256)
+data8 0x3FE229A1BC5EBAC3    //log(1/frcpa(1+ 195/256)
+data8 0x3FE237C1841A502E    //log(1/frcpa(1+ 196/256)
+data8 0x3FE24CFCE6F80D9A    //log(1/frcpa(1+ 197/256)
+data8 0x3FE25B2C55CD5762    //log(1/frcpa(1+ 198/256)
+data8 0x3FE2707F4D5F7C41    //log(1/frcpa(1+ 199/256)
+data8 0x3FE285E0842CA384    //log(1/frcpa(1+ 200/256)
+data8 0x3FE294294708B773    //log(1/frcpa(1+ 201/256)
+data8 0x3FE2A9A2670AFF0C    //log(1/frcpa(1+ 202/256)
+data8 0x3FE2B7FB2C8D1CC1    //log(1/frcpa(1+ 203/256)
+data8 0x3FE2C65A6395F5F5    //log(1/frcpa(1+ 204/256)
+data8 0x3FE2DBF557B0DF43    //log(1/frcpa(1+ 205/256)
+data8 0x3FE2EA64C3F97655    //log(1/frcpa(1+ 206/256)
+data8 0x3FE3001823684D73    //log(1/frcpa(1+ 207/256)
+data8 0x3FE30E97E9A8B5CD    //log(1/frcpa(1+ 208/256)
+data8 0x3FE32463EBDD34EA    //log(1/frcpa(1+ 209/256)
+data8 0x3FE332F4314AD796    //log(1/frcpa(1+ 210/256)
+data8 0x3FE348D90E7464D0    //log(1/frcpa(1+ 211/256)
+data8 0x3FE35779F8C43D6E    //log(1/frcpa(1+ 212/256)
+data8 0x3FE36621961A6A99    //log(1/frcpa(1+ 213/256)
+data8 0x3FE37C299F3C366A    //log(1/frcpa(1+ 214/256)
+data8 0x3FE38AE2171976E7    //log(1/frcpa(1+ 215/256)
+data8 0x3FE399A157A603E7    //log(1/frcpa(1+ 216/256)
+data8 0x3FE3AFCCFE77B9D1    //log(1/frcpa(1+ 217/256)
+data8 0x3FE3BE9D503533B5    //log(1/frcpa(1+ 218/256)
+data8 0x3FE3CD7480B4A8A3    //log(1/frcpa(1+ 219/256)
+data8 0x3FE3E3C43918F76C    //log(1/frcpa(1+ 220/256)
+data8 0x3FE3F2ACB27ED6C7    //log(1/frcpa(1+ 221/256)
+data8 0x3FE4019C2125CA93    //log(1/frcpa(1+ 222/256)
+data8 0x3FE4181061389722    //log(1/frcpa(1+ 223/256)
+data8 0x3FE42711518DF545    //log(1/frcpa(1+ 224/256)
+data8 0x3FE436194E12B6BF    //log(1/frcpa(1+ 225/256)
+data8 0x3FE445285D68EA69    //log(1/frcpa(1+ 226/256)
+data8 0x3FE45BCC464C893A    //log(1/frcpa(1+ 227/256)
+data8 0x3FE46AED21F117FC    //log(1/frcpa(1+ 228/256)
+data8 0x3FE47A1527E8A2D3    //log(1/frcpa(1+ 229/256)
+data8 0x3FE489445EFFFCCC    //log(1/frcpa(1+ 230/256)
+data8 0x3FE4A018BCB69835    //log(1/frcpa(1+ 231/256)
+data8 0x3FE4AF5A0C9D65D7    //log(1/frcpa(1+ 232/256)
+data8 0x3FE4BEA2A5BDBE87    //log(1/frcpa(1+ 233/256)
+data8 0x3FE4CDF28F10AC46    //log(1/frcpa(1+ 234/256)
+data8 0x3FE4DD49CF994058    //log(1/frcpa(1+ 235/256)
+data8 0x3FE4ECA86E64A684    //log(1/frcpa(1+ 236/256)
+data8 0x3FE503C43CD8EB68    //log(1/frcpa(1+ 237/256)
+data8 0x3FE513356667FC57    //log(1/frcpa(1+ 238/256)
+data8 0x3FE522AE0738A3D8    //log(1/frcpa(1+ 239/256)
+data8 0x3FE5322E26867857    //log(1/frcpa(1+ 240/256)
+data8 0x3FE541B5CB979809    //log(1/frcpa(1+ 241/256)
+data8 0x3FE55144FDBCBD62    //log(1/frcpa(1+ 242/256)
+data8 0x3FE560DBC45153C7    //log(1/frcpa(1+ 243/256)
+data8 0x3FE5707A26BB8C66    //log(1/frcpa(1+ 244/256)
+data8 0x3FE587F60ED5B900    //log(1/frcpa(1+ 245/256)
+data8 0x3FE597A7977C8F31    //log(1/frcpa(1+ 246/256)
+data8 0x3FE5A760D634BB8B    //log(1/frcpa(1+ 247/256)
+data8 0x3FE5B721D295F10F    //log(1/frcpa(1+ 248/256)
+data8 0x3FE5C6EA94431EF9    //log(1/frcpa(1+ 249/256)
+data8 0x3FE5D6BB22EA86F6    //log(1/frcpa(1+ 250/256)
+data8 0x3FE5E6938645D390    //log(1/frcpa(1+ 251/256)
+data8 0x3FE5F673C61A2ED2    //log(1/frcpa(1+ 252/256)
+data8 0x3FE6065BEA385926    //log(1/frcpa(1+ 253/256)
+data8 0x3FE6164BFA7CC06B    //log(1/frcpa(1+ 254/256)
+data8 0x3FE62643FECF9743    //log(1/frcpa(1+ 255/256)
+ASM_SIZE_DIRECTIVE(log_table_2)
+
+   
+.align 32
+.global logf#
+.global log10f#
+
+// log10 has p7 true, p8 false
+// log   has p8 true, p7 false
+
 .section .text
+.proc  log10f#
+.align 32
 
-// logf   has p13 true, p14 false
-// log10f has p14 true, p13 false
+log10f: 
+#ifdef _LIBC
+.global __ieee754_log10f
+.type __ieee754_log10f,@function
+__ieee754_log10f:
+#endif
+{ .mfi
+     alloc     r32=ar.pfs,1,15,4,0                    
+     frcpa.s1  log_C,p9 = f1,f8                 
+     cmp.eq.unc     p7,p8         = r0, r0 
+}
+{ .mfb
+     addl           log_AD_1   = @ltoff(log_table_1), gp
+     fnorm.s1 log_NORM_f8 = f8 
+     br.sptk        L(LOG_LOG10_X) 
+}
+;;
+
+.endp log10f
+ASM_SIZE_DIRECTIVE(log10f)
+ASM_SIZE_DIRECTIVE(__ieee754_log10f)
+
+
+
+.section .text
+.proc  logf#
+.align 32
+logf: 
+#ifdef _LIBC
+.global __ieee754_logf
+.type __ieee754_logf,@function
+__ieee754_logf:
+#endif
 
-GLOBAL_IEEE754_ENTRY(log10f)
 { .mfi
-      getf.exp      GR_Exp = f8 // if x is unorm then must recompute
-      frcpa.s1      FR_RcpX,p0 = f1,f8
-      mov           GR_05 = 0xFFFE // biased exponent of A2=0.5
+     alloc     r32=ar.pfs,1,15,4,0                    
+     frcpa.s1  log_C,p9 = f1,f8                 
+     cmp.eq.unc     p8,p7         = r0, r0 
 }
-{ .mlx
-      addl          GR_ad_T = @ltoff(log10f_data),gp
-      movl          GR_A3 = 0x3FD5555555555555 // double precision memory
-                                               // representation of A3
-};;
 { .mfi
-      getf.sig      GR_Sig = f8 // if x is unorm then must recompute
-      fclass.m      p8,p0 = f8,9 // is x positive unorm?
-      sub           GR_025 = GR_05,r0,1 // biased exponent of A4=0.25
+     addl           log_AD_1   = @ltoff(log_table_1), gp
+     fnorm.s1 log_NORM_f8 = f8 
+     nop.i 999
 }
-{ .mlx
-      ld8           GR_ad_T = [GR_ad_T]
-      movl          GR_Ln2 = 0x3FD34413509F79FF // double precision memory
-                                                // representation of
-                                                // log(2)/ln(10)
-};;
+;;
+
+L(LOG_LOG10_X):
+
 { .mfi
-      setf.d        FR_A3 = GR_A3 // create A3
-      fcmp.eq.s1    p14,p13 = f0,f0 // set p14 to 1 for log10f
-      dep.z         GR_xorg = GR_05,55,8 // 0x7F00000000000000 integer number
-                                         // bits of that are
-                                         // GR_xorg[63]   = last bit of biased
-                                         //            exponent of 255/256
-                                         // GR_xorg[62-0] = bits from 62 to 0
-                                         //            of significand of 255/256
+     getf.exp   log_GR_signexp_f8 = f8 // If x unorm then must recompute
+     fclass.m.unc p15,p0 = f8, 0x0b            // Test for x=unorm
+     mov        log_GR_fff7 = 0xfff7
 }
-{ .mib
-      setf.exp      FR_A2 = GR_05 // create A2
-      sub           GR_de = GR_Exp,GR_05 // biased_exponent_of_x - 0xFFFE
-                                         // needed to comparion with 0.5 and 2.0
-      br.cond.sptk  logf_log10f_common
-};;
-GLOBAL_IEEE754_END(log10f)
-GLOBAL_IEEE754_ENTRY(logf)
 { .mfi
-      getf.exp      GR_Exp = f8 // if x is unorm then must recompute
-      frcpa.s1      FR_RcpX,p0 = f1,f8
-      mov           GR_05 = 0xFFFE // biased exponent of A2=-0.5
+     ld8 log_AD_1 = [log_AD_1]
+     fms.s1     log_w = f8,f1,f1              
+     mov       log_GR_exp_17_ones = 0x1ffff
 }
-{ .mlx
-      addl          GR_ad_T = @ltoff(logf_data),gp
-      movl          GR_A3 = 0x3FD5555555555555 // double precision memory
-                                               // representation of A3
-};;
+;;
+
+{ .mmi
+     getf.sig   log_GR_significand_f8 = f8 // If x unorm then must recompute
+     mov       log_GR_exp_16_ones = 0xffff
+     nop.i 999
+}
+;;
+
+{ .mmb
+     adds log_AD_2 = 0x10, log_AD_1
+     and        log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones  
+(p15) br.cond.spnt L(LOG_DENORM)     
+}
+;;
+
+L(LOG_COMMON):
+{.mfi
+     ldfpd      log_P3,log_P2 = [log_AD_1],16           
+     fclass.m.unc p6,p0 = f8, 0xc3             // Test for x=nan
+     shl        log_GR_index = log_GR_significand_f8,1            
+}
+{.mfi
+     sub       log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones 
+     nop.f 999
+     nop.i 999
+}
+;;
+
 { .mfi
-      getf.sig      GR_Sig = f8 // if x is unorm then must recompute
-      fclass.m      p8,p0 = f8,9 // is x positive unorm?
-      dep.z         GR_xorg = GR_05,55,8 // 0x7F00000000000000 integer number
-                                         // bits of that are
-                                         // GR_xorg[63]   = last bit of biased
-                                         //            exponent of 255/256
-                                         // GR_xorg[62-0] = bits from 62 to 0
-                                         //            of significand of 255/256
+     ldfpd      log_P1,log_inv_ln10 = [log_AD_2],16           
+     fclass.m.unc p11,p0 = f8, 0x21            // Test for x=+inf
+     shr.u     log_GR_index = log_GR_index,56
 }
 { .mfi
-      ld8           GR_ad_T = [GR_ad_T]
-      nop.f         0
-      sub           GR_025 = GR_05,r0,1 // biased exponent of A4=0.25
-};;
+     setf.sig  log_int_Nfloat = log_GR_true_exp_f8
+     nop.f 999
+     nop.i 999
+}
+;;
+
+
 { .mfi
-      setf.d        FR_A3 = GR_A3 // create A3
-      fcmp.eq.s1    p13,p14 = f0,f0 // p13 - true for logf
-      sub           GR_de = GR_Exp,GR_05 // biased_exponent_of_x - 0xFFFE
-                                         // needed to comparion with 0.5 and 2.0
+     ldfd       log_log2 = [log_AD_2],16   
+     fma.s1     log_wsq     = log_w, log_w, f0
+     nop.i 999
 }
-{ .mlx
-      setf.exp      FR_A2 = GR_05 // create A2
-      movl          GR_Ln2 = 0x3FE62E42FEFA39EF // double precision memory
-                                                // representation of log(2)
-};;
-logf_log10f_common:
+{ .mfb
+     nop.m 999
+(p6) fma.s.s0   f8 = f8,f1,f0      // quietize nan result if x=nan
+(p6) br.ret.spnt b0                // Exit for x=nan
+}
+;;
+
+
 { .mfi
-      setf.exp      FR_A4 = GR_025 // create A4=0.25
-      fclass.m      p9,p0 = f8,0x3A // is x < 0 (including negateve unnormals)?
-      dep           GR_x = GR_Exp,GR_Sig,63,1 // produce integer that bits are
-                                              // GR_x[63] = GR_Exp[0]
-                                              // GR_x[62-0] = GR_Sig[62-0]
+     shladd log_AD_2 = log_GR_index,3,log_AD_2
+     fcmp.eq.s1 p10,p0 = log_NORM_f8, f1  // Test for x=+1.0
+     nop.i 999
 }
-{ .mib
-      sub           GR_N = GR_Exp,GR_05,1 // unbiased exponent of x
-      cmp.gtu       p6,p7 = 2,GR_de // is 0.5 <= x < 2.0?
-(p8)  br.cond.spnt  logf_positive_unorm
-};;
-logf_core:
+{ .mfb
+     nop.m 999
+     fms.s1     log_r = log_C,f8,f1
+(p11) br.ret.spnt b0               // Exit for x=+inf
+}
+;;
+
+
+{ .mmf
+     nop.m 999
+     nop.m 999
+     fclass.m.unc p6,p0 = f8, 0x07        // Test for x=0
+}
+;;
+
+
+{ .mfb
+     ldfd       log_T = [log_AD_2]
+(p10) fmerge.s f8 = f0, f0
+(p10) br.ret.spnt b0                // Exit for x=1.0
+;;
+}
+
 { .mfi
-      setf.sig      FR_N = GR_N // copy unbiased exponent of x to the
-                                // significand field of FR_N
-      fclass.m      p10,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
-      dep.z         GR_dx = GR_05,54,3 // 0x0180000000000000 - difference
-                                       // between our integer representations
-                                       // of 257/256 and 255/256
+     getf.exp   log_GR_signexp_w = log_w
+     fclass.m.unc p12,p0 = f8, 0x3a       // Test for x neg norm, unorm, inf
+     nop.i 999
+}
+;;
+
+{ .mmb
+     nop.m 999
+     nop.m 999
+(p6) br.cond.spnt L(LOG_ZERO_NEG)      // Branch if x=0
+;;
 }
+ 
+
 { .mfi
-      nop.m         0
-      nop.f         0
-      sub           GR_x = GR_x,GR_xorg // difference between representations
-                                        // of x and 255/256
-};;
+     and log_GR_exp_w = log_GR_exp_17_ones, log_GR_signexp_w
+     nop.f 999
+     nop.i 999
+}
+{ .mfb
+     nop.m 999
+     fma.s1     log_rsq     = log_r, log_r, f0                   
+(p12) br.cond.spnt L(LOG_ZERO_NEG)     // Branch if x<0
+;;
+}
+
 { .mfi
-      ldfd          FR_InvLn10 = [GR_ad_T],8
-      fcmp.eq.s1    p11,p0 = f8,f1 // is x equal to 1.0?
-      extr.u        GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
+     nop.m 999
+     fma.s1      log_rp_p32 = log_P3, log_r, log_P2
+     nop.i 999
 }
-{ .mib
-      setf.d        FR_Ln2 = GR_Ln2 // create log(2) or log10(2)
-(p6)  cmp.gtu       p6,p7 = GR_dx,GR_x // set p6 if 255/256 <= x < 257/256
-(p9)  br.cond.spnt  logf_negatives // jump if input argument is negative number
-};;
-// p6 is true if |x-1| < 1/256
-// p7 is true if |x-1| >= 1/256
-.pred.rel "mutex",p6,p7
 { .mfi
-      shladd        GR_ad_T = GR_Ind,3,GR_ad_T // calculate address of T
-(p7)  fms.s1        FR_r = FR_RcpX,f8,f1 // range reduction for |x-1|>=1/256
-      extr.u        GR_Exp = GR_Exp,0,17 // exponent without sign
+     nop.m 999
+     fma.s1    log_rp_q32   = log_P3, log_w, log_P2
+     nop.i 999
+;;
 }
-{ .mfb
-      nop.m         0
-(p6)  fms.s1        FR_r = f8,f1,f1 // range reduction for |x-1|<1/256
-(p10) br.cond.spnt  logf_nan_nat_pinf // exit for NaN, NaT or +Inf
-};;
-{ .mfb
-      ldfd          FR_T = [GR_ad_T] // load T
-(p11) fma.s.s0      f8 = f0,f0,f0
-(p11) br.ret.spnt   b0 // exit for x = 1.0
-};;
-{ .mib
-      nop.m         0
-      cmp.eq        p12,p0 = r0,GR_Exp // is x +/-0? (here it's quite enough
-                                       // only to compare exponent with 0
-                                       // because all unnormals already
-                                       // have been filtered)
-(p12) br.cond.spnt  logf_zeroes        // Branch if input argument is +/-0
-};;
+
 { .mfi
-      nop.m         0
-      fnma.s1       FR_A2 = FR_A2,FR_r,f1 // A2*r+1
-      nop.i         0
+     nop.m 999
+     fcvt.xf   log_Nfloat = log_int_Nfloat
+     nop.i 999 ;;
 }
+
 { .mfi
-      nop.m         0
-      fma.s1        FR_r2 = FR_r,FR_r,f0  // r^2
-      nop.i         0
-};;
+     nop.m 999
+     fma.s1    log_rp_p10   = log_P1, log_r, f1
+     nop.i 999
+}
 { .mfi
-      nop.m         0
-      fcvt.xf       FR_N = FR_N // convert integer N in significand of FR_N
-                                // to floating-point representation
-      nop.i         0
+     nop.m 999
+     fma.s1    log_rp_q10  = log_P1, log_w, f1
+     nop.i 999
+;;
 }
+
+//    p13 <== large w log
+//    p14 <== small w log
 { .mfi
-      nop.m         0
-      fnma.s1       FR_A3 = FR_A4,FR_r,FR_A3 // A4*r+A3
-      nop.i         0
-};;
+(p8) cmp.ge.unc p13,p14 = log_GR_exp_w, log_GR_fff7
+     fcmp.eq.s0 p6,p0 = f8,f0         // Sets flag on +denormal input
+     nop.i 999
+;;
+}
+
+//    p10 <== large w log10
+//    p11 <== small w log10
 { .mfi
-      nop.m         0
-      fma.s1        FR_r = FR_r,FR_InvLn10,f0 // For log10f we have r/log(10)
-      nop.i         0
+(p7) cmp.ge.unc p10,p11 = log_GR_exp_w, log_GR_fff7
+     nop.f 999
+     nop.i 999 ;;
 }
+
 { .mfi
-      nop.m         0
-      nop.f         0
-      nop.i         0
-};;
+     nop.m 999
+     fma.s1        log_T_plus_Nlog2 = log_Nfloat,log_log2, log_T    
+     nop.i 999 ;;
+}
+
+
 { .mfi
-      nop.m         0
-      fma.s1        FR_A2 = FR_A3,FR_r2,FR_A2 // (A4*r+A3)*r^2+(A2*r+1)
-      nop.i         0
+     nop.m 999
+     fma.s1     log_rp_p2   = log_rp_p32, log_rsq, log_rp_p10
+     nop.i 999
 }
 { .mfi
-      nop.m         0
-      fma.s1        FR_NxLn2pT = FR_N,FR_Ln2,FR_T // N*Ln2+T
-      nop.i         0
-};;
-.pred.rel "mutex",p6,p7
+     nop.m 999
+     fma.s1     log_rp_q2   = log_rp_q32, log_wsq, log_rp_q10
+     nop.i 999
+;;
+}
+
+
+//    small w, log   <== p14
 { .mfi
-      nop.m         0
-(p7)  fma.s.s0      f8 = FR_A2,FR_r,FR_NxLn2pT // result for |x-1|>=1/256
-      nop.i         0
+     nop.m 999
+(p14) fma.s        f8       = log_rp_q2, log_w, f0
+     nop.i 999
+}
+{ .mfi
+     nop.m 999
+(p11) fma.s1        log_Q       = log_rp_q2, log_w, f0
+     nop.i 999 ;;
 }
-{ .mfb
-      nop.m         0
-(p6)  fma.s.s0      f8 = FR_A2,FR_r,f0 // result for |x-1|<1/256
-      br.ret.sptk   b0
-};;
 
-.align 32
-logf_positive_unorm:
+
+//    large w, log   <== p13
+.pred.rel "mutex",p13,p10
 { .mfi
-      nop.m         0
-(p8)  fma.s0        f8 = f8,f1,f0 // Normalize & set D-flag
-      nop.i         0
-};;
+      nop.m 999
+(p13) fma.s        f8        = log_rp_p2, log_r, log_T_plus_Nlog2
+      nop.i 999 
+}
 { .mfi
-      getf.exp      GR_Exp = f8    // recompute biased exponent
-      nop.f         0
-      cmp.ne        p6,p7 = r0,r0  // p6 <- 0, p7 <- 1 because
-                                   // in case of unorm we are out
-                                   // interval [255/256; 257/256]
-};;
+      nop.m 999
+(p10) fma.s1     log_Q     = log_rp_p2, log_r, log_T_plus_Nlog2
+      nop.i 999  ;;
+}
+
+
+//    log10
+{ .mfb
+      nop.m 999
+(p7)  fma.s      f8 = log_inv_ln10,log_Q,f0                         
+      br.ret.sptk     b0 
+;;
+}
+
+
+L(LOG_DENORM):
+{ .mmi
+     getf.exp   log_GR_signexp_f8 = log_NORM_f8 
+     nop.m 999
+     nop.i 999
+}
+;;
+{ .mmb
+     getf.sig   log_GR_significand_f8 = log_NORM_f8 
+     and        log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones  
+     br.cond.sptk L(LOG_COMMON)
+}
+;;
+
+L(LOG_ZERO_NEG): 
+
+// qnan snan inf norm     unorm 0 -+
+// 0    0    0   0        0     1 11      0x7
+// 0    0    1   1        1     0 10      0x3a
+
+// Save x (f8) in f10
 { .mfi
-      getf.sig      GR_Sig = f8 // recompute significand
-      nop.f         0
-      nop.i         0
-};;
-{ .mib
-      sub           GR_N = GR_Exp,GR_05,1 // unbiased exponent N
-      nop.i         0
-      br.cond.sptk  logf_core // return into main path
-};;
+     nop.m 999
+     fmerge.s f10 = f8,f8 
+     nop.i 999  ;;
+}
+
+// p8 p9  means  ln(+-0)  = -inf
+// p7 p10 means  log(+-0) = -inf
+
+//    p13 means  ln(-)
+//    p14 means  log(-)
+
 
-.align 32
-logf_nan_nat_pinf:
 { .mfi
-      nop.m         0
-      fma.s.s0      f8 = f8,f1,f0 // set V-flag
-      nop.i         0
+     nop.m 999
+     fmerge.ns   f6 = f1,f1            // Form -1.0
+     nop.i 999  ;;
 }
-{ .mfb
-      nop.m         0
-      nop.f         0
-      br.ret.sptk   b0 // exit for NaN, NaT or +Inf
-};;
 
-.align 32
-logf_zeroes:
+// p9  means  ln(+-0)  = -inf
+// p10 means  log(+-0) = -inf
+// Log(+-0) = -inf 
+
 { .mfi
-      nop.m         0
-      fmerge.s      FR_X = f8,f8 // keep input argument for subsequent
-                                 // call of __libm_error_support#
-      nop.i         0
+	nop.m 999
+(p8)  fclass.m.unc  p9,p0 = f10, 0x07           
+	nop.i 999
 }
 { .mfi
-(p13) mov           GR_TAG = 4 // set libm error in case of logf
-      fms.s1        FR_tmp = f0,f0,f1 // -1.0
-      nop.i         0
-};;
+	nop.m 999
+(p7)  fclass.m.unc  p10,p0 = f10, 0x07           
+	nop.i 999 ;;
+}
+
+
+// p13  ln(-)
+// p14  log(-)
+
+// Log(-inf, -normal, -unnormal) = QNAN indefinite
 { .mfi
-      nop.m         0
-      frcpa.s0      f8,p0 = FR_tmp,f0 // log(+/-0) should be equal to -INF.
-                                      // We can get it using frcpa because it
-                                      // sets result to the IEEE-754 mandated
-                                      // quotient of FR_tmp/f0.
-                                      // As far as FR_tmp is -1 it'll be -INF
-      nop.i         0
+	nop.m 999
+(p8)  fclass.m.unc  p13,p0 = f10, 0x3a           
+	nop.i 999 
+}
+{ .mfi
+	nop.m 999
+(p7)  fclass.m.unc  p14,p0 = f10, 0x3a           
+	nop.i 999  ;;
 }
-{ .mib
-(p14) mov           GR_TAG = 10 // set libm error in case of log10f
-      nop.i         0
-      br.cond.sptk  logf_libm_err
-};;
 
-.align 32
-logf_negatives:
+
+.pred.rel "mutex",p9,p10
 { .mfi
-(p13) mov           GR_TAG = 5 // set libm error in case of logf
-      fmerge.s      FR_X = f8,f8 // keep input argument for subsequent
-                                 // call of __libm_error_support#
-      nop.i         0
-};;
+(p9)     mov        log_GR_tag = 4       
+(p9)    frcpa f8,p11 = f6,f0                   
+            nop.i 999
+}
 { .mfi
-(p14) mov           GR_TAG = 11 // set libm error in case of log10f
-      frcpa.s0      f8,p0 = f0,f0 // log(negatives) should be equal to NaN.
-                                  // We can get it using frcpa because it
-                                  // sets result to the IEEE-754 mandated
-                                  // quotient of f0/f0 i.e. NaN.
-      nop.i         0
-};;
+(p10)    mov        log_GR_tag = 10       
+(p10)   frcpa f8,p12 = f6,f0                   
+            nop.i 999 ;;
+}
+
+.pred.rel "mutex",p13,p14
+{ .mfi
+(p13)    mov        log_GR_tag = 5       
+(p13)    frcpa f8,p11 = f0,f0                   
+            nop.i 999
+}
+{ .mfb
+(p14)    mov        log_GR_tag = 11       
+(p14)   frcpa f8,p12 = f0,f0                   
+        br.cond.sptk __libm_error_region ;; 
+}
+.endp logf
+ASM_SIZE_DIRECTIVE(logf)
+ASM_SIZE_DIRECTIVE(__ieee754_logf)
 
-.align 32
-logf_libm_err:
-{ .mmi
-      alloc         r32 = ar.pfs,1,4,4,0
-      mov           GR_Parameter_TAG = GR_TAG
-      nop.i         0
-};;
-GLOBAL_IEEE754_END(logf)
 
 // Stack operations when calling error support.
 //       (1)               (2)                          (3) (call)              (4)
@@ -1101,56 +890,70 @@ GLOBAL_IEEE754_END(logf)
 //    save ar.pfs          save b0                                               restore gp
 //    save gp                                                                    restore ar.pfs
 
-LOCAL_LIBM_ENTRY(__libm_error_region)
+
+
+.proc __libm_error_region
+__libm_error_region:
 .prologue
+
+// (1)
 { .mfi
-      add   GR_Parameter_Y=-32,sp             // Parameter 2 value
-      nop.f 0
-.save ar.pfs,GR_SAVE_PFS
-      mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
+        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
+        nop.f 0
+.save   ar.pfs,GR_SAVE_PFS
+        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
 }
 { .mfi
 .fframe 64
-      add sp=-64,sp                           // Create new stack
-      nop.f 0
-      mov GR_SAVE_GP=gp                       // Save gp
+        add sp=-64,sp                          // Create new stack
+        nop.f 0
+        mov GR_SAVE_GP=gp                      // Save gp
 };;
+
+
+// (2)
 { .mmi
-      stfs [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
-      add GR_Parameter_X = 16,sp              // Parameter 1 address
+        stfs [GR_Parameter_Y] = f1,16         // STORE Parameter 2 on stack
+        add GR_Parameter_X = 16,sp            // Parameter 1 address
 .save   b0, GR_SAVE_B0
-      mov GR_SAVE_B0=b0                       // Save b0
+        mov GR_SAVE_B0=b0                     // Save b0
 };;
+
 .body
+// (3)
 { .mib
-      stfs [GR_Parameter_X] = FR_X                  // STORE Parameter 1 on stack
-      add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
-      nop.b 0
+        stfs [GR_Parameter_X] = f10                   // STORE Parameter 1 on stack
+        add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
+        nop.b 0                             
 }
 { .mib
-      stfs [GR_Parameter_Y] = FR_RESULT             // STORE Parameter 3 on stack
-      add   GR_Parameter_Y = -16,GR_Parameter_Y
-      br.call.sptk b0=__libm_error_support#         // Call error handling function
+        stfs [GR_Parameter_Y] = f8                    // STORE Parameter 3 on stack
+        add   GR_Parameter_Y = -16,GR_Parameter_Y
+        br.call.sptk b0=__libm_error_support#         // Call error handling function
 };;
+
 { .mmi
-      nop.m 0
-      nop.m 0
-      add   GR_Parameter_RESULT = 48,sp
+        nop.m 0
+        nop.m 0
+        add   GR_Parameter_RESULT = 48,sp
 };;
+
+// (4)
 { .mmi
-      ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
+        ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
 .restore sp
-      add   sp = 64,sp                       // Restore stack pointer
-      mov   b0 = GR_SAVE_B0                  // Restore return address
+        add   sp = 64,sp                       // Restore stack pointer
+        mov   b0 = GR_SAVE_B0                  // Restore return address
 };;
 { .mib
-      mov   gp = GR_SAVE_GP                  // Restore gp
-      mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
-      br.ret.sptk     b0                     // Return
+        mov   gp = GR_SAVE_GP                  // Restore gp
+        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
+        br.ret.sptk     b0                     // Return
 };;
 
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
 
 .type   __libm_error_support#,@function
 .global __libm_error_support#
-