about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_expf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_expf.S')
-rw-r--r--sysdeps/ia64/fpu/e_expf.S768
1 files changed, 768 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/e_expf.S b/sysdeps/ia64/fpu/e_expf.S
new file mode 100644
index 0000000000..1288cb96a2
--- /dev/null
+++ b/sysdeps/ia64/fpu/e_expf.S
@@ -0,0 +1,768 @@
+.file "expf.s"
+
+// Copyright (c) 2000, 2001, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+//
+// WARRANTY DISCLAIMER
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://developer.intel.com/opensource.
+
+// History
+//==============================================================
+// 4/04/00  Unwind update
+// 4/04/00  Unwind support added
+// 8/15/00  Bundle added after call to __libm_error_support to properly
+//          set [the previously overwritten] GR_Parameter_RESULT.
+// 8/21/00  Improvements to save 2 cycles on main path, and shorten x=0 case
+// 12/07/00 Widen main path, shorten x=inf, nan paths
+//
+
+#include "libm_support.h"
+
+// Assembly macros
+//==============================================================
+// integer registers used
+
+ exp_GR_0x0f                = r33
+ exp_GR_0xf0                = r34
+
+ EXP_AD_P_1                 = r36
+ EXP_AD_P_2                 = r37
+ EXP_AD_T1                  = r38
+ EXP_AD_T2                  = r39
+ exp_GR_Mint                = r40
+
+ exp_GR_Mint_p_128          = r41
+ exp_GR_Ind1                = r42
+ EXP_AD_M1                  = r43
+ exp_GR_Ind2                = r44
+ EXP_AD_M2                  = r45
+
+ exp_GR_min_oflow           = r46
+ exp_GR_max_zero            = r47
+ exp_GR_max_norm            = r48
+ exp_GR_max_uflow           = r49
+ exp_GR_min_norm            = r50
+
+ exp_GR_17ones              = r51
+ exp_GR_gt_ln               = r52
+ exp_GR_T2_size             = r53
+
+ exp_GR_17ones_m1           = r56
+ exp_GR_one                 = r57
+
+
+
+GR_SAVE_B0                    = r53
+GR_SAVE_PFS                   = r55
+GR_SAVE_GP                    = r54 
+
+GR_Parameter_X                = r59
+GR_Parameter_Y                = r60
+GR_Parameter_RESULT           = r61
+GR_Parameter_TAG              = r62
+
+FR_X             = f10
+FR_Y             = f1
+FR_RESULT        = f8
+
+
+// floating point registers used
+
+ EXP_MIN_SGL_OFLOW_ARG      = f11
+ EXP_MAX_SGL_ZERO_ARG       = f12
+ EXP_MAX_SGL_NORM_ARG       = f13
+ EXP_MAX_SGL_UFLOW_ARG      = f14
+ EXP_MIN_SGL_NORM_ARG       = f15
+
+ exp_coeff_P5               = f32
+ exp_coeff_P6               = f33
+ exp_coeff_P3               = f34
+ exp_coeff_P4               = f35
+
+ exp_coeff_P1               = f36
+ exp_coeff_P2               = f37
+ exp_Mx                     = f38
+ exp_Mfloat                 = f39
+ exp_R                      = f40
+
+ exp_P1                     = f41
+ exp_P2                     = f42
+ exp_P3                     = f43
+ exp_Rsq                    = f44
+ exp_R4                     = f45
+
+ exp_P4                     = f46
+ exp_P5                     = f47
+ exp_P6                     = f48
+ exp_P7                     = f49
+ exp_T1                     = f50
+
+ exp_T2                     = f51
+ exp_T                      = f52
+ exp_A                      = f53
+ exp_norm_f8                = f54
+ exp_wre_urm_f8             = f55
+
+ exp_ftz_urm_f8             = f56
+ exp_gt_pln                 = f57
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
+.align 16
+
+exp_coeff_1_table:
+ASM_TYPE_DIRECTIVE(exp_coeff_1_table,@object)
+data8 0x3F56F35FDE4F8563 // p5
+data8 0x3F2A378BEFECCFDD // p6
+data8 0x3FE00000258C581D // p1
+data8 0x3FC555557AE7B3D4 // p2
+ASM_SIZE_DIRECTIVE(exp_coeff_1_table)
+
+
+exp_coeff_2_table:
+ASM_TYPE_DIRECTIVE(exp_coeff_2_table,@object)
+data8 0x3FA5551BB6592FAE // p3
+data8 0x3F8110E8EBFFD485 // p4
+ASM_SIZE_DIRECTIVE(exp_coeff_2_table)
+
+
+exp_T2_table:
+ASM_TYPE_DIRECTIVE(exp_T2_table,@object)
+data8 0xa175cf9cd7d85844 , 0x00003f46 // exp(-128)
+data8 0xdb7279415a1f9eed , 0x00003f47 // exp(-127)
+data8 0x95213b242bd8ca5f , 0x00003f49 // exp(-126)
+data8 0xcab03c968c989f83 , 0x00003f4a // exp(-125)
+data8 0x89bdb674702961ad , 0x00003f4c // exp(-124)
+data8 0xbb35a2eec278be35 , 0x00003f4d // exp(-123)
+data8 0xfe71b17f373e7e7a , 0x00003f4e // exp(-122)
+data8 0xace9a6ec52a39b63 , 0x00003f50 // exp(-121)
+data8 0xeb03423fe393cf1c , 0x00003f51 // exp(-120)
+data8 0x9fb52c5bcaef1693 , 0x00003f53 // exp(-119)
+data8 0xd910b6377ed60bf1 , 0x00003f54 // exp(-118)
+data8 0x9382dad8a9fdbfe4 , 0x00003f56 // exp(-117)
+data8 0xc87d0a84dea869a3 , 0x00003f57 // exp(-116)
+data8 0x883efb4c6d1087b0 , 0x00003f59 // exp(-115)
+data8 0xb92d7373dce9a502 , 0x00003f5a // exp(-114)
+data8 0xfbaeb020577fb0cb , 0x00003f5b // exp(-113)
+ASM_SIZE_DIRECTIVE(exp_T2_table)
+
+
+exp_T1_table:
+ASM_TYPE_DIRECTIVE(exp_T1_table,@object)
+data8 0x8000000000000000 , 0x00003fff // exp(16 * 0)
+data8 0x87975e8540010249 , 0x00004016 // exp(16 * 1) 
+data8 0x8fa1fe625b3163ec , 0x0000402d // exp(16 * 2) 
+data8 0x9826b576512a59d7 , 0x00004044 // exp(16 * 3) 
+data8 0xa12cc167acbe6902 , 0x0000405b // exp(16 * 4) 
+data8 0xaabbcdcc279f59e4 , 0x00004072 // exp(16 * 5) 
+data8 0xb4dbfaadc045d16f , 0x00004089 // exp(16 * 6) 
+data8 0xbf95e372ccdbf146 , 0x000040a0 // exp(16 * 7) 
+data8 0xcaf2a62eea10bbfb , 0x000040b7 // exp(16 * 8) 
+data8 0xd6fbeb62fddbd340 , 0x000040ce // exp(16 * 9) 
+data8 0xe3bbee32e4a440ea , 0x000040e5 // exp(16 * 10)
+data8 0xf13d8517c34199a8 , 0x000040fc // exp(16 * 11)
+data8 0xff8c2b166241eedd , 0x00004113 // exp(16 * 12)
+data8 0x875a04c0b38d6129 , 0x0000412b // exp(16 * 13)
+data8 0x8f610127db6774d7 , 0x00004142 // exp(16 * 14)
+data8 0x97e1dd87e5c20bb6 , 0x00004159 // exp(16 * 15)
+ASM_SIZE_DIRECTIVE(exp_T1_table)
+
+// Argument Reduction
+//  exp_Mx = (int)f8            ==> The value of f8 rounded to int is placed into the
+//                                  significand of exp_Mx as a two's
+//                                  complement number.
+
+// Later we want to have exp_Mx in a general register. Do this with a getf.sig
+// and call the general register exp_GR_Mint
+
+//  exp_Mfloat = (float)(int)f8 ==> the two's complement number in
+//                                  significand of exp_Mx is turned
+//                                  into a floating point number.
+//  R = 1 - exp_Mfloat          ==> reduced argument
+
+// Core Approximation
+// Calculate a series in R
+//  R * p6 + p5
+//  R * p4 + p3
+//  R * p2 + p1
+//  R^2
+//  R^4
+//  R^2(R * p6 + p5) + (R * p4 + p3)
+//  R^2(R * p2 + p1)
+//  R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
+//  R + 1
+//  exp(R) = (1 + R) + R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
+//  exp(R) = 1 + R + R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6
+
+// Reconstruction
+// signficand of exp_Mx is two's complement,
+// -103 < x < 89
+// The smallest single denormal is 2^-149 = ssdn
+//    For e^x = ssdn
+//        x   = log(ssdn) = -103.279
+//    But with rounding result goes to ssdn until -103.972079
+// The largest single normal is  1.<23 1's> 2^126 ~ 2^127 = lsn
+//    For e^x = lsn
+//        x   = log(lsn) = 88.7228
+//
+// expf overflows                       when x > 42b17218 = 88.7228
+// expf returns largest single denormal when x = c2aeac50
+// expf goes to zero when                    x < c2cff1b5 
+
+// Consider range of 8-bit two's complement, -128 ---> 127
+// Add 128; range becomes                       0 ---> 255
+
+// The number (=i) in 0 ---> 255 is used as offset into two tables.
+
+// i = abcd efgh = abcd * 16 + efgh = i1 * 16 + i2
+
+// i1 = (exp_GR_Mint + 128)  & 0xf0 (show 0xf0 as -0x10 to avoid assembler error)
+//                                  (The immediate in the AND is an 8-bit two's complement)
+// i1 = i1 + start of T1 table (EXP_AD_T1)
+//    Note that the entries in T1 are double-extended numbers on 16-byte boundaries
+//    and that i1 is already shifted left by 16 after the AND.
+
+// i2 must be shifted left by 4 before adding to the start of the table.
+// i2 = ((exp_GR_Mint + 128)  & 0x0f) << 4
+// i2 = i2 + start of T2 table (EXP_AD_T2)
+
+// T      = T1 * T2
+// A      = T * (1 + R)
+// answer = T *  (R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6) +
+//          T *  (1 + R)
+//        = T * exp(R)
+
+
+.global expf#
+
+.section .text
+.proc  expf#
+.align 32
+expf:
+#ifdef _LIBC
+.global __ieee754_expf#
+__ieee754_expf:
+#endif
+
+{ .mfi
+     alloc      r32            = ar.pfs,1,26,4,0
+     fcvt.fx.s1   exp_Mx       =    f8
+     mov       exp_GR_17ones   =    0x1FFFF
+}
+{ .mlx
+     addl      EXP_AD_P_1      =    @ltoff(exp_coeff_1_table),gp
+     movl      exp_GR_min_oflow = 0x42b17218    
+}
+;;
+
+// Fnorm done to take any enabled faults
+{ .mfi
+     ld8       EXP_AD_P_1      =  [EXP_AD_P_1]
+     fclass.m  p6,p0      = f8, 0x07	//@zero
+     nop.i 999
+}
+{ .mfi
+     add       exp_GR_max_norm = -1, exp_GR_min_oflow  // 0x42b17217
+     fnorm     exp_norm_f8     =    f8
+     nop.i 999
+}
+;;
+
+{ .mfi
+     setf.s    EXP_MIN_SGL_OFLOW_ARG = exp_GR_min_oflow  // 0x42b17218
+     fclass.m  p7,p0      = f8, 0x22	// Test for x=-inf
+     mov       exp_GR_0xf0 = 0x0f0
+}
+{ .mlx
+     setf.s    EXP_MAX_SGL_NORM_ARG = exp_GR_max_norm
+     movl      exp_GR_max_zero = 0xc2cff1b5    
+}
+;;
+
+
+{ .mlx
+     mov       exp_GR_0x0f = 0x00f
+     movl      exp_GR_max_uflow = 0xc2aeac50    
+}
+{ .mfb
+     nop.m 999
+(p6) fma.s     f8 = f1,f1,f0
+(p6) br.ret.spnt   b0        // quick exit for x=0
+}
+;;
+
+{ .mfi
+     setf.s    EXP_MAX_SGL_ZERO_ARG = exp_GR_max_zero
+     fclass.m  p8,p0      = f8, 0x21	// Test for x=+inf
+     adds      exp_GR_min_norm = 1, exp_GR_max_uflow  // 0xc2aeac51
+}
+{ .mfb
+     ldfpd     exp_coeff_P5,exp_coeff_P6     =    [EXP_AD_P_1],16
+(p7) fma.s     f8 = f0,f0,f0
+(p7) br.ret.spnt   b0        // quick exit for x=-inf
+}
+;;
+
+{ .mmf
+     ldfpd     exp_coeff_P1,exp_coeff_P2     =    [EXP_AD_P_1],16
+     setf.s    EXP_MAX_SGL_UFLOW_ARG = exp_GR_max_uflow
+     fclass.m  p9,p0      = f8, 0xc3	// Test for x=nan
+}
+;;
+
+{ .mmb
+     ldfpd     exp_coeff_P3,exp_coeff_P4     =    [EXP_AD_P_1],16
+     setf.s    EXP_MIN_SGL_NORM_ARG = exp_GR_min_norm
+(p8) br.ret.spnt   b0        // quick exit for x=+inf
+}
+;;
+
+// EXP_AD_P_1 now points to exp_T2_table
+{ .mfi
+     mov exp_GR_T2_size           = 0x100
+     fcvt.xf   exp_Mfloat     =    exp_Mx
+     nop.i 999
+}
+;;
+
+{ .mfb
+     getf.sig  exp_GR_Mint    =    exp_Mx
+(p9) fmerge.s     f8 = exp_norm_f8, exp_norm_f8
+(p9) br.ret.spnt   b0        // quick exit for x=nan
+}
+;;
+
+{ .mmi
+     nop.m 999
+     mov      EXP_AD_T2       =  EXP_AD_P_1
+     add      EXP_AD_T1       =  exp_GR_T2_size,EXP_AD_P_1 ;;
+}
+
+
+{ .mmi
+     adds      exp_GR_Mint_p_128   =    0x80,exp_GR_Mint ;;
+     and       exp_GR_Ind1      =    exp_GR_Mint_p_128, exp_GR_0xf0
+     and       exp_GR_Ind2      =    exp_GR_Mint_p_128, exp_GR_0x0f ;;
+}
+
+// Divide arguments into the following categories:
+//  Certain Underflow/zero  p11 - -inf < x <= MAX_SGL_ZERO_ARG 
+//  Certain Underflow       p12 - MAX_SGL_ZERO_ARG < x <= MAX_SGL_UFLOW_ARG 
+//  Possible Underflow      p13 - MAX_SGL_UFLOW_ARG < x < MIN_SGL_NORM_ARG
+//  Certain Safe                - MIN_SGL_NORM_ARG <= x <= MAX_SGL_NORM_ARG
+//  Possible Overflow       p14 - MAX_SGL_NORM_ARG < x < MIN_SGL_OFLOW_ARG
+//  Certain Overflow        p15 - MIN_SGL_OFLOW_ARG <= x < +inf
+//
+// If the input is really a single arg, then there will never be "Possible
+// Underflow" or "Possible Overflow" arguments.
+//
+
+{ .mfi
+     add       EXP_AD_M1 =    exp_GR_Ind1,EXP_AD_T1
+     fcmp.ge.s1  p15,p14 = exp_norm_f8,EXP_MIN_SGL_OFLOW_ARG
+     nop.i 999
+}
+{ .mfi
+     shladd       EXP_AD_M2                =    exp_GR_Ind2,4,EXP_AD_T2
+     fms.s1    exp_R                    =    f1,f8,exp_Mfloat
+     nop.i 999 ;;
+}
+
+{ .mfi
+     ldfe           exp_T1    =    [EXP_AD_M1]
+     fcmp.le.s1  p11,p12 = exp_norm_f8,EXP_MAX_SGL_ZERO_ARG
+     nop.i 999 ;;
+}
+
+{ .mfb
+      ldfe           exp_T2   =    [EXP_AD_M2]
+(p14) fcmp.gt.s1  p14,p0 = exp_norm_f8,EXP_MAX_SGL_NORM_ARG
+(p15) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) ;;
+}
+
+{ .mfb
+      nop.m 999
+(p12) fcmp.le.s1  p12,p0 = exp_norm_f8,EXP_MAX_SGL_UFLOW_ARG
+(p11) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW_ZERO)
+}
+;;
+
+{ .mfi
+      nop.m 999
+(p13) fcmp.lt.s1  p13,p0 = exp_norm_f8,EXP_MIN_SGL_NORM_ARG
+      nop.i 999
+}
+;;
+
+
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_Rsq   =    exp_R,exp_R,f0
+     nop.i                 999
+}
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P3    =    exp_R,exp_coeff_P2,exp_coeff_P1
+     nop.i                 999 
+}
+;;
+
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P1    =    exp_R,exp_coeff_P6,exp_coeff_P5
+     nop.i                 999 
+}
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P2    =    exp_R,exp_coeff_P4,exp_coeff_P3
+     nop.i                 999
+}
+;;
+
+
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P7    =    f1,exp_R,f1
+     nop.i                 999
+}
+;;
+
+
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P5    =    exp_Rsq,exp_P3,f0
+     nop.i                 999
+}
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_R4    =    exp_Rsq,exp_Rsq,f0
+     nop.i                 999 
+}
+;;
+
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_T     =    exp_T1,exp_T2,f0
+     nop.i                 999 
+}
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P4    =    exp_Rsq,exp_P1,exp_P2
+     nop.i                 999 
+}
+;;
+
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_A     =    exp_T,exp_P7,f0
+     nop.i                 999
+}
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P6    =    exp_R4,exp_P4,exp_P5
+     nop.i                 999
+}
+;;
+
+{ .bbb
+(p12) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW)
+(p13) br.cond.spnt L(EXP_POSSIBLE_UNDERFLOW)
+(p14) br.cond.spnt L(EXP_POSSIBLE_OVERFLOW)
+}
+;;
+
+{ .mfb
+     nop.m            999
+     fma.s     f8   =    exp_T,exp_P6,exp_A
+     br.ret.sptk     b0
+}
+;;
+
+L(EXP_POSSIBLE_OVERFLOW):
+
+// We got an answer. EXP_MAX_SGL_NORM_ARG < x < EXP_MIN_SGL_OFLOW_ARG
+// overflow is a possibility, not a certainty
+// Set wre in s2 and perform the last operation with s2
+
+// We define an overflow when the answer with
+//    WRE set
+//    user-defined rounding mode
+// is lsn +1
+
+// Is the exponent 1 more than the largest single?
+// If so, go to ERROR RETURN, else (no overflow) get the answer and
+// leave.
+
+// Largest single is FE (biased single)
+//                   FE - 7F + FFFF = 1007E
+
+// Create + largest_single_plus_ulp
+// Create - largest_single_plus_ulp
+
+// Calculate answer with WRE set.
+
+// Cases when answer is lsn+1  are as follows:
+
+//           midpoint
+//              |
+//  lsn         |         lsn+1
+// --+----------|----------+------------
+//              |
+//    +inf          +inf      -inf
+//                  RN         RN
+//                             RZ
+// exp_gt_pln contains the floating point number lsn+1.
+// The setf.exp puts 0x1007f in the exponent and 0x800... in the significand.
+
+// If the answer is >= lsn+1, we have overflowed.
+// Then p6 is TRUE. Set the overflow tag, save input in FR_X,
+// do the final calculation for IEEE result, and branch to error return.
+
+{ .mfi
+       mov         exp_GR_gt_ln    = 0x1007F 
+       fsetc.s2    0x7F,0x42
+       nop.i 999
+}
+;;
+
+{ .mfi
+       setf.exp      exp_gt_pln    = exp_GR_gt_ln
+       fma.s.s2    exp_wre_urm_f8  = exp_T,  exp_P6, exp_A
+       nop.i 999
+}
+;;
+
+{ .mfi
+       nop.m 999
+       fsetc.s2 0x7F,0x40
+       nop.i 999
+}
+;;
+
+{ .mfi
+       nop.m 999
+       fcmp.ge.unc.s1 p6, p0       =  exp_wre_urm_f8, exp_gt_pln
+       nop.i 999
+}
+;;
+
+{ .mfb
+       nop.m 999
+       nop.f 999
+(p6)   br.cond.spnt L(EXP_CERTAIN_OVERFLOW)  // Branch if really overflow
+}
+;;
+
+{ .mfb
+       nop.m 999
+       fma.s        f8             = exp_T,  exp_P6, exp_A
+       br.ret.sptk     b0                 // Exit if really no overflow
+}
+;;
+
+L(EXP_CERTAIN_OVERFLOW):
+{ .mmi
+      sub   exp_GR_17ones_m1 = exp_GR_17ones, r0, 1 ;;
+      setf.exp     f9 = exp_GR_17ones_m1
+      nop.i 999 ;;
+}
+
+{ .mfi
+      nop.m 999
+      fmerge.s FR_X = f8,f8
+      nop.i 999
+}
+{ .mfb
+      mov        GR_Parameter_TAG = 16
+      fma.s       FR_RESULT = f9, f9, f0    // Set I,O and +INF result
+      br.cond.sptk  __libm_error_region ;;                             
+}
+
+L(EXP_POSSIBLE_UNDERFLOW): 
+
+// We got an answer. EXP_MAX_SGL_UFLOW_ARG < x < EXP_MIN_SGL_NORM_ARG
+// underflow is a possibility, not a certainty
+
+// We define an underflow when the answer with
+//    ftz set
+// is zero (tiny numbers become zero)
+
+// Notice (from below) that if we have an unlimited exponent range,
+// then there is an extra machine number E between the largest denormal and
+// the smallest normal.
+
+// So if with unbounded exponent we round to E or below, then we are
+// tiny and underflow has occurred.
+
+// But notice that you can be in a situation where we are tiny, namely
+// rounded to E, but when the exponent is bounded we round to smallest
+// normal. So the answer can be the smallest normal with underflow.
+
+//                           E
+// -----+--------------------+--------------------+-----
+//      |                    |                    |
+//   1.1...10 2^-7f      1.1...11 2^-7f      1.0...00 2^-7e  
+//   0.1...11 2^-7e                                     (biased, 1)
+//    largest dn                               smallest normal
+
+// If the answer is = 0, we have underflowed.
+// Then p6 is TRUE. Set the underflow tag, save input in FR_X,
+// do the final calculation for IEEE result, and branch to error return.
+
+{ .mfi
+       nop.m 999
+       fsetc.s2 0x7F,0x41
+       nop.i 999
+}
+;;
+
+{ .mfi
+       nop.m 999
+       fma.s.s2     exp_ftz_urm_f8  = exp_T,  exp_P6, exp_A
+       nop.i 999
+}
+;;
+
+
+{ .mfi
+       nop.m 999
+       fsetc.s2 0x7F,0x40
+       nop.i 999
+}
+;;
+
+{ .mfi
+       nop.m 999
+       fcmp.eq.unc.s1 p6, p0     =  exp_ftz_urm_f8, f0
+       nop.i 999
+}
+;;
+
+{ .mfb
+       nop.m 999
+       nop.f 999
+(p6)   br.cond.spnt L(EXP_CERTAIN_UNDERFLOW)  // Branch if really underflow 
+}
+;;
+
+{ .mfb
+       nop.m 999
+       fma.s        f8             = exp_T,  exp_P6, exp_A
+       br.ret.sptk     b0                  // Exit if really no underflow
+}
+;;
+
+L(EXP_CERTAIN_UNDERFLOW):
+{ .mfi
+      nop.m 999
+      fmerge.s FR_X = f8,f8
+      nop.i 999
+}
+{ .mfb
+      mov        GR_Parameter_TAG = 17
+      fma.s       FR_RESULT  = exp_T, exp_P6, exp_A // Set I,U and tiny result
+      br.cond.sptk  __libm_error_region ;;                             
+}
+
+L(EXP_CERTAIN_UNDERFLOW_ZERO):
+{ .mmi
+      mov   exp_GR_one = 1 ;;
+      setf.exp     f9 = exp_GR_one
+      nop.i 999 ;;
+}
+
+{ .mfi
+      nop.m 999
+      fmerge.s FR_X = f8,f8
+      nop.i 999
+}
+{ .mfb
+      mov        GR_Parameter_TAG = 17
+      fma.s       FR_RESULT = f9, f9, f0    // Set I,U and tiny (+0.0) result
+      br.cond.sptk  __libm_error_region ;;                             
+}
+
+.endp expf
+ASM_SIZE_DIRECTIVE(expf)
+
+
+.proc __libm_error_region
+__libm_error_region:
+.prologue
+{ .mfi
+        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
+	nop.f 999
+.save   ar.pfs,GR_SAVE_PFS
+        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+        add sp=-64,sp                           // Create new stack
+        nop.f 0
+        mov GR_SAVE_GP=gp                       // Save gp
+};;
+{ .mmi
+        stfs [GR_Parameter_Y] = FR_Y,16         // Store Parameter 2 on stack
+        add GR_Parameter_X = 16,sp              // Parameter 1 address
+.save   b0, GR_SAVE_B0
+        mov GR_SAVE_B0=b0                       // Save b0
+};;
+.body
+{ .mfi
+        stfs [GR_Parameter_X] = FR_X            // Store Parameter 1 on stack
+        nop.f 0
+        add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+}
+{ .mib
+        stfs [GR_Parameter_Y] = FR_RESULT       // Store Parameter 3 on stack
+        add   GR_Parameter_Y = -16,GR_Parameter_Y
+        br.call.sptk b0=__libm_error_support#   // Call error handling function
+};;
+
+{ .mmi
+        nop.m 0
+        nop.m 0
+        add   GR_Parameter_RESULT = 48,sp
+};;
+
+{ .mmi
+        ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
+.restore sp
+        add   sp = 64,sp                       // Restore stack pointer
+        mov   b0 = GR_SAVE_B0                  // Restore return address
+};;
+{ .mib
+        mov   gp = GR_SAVE_GP                  // Restore gp 
+        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
+        br.ret.sptk     b0                     // Return
+};; 
+
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
+
+
+.type   __libm_error_support#,@function
+.global __libm_error_support#