about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_expf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_expf.S')
-rw-r--r--sysdeps/ia64/fpu/e_expf.S957
1 files changed, 511 insertions, 446 deletions
diff --git a/sysdeps/ia64/fpu/e_expf.S b/sysdeps/ia64/fpu/e_expf.S
index 6fe0a833e2..2aad021335 100644
--- a/sysdeps/ia64/fpu/e_expf.S
+++ b/sysdeps/ia64/fpu/e_expf.S
@@ -1,10 +1,10 @@
 .file "expf.s"
 
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
 // All rights reserved.
 //
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
 //
 // Redistribution and use in source and binary forms, with or without
 // modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
 // * The name of Intel Corporation may not be used to endorse or promote
 // products derived from this software without specific prior written
 // permission.
-
+//
 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,503 +35,589 @@
 //
 // Intel Corporation is the author of this code, and requests that all
 // problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
 
 // History
-//*********************************************************************
-// 02/02/00 Original version
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
+//==============================================================
+// 4/04/00  Unwind update
+// 4/04/00  Unwind support added
+// 8/15/00  Bundle added after call to __libm_error_support to properly
 //          set [the previously overwritten] GR_Parameter_RESULT.
-// 08/21/00 Improvements to save 2 cycles on main path, and shorten x=0 case
+// 8/21/00  Improvements to save 2 cycles on main path, and shorten x=0 case
 // 12/07/00 Widen main path, shorten x=inf, nan paths
-// 03/15/01 Fix monotonicity problem around x=0 for round to +inf
-// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 07/26/02 Algorithm changed, accuracy improved
-// 09/26/02 support of higher precision inputs added, underflow threshold
-//          corrected
-// 11/15/02 Improved performance on Itanium 2, added possible over/under paths
-// 05/30/03 Set inexact flag on unmasked overflow/underflow
-// 03/31/05 Reformatted delimiters between data tables
-//
-//
-// API
-//*********************************************************************
-// float expf(float)
-//
-// Overview of operation
-//*********************************************************************
-// Take the input x. w is "how many log2/128 in x?"
-//  w = x * 64/log2
-//  NJ = int(w)
-//  x = NJ*log2/64 + R
-
-//  NJ = 64*n + j
-//  x = n*log2 + (log2/64)*j + R
-//
-//  So, exp(x) = 2^n * 2^(j/64)* exp(R)
-//
-//  T =  2^n * 2^(j/64)
-//       Construct 2^n
-//       Get 2^(j/64) table
-//           actually all the entries of 2^(j/64) table are stored in DP and
-//           with exponent bits set to 0 -> multiplication on 2^n can be
-//           performed by doing logical "or" operation with bits presenting 2^n
-
-//  exp(R) = 1 + (exp(R) - 1)
-//  P = exp(R) - 1 approximated by Taylor series of 3rd degree
-//      P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
 //
 
-//  The final result is reconstructed as follows
-//  exp(x) = T + T*P
+#include "libm_support.h"
 
-// Special values
-//*********************************************************************
-// expf(+0)    = 1.0
-// expf(-0)    = 1.0
+// Assembly macros
+//==============================================================
+// integer registers used
 
-// expf(+qnan) = +qnan
-// expf(-qnan) = -qnan
-// expf(+snan) = +qnan
-// expf(-snan) = -qnan
+ exp_GR_0x0f                = r33
+ exp_GR_0xf0                = r34
 
-// expf(-inf)  = +0
-// expf(+inf)  = +inf
+ EXP_AD_P_1                 = r36
+ EXP_AD_P_2                 = r37
+ EXP_AD_T1                  = r38
+ EXP_AD_T2                  = r39
+ exp_GR_Mint                = r40
 
-// Overflow and Underflow
-//*********************************************************************
-// expf(x) = largest single normal when
-//     x = 88.72283 = 0x42b17217
+ exp_GR_Mint_p_128          = r41
+ exp_GR_Ind1                = r42
+ EXP_AD_M1                  = r43
+ exp_GR_Ind2                = r44
+ EXP_AD_M2                  = r45
 
-// expf(x) = smallest single normal when
-//     x = -87.33654 = 0xc2aeac4f
+ exp_GR_min_oflow           = r46
+ exp_GR_max_zero            = r47
+ exp_GR_max_norm            = r48
+ exp_GR_max_uflow           = r49
+ exp_GR_min_norm            = r50
 
-// expf(x) = largest round-to-nearest single zero when
-//     x = -103.97208 = 0xc2cff1b5
+ exp_GR_17ones              = r51
+ exp_GR_gt_ln               = r52
+ exp_GR_T2_size             = r53
 
+ exp_GR_17ones_m1           = r56
+ exp_GR_one                 = r57
 
-// Registers used
-//*********************************************************************
-// Floating Point registers used:
-// f8, input
-// f6,f7, f9 -> f15,  f32 -> f40
 
-// General registers used:
-// r3, r23 -> r38
 
-// Predicate registers used:
-// p10 -> p15
+GR_SAVE_B0                    = r53
+GR_SAVE_PFS                   = r55
+GR_SAVE_GP                    = r54 
+
+GR_Parameter_X                = r59
+GR_Parameter_Y                = r60
+GR_Parameter_RESULT           = r61
+GR_Parameter_TAG              = r62
+
+FR_X             = f10
+FR_Y             = f1
+FR_RESULT        = f8
 
-// Assembly macros
-//*********************************************************************
-// integer registers used
-// scratch
-rNJ                   = r3
-
-rTmp                  = r23
-rJ                    = r23
-rN                    = r24
-rTblAddr              = r25
-rA3                   = r26
-rExpHalf              = r27
-rLn2Div64             = r28
-r17ones_m1            = r29
-rGt_ln                = r29
-rRightShifter         = r30
-r64DivLn2             = r31
-// stacked
-GR_SAVE_PFS           = r32
-GR_SAVE_B0            = r33
-GR_SAVE_GP            = r34
-GR_Parameter_X        = r35
-GR_Parameter_Y        = r36
-GR_Parameter_RESULT   = r37
-GR_Parameter_TAG      = r38
 
 // floating point registers used
-FR_X                  = f10
-FR_Y                  = f1
-FR_RESULT             = f8
-// scratch
-fRightShifter         = f6
-f64DivLn2             = f7
-fNormX                = f9
-fNint                 = f10
-fN                    = f11
-fR                    = f12
-fLn2Div64             = f13
-fA2                   = f14
-fA3                   = f15
-// stacked
-fP                    = f32
-fT                    = f33
-fMIN_SGL_OFLOW_ARG    = f34
-fMAX_SGL_ZERO_ARG     = f35
-fMAX_SGL_NORM_ARG     = f36
-fMIN_SGL_NORM_ARG     = f37
-fRSqr                 = f38
-fTmp                  = f39
-fGt_pln               = f39
-fWre_urm_f8           = f40
-fFtz_urm_f8           = f40
-
-
-RODATA
+
+ EXP_MIN_SGL_OFLOW_ARG      = f11
+ EXP_MAX_SGL_ZERO_ARG       = f12
+ EXP_MAX_SGL_NORM_ARG       = f13
+ EXP_MAX_SGL_UFLOW_ARG      = f14
+ EXP_MIN_SGL_NORM_ARG       = f15
+
+ exp_coeff_P5               = f32
+ exp_coeff_P6               = f33
+ exp_coeff_P3               = f34
+ exp_coeff_P4               = f35
+
+ exp_coeff_P1               = f36
+ exp_coeff_P2               = f37
+ exp_Mx                     = f38
+ exp_Mfloat                 = f39
+ exp_R                      = f40
+
+ exp_P1                     = f41
+ exp_P2                     = f42
+ exp_P3                     = f43
+ exp_Rsq                    = f44
+ exp_R4                     = f45
+
+ exp_P4                     = f46
+ exp_P5                     = f47
+ exp_P6                     = f48
+ exp_P7                     = f49
+ exp_T1                     = f50
+
+ exp_T2                     = f51
+ exp_T                      = f52
+ exp_A                      = f53
+ exp_norm_f8                = f54
+ exp_wre_urm_f8             = f55
+
+ exp_ftz_urm_f8             = f56
+ exp_gt_pln                 = f57
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+
 .align 16
 
-LOCAL_OBJECT_START(_expf_table)
-data4 0x42b17218         // Smallest sgl arg to overflow sgl result, +88.7228
-data4 0xc2cff1b5         // Largest sgl for rnd-to-nearest 0 result, -103.9720
-data4 0x42b17217         // Largest sgl arg to give normal sgl result, +88.7228
-data4 0xc2aeac4f         // Smallest sgl arg to give normal sgl result, -87.3365
+exp_coeff_1_table:
+ASM_TYPE_DIRECTIVE(exp_coeff_1_table,@object)
+data8 0x3F56F35FDE4F8563 // p5
+data8 0x3F2A378BEFECCFDD // p6
+data8 0x3FE00000258C581D // p1
+data8 0x3FC555557AE7B3D4 // p2
+ASM_SIZE_DIRECTIVE(exp_coeff_1_table)
+
+
+exp_coeff_2_table:
+ASM_TYPE_DIRECTIVE(exp_coeff_2_table,@object)
+data8 0x3FA5551BB6592FAE // p3
+data8 0x3F8110E8EBFFD485 // p4
+ASM_SIZE_DIRECTIVE(exp_coeff_2_table)
+
+
+exp_T2_table:
+ASM_TYPE_DIRECTIVE(exp_T2_table,@object)
+data8 0xa175cf9cd7d85844 , 0x00003f46 // exp(-128)
+data8 0xdb7279415a1f9eed , 0x00003f47 // exp(-127)
+data8 0x95213b242bd8ca5f , 0x00003f49 // exp(-126)
+data8 0xcab03c968c989f83 , 0x00003f4a // exp(-125)
+data8 0x89bdb674702961ad , 0x00003f4c // exp(-124)
+data8 0xbb35a2eec278be35 , 0x00003f4d // exp(-123)
+data8 0xfe71b17f373e7e7a , 0x00003f4e // exp(-122)
+data8 0xace9a6ec52a39b63 , 0x00003f50 // exp(-121)
+data8 0xeb03423fe393cf1c , 0x00003f51 // exp(-120)
+data8 0x9fb52c5bcaef1693 , 0x00003f53 // exp(-119)
+data8 0xd910b6377ed60bf1 , 0x00003f54 // exp(-118)
+data8 0x9382dad8a9fdbfe4 , 0x00003f56 // exp(-117)
+data8 0xc87d0a84dea869a3 , 0x00003f57 // exp(-116)
+data8 0x883efb4c6d1087b0 , 0x00003f59 // exp(-115)
+data8 0xb92d7373dce9a502 , 0x00003f5a // exp(-114)
+data8 0xfbaeb020577fb0cb , 0x00003f5b // exp(-113)
+ASM_SIZE_DIRECTIVE(exp_T2_table)
+
+
+exp_T1_table:
+ASM_TYPE_DIRECTIVE(exp_T1_table,@object)
+data8 0x8000000000000000 , 0x00003fff // exp(16 * 0)
+data8 0x87975e8540010249 , 0x00004016 // exp(16 * 1) 
+data8 0x8fa1fe625b3163ec , 0x0000402d // exp(16 * 2) 
+data8 0x9826b576512a59d7 , 0x00004044 // exp(16 * 3) 
+data8 0xa12cc167acbe6902 , 0x0000405b // exp(16 * 4) 
+data8 0xaabbcdcc279f59e4 , 0x00004072 // exp(16 * 5) 
+data8 0xb4dbfaadc045d16f , 0x00004089 // exp(16 * 6) 
+data8 0xbf95e372ccdbf146 , 0x000040a0 // exp(16 * 7) 
+data8 0xcaf2a62eea10bbfb , 0x000040b7 // exp(16 * 8) 
+data8 0xd6fbeb62fddbd340 , 0x000040ce // exp(16 * 9) 
+data8 0xe3bbee32e4a440ea , 0x000040e5 // exp(16 * 10)
+data8 0xf13d8517c34199a8 , 0x000040fc // exp(16 * 11)
+data8 0xff8c2b166241eedd , 0x00004113 // exp(16 * 12)
+data8 0x875a04c0b38d6129 , 0x0000412b // exp(16 * 13)
+data8 0x8f610127db6774d7 , 0x00004142 // exp(16 * 14)
+data8 0x97e1dd87e5c20bb6 , 0x00004159 // exp(16 * 15)
+ASM_SIZE_DIRECTIVE(exp_T1_table)
+
+// Argument Reduction
+//  exp_Mx = (int)f8            ==> The value of f8 rounded to int is placed into the
+//                                  significand of exp_Mx as a two's
+//                                  complement number.
+
+// Later we want to have exp_Mx in a general register. Do this with a getf.sig
+// and call the general register exp_GR_Mint
+
+//  exp_Mfloat = (float)(int)f8 ==> the two's complement number in
+//                                  significand of exp_Mx is turned
+//                                  into a floating point number.
+//  R = 1 - exp_Mfloat          ==> reduced argument
+
+// Core Approximation
+// Calculate a series in R
+//  R * p6 + p5
+//  R * p4 + p3
+//  R * p2 + p1
+//  R^2
+//  R^4
+//  R^2(R * p6 + p5) + (R * p4 + p3)
+//  R^2(R * p2 + p1)
+//  R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
+//  R + 1
+//  exp(R) = (1 + R) + R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
+//  exp(R) = 1 + R + R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6
+
+// Reconstruction
+// signficand of exp_Mx is two's complement,
+// -103 < x < 89
+// The smallest single denormal is 2^-149 = ssdn
+//    For e^x = ssdn
+//        x   = log(ssdn) = -103.279
+//    But with rounding result goes to ssdn until -103.972079
+// The largest single normal is  1.<23 1's> 2^126 ~ 2^127 = lsn
+//    For e^x = lsn
+//        x   = log(lsn) = 88.7228
 //
-// 2^(j/64) table, j goes from 0 to 63
-data8 0x0000000000000000 // 2^(0/64)
-data8 0x00002C9A3E778061 // 2^(1/64)
-data8 0x000059B0D3158574 // 2^(2/64)
-data8 0x0000874518759BC8 // 2^(3/64)
-data8 0x0000B5586CF9890F // 2^(4/64)
-data8 0x0000E3EC32D3D1A2 // 2^(5/64)
-data8 0x00011301D0125B51 // 2^(6/64)
-data8 0x0001429AAEA92DE0 // 2^(7/64)
-data8 0x000172B83C7D517B // 2^(8/64)
-data8 0x0001A35BEB6FCB75 // 2^(9/64)
-data8 0x0001D4873168B9AA // 2^(10/64)
-data8 0x0002063B88628CD6 // 2^(11/64)
-data8 0x0002387A6E756238 // 2^(12/64)
-data8 0x00026B4565E27CDD // 2^(13/64)
-data8 0x00029E9DF51FDEE1 // 2^(14/64)
-data8 0x0002D285A6E4030B // 2^(15/64)
-data8 0x000306FE0A31B715 // 2^(16/64)
-data8 0x00033C08B26416FF // 2^(17/64)
-data8 0x000371A7373AA9CB // 2^(18/64)
-data8 0x0003A7DB34E59FF7 // 2^(19/64)
-data8 0x0003DEA64C123422 // 2^(20/64)
-data8 0x0004160A21F72E2A // 2^(21/64)
-data8 0x00044E086061892D // 2^(22/64)
-data8 0x000486A2B5C13CD0 // 2^(23/64)
-data8 0x0004BFDAD5362A27 // 2^(24/64)
-data8 0x0004F9B2769D2CA7 // 2^(25/64)
-data8 0x0005342B569D4F82 // 2^(26/64)
-data8 0x00056F4736B527DA // 2^(27/64)
-data8 0x0005AB07DD485429 // 2^(28/64)
-data8 0x0005E76F15AD2148 // 2^(29/64)
-data8 0x0006247EB03A5585 // 2^(30/64)
-data8 0x0006623882552225 // 2^(31/64)
-data8 0x0006A09E667F3BCD // 2^(32/64)
-data8 0x0006DFB23C651A2F // 2^(33/64)
-data8 0x00071F75E8EC5F74 // 2^(34/64)
-data8 0x00075FEB564267C9 // 2^(35/64)
-data8 0x0007A11473EB0187 // 2^(36/64)
-data8 0x0007E2F336CF4E62 // 2^(37/64)
-data8 0x00082589994CCE13 // 2^(38/64)
-data8 0x000868D99B4492ED // 2^(39/64)
-data8 0x0008ACE5422AA0DB // 2^(40/64)
-data8 0x0008F1AE99157736 // 2^(41/64)
-data8 0x00093737B0CDC5E5 // 2^(42/64)
-data8 0x00097D829FDE4E50 // 2^(43/64)
-data8 0x0009C49182A3F090 // 2^(44/64)
-data8 0x000A0C667B5DE565 // 2^(45/64)
-data8 0x000A5503B23E255D // 2^(46/64)
-data8 0x000A9E6B5579FDBF // 2^(47/64)
-data8 0x000AE89F995AD3AD // 2^(48/64)
-data8 0x000B33A2B84F15FB // 2^(49/64)
-data8 0x000B7F76F2FB5E47 // 2^(50/64)
-data8 0x000BCC1E904BC1D2 // 2^(51/64)
-data8 0x000C199BDD85529C // 2^(52/64)
-data8 0x000C67F12E57D14B // 2^(53/64)
-data8 0x000CB720DCEF9069 // 2^(54/64)
-data8 0x000D072D4A07897C // 2^(55/64)
-data8 0x000D5818DCFBA487 // 2^(56/64)
-data8 0x000DA9E603DB3285 // 2^(57/64)
-data8 0x000DFC97337B9B5F // 2^(58/64)
-data8 0x000E502EE78B3FF6 // 2^(59/64)
-data8 0x000EA4AFA2A490DA // 2^(60/64)
-data8 0x000EFA1BEE615A27 // 2^(61/64)
-data8 0x000F50765B6E4540 // 2^(62/64)
-data8 0x000FA7C1819E90D8 // 2^(63/64)
-LOCAL_OBJECT_END(_expf_table)
+// expf overflows                       when x > 42b17218 = 88.7228
+// expf returns largest single denormal when x = c2aeac50
+// expf goes to zero when                    x < c2cff1b5 
+
+// Consider range of 8-bit two's complement, -128 ---> 127
+// Add 128; range becomes                       0 ---> 255
+
+// The number (=i) in 0 ---> 255 is used as offset into two tables.
 
+// i = abcd efgh = abcd * 16 + efgh = i1 * 16 + i2
+
+// i1 = (exp_GR_Mint + 128)  & 0xf0 (show 0xf0 as -0x10 to avoid assembler error)
+//                                  (The immediate in the AND is an 8-bit two's complement)
+// i1 = i1 + start of T1 table (EXP_AD_T1)
+//    Note that the entries in T1 are double-extended numbers on 16-byte boundaries
+//    and that i1 is already shifted left by 16 after the AND.
+
+// i2 must be shifted left by 4 before adding to the start of the table.
+// i2 = ((exp_GR_Mint + 128)  & 0x0f) << 4
+// i2 = i2 + start of T2 table (EXP_AD_T2)
+
+// T      = T1 * T2
+// A      = T * (1 + R)
+// answer = T *  (R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6) +
+//          T *  (1 + R)
+//        = T * exp(R)
+
+
+.global expf#
 
 .section .text
-GLOBAL_IEEE754_ENTRY(expf)
-      
-{ .mlx
-      addl            rTblAddr = @ltoff(_expf_table),gp
-      movl            r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
+.proc  expf#
+.align 32
+expf:
+#ifdef _LIBC
+.global __ieee754_expf#
+__ieee754_expf:
+#endif
+
+{ .mfi
+     alloc      r32            = ar.pfs,1,26,4,0
+     fcvt.fx.s1   exp_Mx       =    f8
+     mov       exp_GR_17ones   =    0x1FFFF
 }
 { .mlx
-      addl            rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP
-      movl            rRightShifter = 0x43E8000000000000 // DP Right Shifter
+     addl      EXP_AD_P_1      =    @ltoff(exp_coeff_1_table),gp
+     movl      exp_GR_min_oflow = 0x42b17218    
 }
 ;;
 
+// Fnorm done to take any enabled faults
 { .mfi
-      // point to the beginning of the table
-      ld8             rTblAddr = [rTblAddr]
-      fclass.m        p14, p0 = f8, 0x22    // test for -INF
-      shl             rA3 = rA3, 12  // 0x3E2AA000, approx to 1.0/6.0 in SP
+     ld8       EXP_AD_P_1      =  [EXP_AD_P_1]
+     fclass.m  p6,p0      = f8, 0x07	//@zero
+     nop.i 999
 }
 { .mfi
-      nop.m           0
-      fnorm.s1        fNormX = f8           // normalized x
-      addl            rExpHalf = 0xFFFE, r0 // exponent of 1/2
+     add       exp_GR_max_norm = -1, exp_GR_min_oflow  // 0x42b17217
+     fnorm     exp_norm_f8     =    f8
+     nop.i 999
 }
 ;;
 
 { .mfi
-      setf.d          f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
-      fclass.m        p15, p0 = f8, 0x1e1   // test for NaT,NaN,+Inf
-      nop.i           0
+     setf.s    EXP_MIN_SGL_OFLOW_ARG = exp_GR_min_oflow  // 0x42b17218
+     fclass.m  p7,p0      = f8, 0x22	// Test for x=-inf
+     mov       exp_GR_0xf0 = 0x0f0
 }
 { .mlx
-      // load Right Shifter to FP reg
-      setf.d          fRightShifter = rRightShifter
-      movl            rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
+     setf.s    EXP_MAX_SGL_NORM_ARG = exp_GR_max_norm
+     movl      exp_GR_max_zero = 0xc2cff1b5    
 }
 ;;
 
-{ .mfi
-      nop.m           0
-      fcmp.eq.s1      p13, p0 = f0, f8      // test for x = 0.0
-      nop.i           0
+
+{ .mlx
+     mov       exp_GR_0x0f = 0x00f
+     movl      exp_GR_max_uflow = 0xc2aeac50    
 }
 { .mfb
-      setf.s          fA3 = rA3             // load A3 to FP reg
-(p14) fma.s.s0        f8 = f0, f1, f0       // result if x = -inf
-(p14) br.ret.spnt     b0                    // exit here if x = -inf
+     nop.m 999
+(p6) fma.s     f8 = f1,f1,f0
+(p6) br.ret.spnt   b0        // quick exit for x=0
 }
 ;;
 
 { .mfi
-      setf.exp        fA2 = rExpHalf        // load A2 to FP reg
-      fcmp.eq.s0      p6, p0 = f8, f0       // Dummy to flag denorm
-      nop.i           0
+     setf.s    EXP_MAX_SGL_ZERO_ARG = exp_GR_max_zero
+     fclass.m  p8,p0      = f8, 0x21	// Test for x=+inf
+     adds      exp_GR_min_norm = 1, exp_GR_max_uflow  // 0xc2aeac51
 }
 { .mfb
-      setf.d          fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
-(p15) fma.s.s0        f8 = f8, f1, f0       // result if x = NaT,NaN,+Inf
-(p15) br.ret.spnt     b0                    // exit here if x = NaT,NaN,+Inf
+     ldfpd     exp_coeff_P5,exp_coeff_P6     =    [EXP_AD_P_1],16
+(p7) fma.s     f8 = f0,f0,f0
+(p7) br.ret.spnt   b0        // quick exit for x=-inf
 }
 ;;
 
-{ .mfb
-      // overflow and underflow_zero threshold
-      ldfps           fMIN_SGL_OFLOW_ARG, fMAX_SGL_ZERO_ARG = [rTblAddr], 8
-(p13) fma.s.s0        f8 = f1, f1, f0       // result if x = 0.0
-(p13) br.ret.spnt     b0                    // exit here if x =0.0
+{ .mmf
+     ldfpd     exp_coeff_P1,exp_coeff_P2     =    [EXP_AD_P_1],16
+     setf.s    EXP_MAX_SGL_UFLOW_ARG = exp_GR_max_uflow
+     fclass.m  p9,p0      = f8, 0xc3	// Test for x=nan
 }
 ;;
 
-      // max normal and underflow_denorm threshold
-{ .mfi
-      ldfps           fMAX_SGL_NORM_ARG, fMIN_SGL_NORM_ARG = [rTblAddr], 8
-      nop.f           0
-      nop.i           0
+{ .mmb
+     ldfpd     exp_coeff_P3,exp_coeff_P4     =    [EXP_AD_P_1],16
+     setf.s    EXP_MIN_SGL_NORM_ARG = exp_GR_min_norm
+(p8) br.ret.spnt   b0        // quick exit for x=+inf
 }
 ;;
 
+// EXP_AD_P_1 now points to exp_T2_table
 { .mfi
-      nop.m           0
-      // x*(64/ln(2)) + Right Shifter
-      fma.s1          fNint = fNormX, f64DivLn2, fRightShifter
-      nop.i           0
+     mov exp_GR_T2_size           = 0x100
+     fcvt.xf   exp_Mfloat     =    exp_Mx
+     nop.i 999
+}
+;;
+
+{ .mfb
+     getf.sig  exp_GR_Mint    =    exp_Mx
+(p9) fmerge.s     f8 = exp_norm_f8, exp_norm_f8
+(p9) br.ret.spnt   b0        // quick exit for x=nan
 }
 ;;
 
+{ .mmi
+     nop.m 999
+     mov      EXP_AD_T2       =  EXP_AD_P_1
+     add      EXP_AD_T1       =  exp_GR_T2_size,EXP_AD_P_1 ;;
+}
+
+
+{ .mmi
+     adds      exp_GR_Mint_p_128   =    0x80,exp_GR_Mint ;;
+     and       exp_GR_Ind1      =    exp_GR_Mint_p_128, exp_GR_0xf0
+     and       exp_GR_Ind2      =    exp_GR_Mint_p_128, exp_GR_0x0f ;;
+}
+
 // Divide arguments into the following categories:
-//  Certain Underflow       p11 - -inf < x <= MAX_SGL_ZERO_ARG
-//  Possible Underflow      p13 - MAX_SGL_ZERO_ARG < x < MIN_SGL_NORM_ARG
+//  Certain Underflow/zero  p11 - -inf < x <= MAX_SGL_ZERO_ARG 
+//  Certain Underflow       p12 - MAX_SGL_ZERO_ARG < x <= MAX_SGL_UFLOW_ARG 
+//  Possible Underflow      p13 - MAX_SGL_UFLOW_ARG < x < MIN_SGL_NORM_ARG
 //  Certain Safe                - MIN_SGL_NORM_ARG <= x <= MAX_SGL_NORM_ARG
 //  Possible Overflow       p14 - MAX_SGL_NORM_ARG < x < MIN_SGL_OFLOW_ARG
 //  Certain Overflow        p15 - MIN_SGL_OFLOW_ARG <= x < +inf
 //
-// If the input is really a single arg, then there will never be
-// "Possible Overflow" arguments.
+// If the input is really a single arg, then there will never be "Possible
+// Underflow" or "Possible Overflow" arguments.
 //
 
 { .mfi
-      nop.m           0
-      // check for overflow
-      fcmp.ge.s1      p15, p0 = fNormX, fMIN_SGL_OFLOW_ARG
-      nop.i           0
+     add       EXP_AD_M1 =    exp_GR_Ind1,EXP_AD_T1
+     fcmp.ge.s1  p15,p14 = exp_norm_f8,EXP_MIN_SGL_OFLOW_ARG
+     nop.i 999
+}
+{ .mfi
+     shladd       EXP_AD_M2                =    exp_GR_Ind2,4,EXP_AD_T2
+     fms.s1    exp_R                    =    f1,f8,exp_Mfloat
+     nop.i 999 ;;
 }
-;;
 
 { .mfi
-      nop.m           0
-      // check for underflow and tiny (+0) result
-      fcmp.le.s1      p11, p0 = fNormX, fMAX_SGL_ZERO_ARG
-      nop.i           0
+     ldfe           exp_T1    =    [EXP_AD_M1]
+     fcmp.le.s1  p11,p12 = exp_norm_f8,EXP_MAX_SGL_ZERO_ARG
+     nop.i 999 ;;
 }
+
 { .mfb
-      nop.m           0
-      fms.s1          fN = fNint, f1, fRightShifter // n in FP register
-      // branch out if overflow
-(p15) br.cond.spnt    EXP_CERTAIN_OVERFLOW
+      ldfe           exp_T2   =    [EXP_AD_M2]
+(p14) fcmp.gt.s1  p14,p0 = exp_norm_f8,EXP_MAX_SGL_NORM_ARG
+(p15) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) ;;
 }
-;;
 
 { .mfb
-      getf.sig        rNJ = fNint           // bits of n, j
-      // check for underflow and deno result
-      fcmp.lt.s1      p13, p0 = fNormX, fMIN_SGL_NORM_ARG
-      // branch out if underflow and tiny (+0) result
-(p11) br.cond.spnt    EXP_CERTAIN_UNDERFLOW
+      nop.m 999
+(p12) fcmp.le.s1  p12,p0 = exp_norm_f8,EXP_MAX_SGL_UFLOW_ARG
+(p11) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW_ZERO)
 }
 ;;
 
 { .mfi
-      nop.m           0
-      // check for possible overflow
-      fcmp.gt.s1      p14, p0 = fNormX, fMAX_SGL_NORM_ARG
-      extr.u          rJ = rNJ, 0, 6        // bits of j
+      nop.m 999
+(p13) fcmp.lt.s1  p13,p0 = exp_norm_f8,EXP_MIN_SGL_NORM_ARG
+      nop.i 999
 }
+;;
+
+
 { .mfi
-      addl            rN = 0xFFFF - 63, rNJ // biased and shifted n
-      fnma.s1         fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
-      nop.i           0
+     nop.m                 999
+     fma.s1    exp_Rsq   =    exp_R,exp_R,f0
+     nop.i                 999
+}
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P3    =    exp_R,exp_coeff_P2,exp_coeff_P1
+     nop.i                 999 
 }
 ;;
 
 { .mfi
-      shladd          rJ = rJ, 3, rTblAddr  // address in the 2^(j/64) table
-      nop.f           0
-      shr             rN = rN, 6            // biased n
+     nop.m                 999
+     fma.s1    exp_P1    =    exp_R,exp_coeff_P6,exp_coeff_P5
+     nop.i                 999 
+}
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P2    =    exp_R,exp_coeff_P4,exp_coeff_P3
+     nop.i                 999
 }
 ;;
 
+
 { .mfi
-      ld8             rJ = [rJ]
-      nop.f           0
-      shl             rN = rN, 52           // 2^n bits in DP format
+     nop.m                 999
+     fma.s1    exp_P7    =    f1,exp_R,f1
+     nop.i                 999
 }
 ;;
 
+
 { .mfi
-      or              rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
-      nop.f           0
-      nop.i           0
+     nop.m                 999
+     fma.s1    exp_P5    =    exp_Rsq,exp_P3,f0
+     nop.i                 999
+}
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_R4    =    exp_Rsq,exp_Rsq,f0
+     nop.i                 999 
 }
 ;;
 
 { .mfi
-      setf.d          fT = rN               // 2^n * 2^(j/64)
-      fma.s1          fP = fA3, fR, fA2     // A3*R + A2
-      nop.i           0
+     nop.m                 999
+     fma.s1    exp_T     =    exp_T1,exp_T2,f0
+     nop.i                 999 
 }
 { .mfi
-      nop.m           0
-      fma.s1          fRSqr = fR, fR, f0    // R^2
-      nop.i           0
+     nop.m                 999
+     fma.s1    exp_P4    =    exp_Rsq,exp_P1,exp_P2
+     nop.i                 999 
 }
 ;;
 
 { .mfi
-      nop.m           0
-      fma.s1          fP = fP, fRSqr, fR    // P = (A3*R + A2)*R^2 + R
-      nop.i           0
+     nop.m                 999
+     fma.s1    exp_A     =    exp_T,exp_P7,f0
+     nop.i                 999
+}
+{ .mfi
+     nop.m                 999
+     fma.s1    exp_P6    =    exp_R4,exp_P4,exp_P5
+     nop.i                 999
 }
 ;;
 
-{ .mbb
-      nop.m           0
-      // branch out if possible underflow
-(p13) br.cond.spnt    EXP_POSSIBLE_UNDERFLOW
-      // branch out if possible overflow result
-(p14) br.cond.spnt    EXP_POSSIBLE_OVERFLOW
+{ .bbb
+(p12) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW)
+(p13) br.cond.spnt L(EXP_POSSIBLE_UNDERFLOW)
+(p14) br.cond.spnt L(EXP_POSSIBLE_OVERFLOW)
 }
 ;;
 
 { .mfb
-      nop.m           0
-      // final result in the absence of over- and underflow
-      fma.s.s0        f8 = fP, fT, fT
-      // exit here in the absence of over- and underflow
-      br.ret.sptk     b0
+     nop.m            999
+     fma.s     f8   =    exp_T,exp_P6,exp_A
+     br.ret.sptk     b0
 }
 ;;
 
-EXP_POSSIBLE_OVERFLOW:
+L(EXP_POSSIBLE_OVERFLOW):
+
+// We got an answer. EXP_MAX_SGL_NORM_ARG < x < EXP_MIN_SGL_OFLOW_ARG
+// overflow is a possibility, not a certainty
+// Set wre in s2 and perform the last operation with s2
+
+// We define an overflow when the answer with
+//    WRE set
+//    user-defined rounding mode
+// is lsn +1
+
+// Is the exponent 1 more than the largest single?
+// If so, go to ERROR RETURN, else (no overflow) get the answer and
+// leave.
+
+// Largest single is FE (biased single)
+//                   FE - 7F + FFFF = 1007E
+
+// Create + largest_single_plus_ulp
+// Create - largest_single_plus_ulp
 
-// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
-// This cannot happen if input is a single, only if input higher precision.
-// Overflow is a possibility, not a certainty.
+// Calculate answer with WRE set.
 
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set.  If result is larger than largest single, then we have
-// overflow
+// Cases when answer is lsn+1  are as follows:
+
+//           midpoint
+//              |
+//  lsn         |         lsn+1
+// --+----------|----------+------------
+//              |
+//    +inf          +inf      -inf
+//                  RN         RN
+//                             RZ
+// exp_gt_pln contains the floating point number lsn+1.
+// The setf.exp puts 0x1007f in the exponent and 0x800... in the significand.
+
+// If the answer is >= lsn+1, we have overflowed.
+// Then p6 is TRUE. Set the overflow tag, save input in FR_X,
+// do the final calculation for IEEE result, and branch to error return.
 
 { .mfi
-      mov             rGt_ln  = 0x1007f // Exponent for largest single + 1 ulp
-      fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
-      nop.i           0
+       mov         exp_GR_gt_ln    = 0x1007F 
+       fsetc.s2    0x7F,0x42
+       nop.i 999
 }
 ;;
 
 { .mfi
-      setf.exp        fGt_pln = rGt_ln  // Create largest single + 1 ulp
-      fma.s.s2        fWre_urm_f8 = fP, fT, fT    // Result with wre set
-      nop.i           0
+       setf.exp      exp_gt_pln    = exp_GR_gt_ln
+       fma.s.s2    exp_wre_urm_f8  = exp_T,  exp_P6, exp_A
+       nop.i 999
 }
 ;;
 
 { .mfi
-      nop.m           0
-      fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
-      nop.i           0
+       nop.m 999
+       fsetc.s2 0x7F,0x40
+       nop.i 999
 }
 ;;
 
 { .mfi
-      nop.m           0
-      fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
-      nop.i           0
+       nop.m 999
+       fcmp.ge.unc.s1 p6, p0       =  exp_wre_urm_f8, exp_gt_pln
+       nop.i 999
 }
 ;;
 
 { .mfb
-      nop.m           0
-      nop.f           0
-(p6)  br.cond.spnt    EXP_CERTAIN_OVERFLOW // Branch if overflow
+       nop.m 999
+       nop.f 999
+(p6)   br.cond.spnt L(EXP_CERTAIN_OVERFLOW)  // Branch if really overflow
 }
 ;;
 
 { .mfb
-      nop.m           0
-      fma.s.s0        f8 = fP, fT, fT
-      br.ret.sptk     b0                     // Exit if really no overflow
+       nop.m 999
+       fma.s        f8             = exp_T,  exp_P6, exp_A
+       br.ret.sptk     b0                 // Exit if really no overflow
 }
 ;;
 
-// here if overflow
-EXP_CERTAIN_OVERFLOW:
+L(EXP_CERTAIN_OVERFLOW):
 { .mmi
-      addl            r17ones_m1 = 0x1FFFE, r0
-;;
-      setf.exp        fTmp = r17ones_m1
-      nop.i           0
+      sub   exp_GR_17ones_m1 = exp_GR_17ones, r0, 1 ;;
+      setf.exp     f9 = exp_GR_17ones_m1
+      nop.i 999 ;;
 }
-;;
 
 { .mfi
-      alloc           r32=ar.pfs,0,3,4,0
-      fmerge.s        FR_X = f8,f8
-      nop.i           0
+      nop.m 999
+      fmerge.s FR_X = f8,f8
+      nop.i 999
 }
 { .mfb
-      mov             GR_Parameter_TAG = 16
-      fma.s.s0        FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result
-      br.cond.sptk    __libm_error_region
+      mov        GR_Parameter_TAG = 16
+      fma.s       FR_RESULT = f9, f9, f0    // Set I,O and +INF result
+      br.cond.sptk  __libm_error_region ;;                             
 }
-;;
 
-EXP_POSSIBLE_UNDERFLOW:
+L(EXP_POSSIBLE_UNDERFLOW): 
 
-// Here if fMAX_SGL_ZERO_ARG < x < fMIN_SGL_NORM_ARG
-// Underflow is a possibility, not a certainty
+// We got an answer. EXP_MAX_SGL_UFLOW_ARG < x < EXP_MIN_SGL_NORM_ARG
+// underflow is a possibility, not a certainty
 
 // We define an underflow when the answer with
 //    ftz set
@@ -551,165 +637,144 @@ EXP_POSSIBLE_UNDERFLOW:
 //                           E
 // -----+--------------------+--------------------+-----
 //      |                    |                    |
-//   1.1...10 2^-3fff    1.1...11 2^-3fff    1.0...00 2^-3ffe
-//   0.1...11 2^-3ffe                                   (biased, 1)
+//   1.1...10 2^-7f      1.1...11 2^-7f      1.0...00 2^-7e  
+//   0.1...11 2^-7e                                     (biased, 1)
 //    largest dn                               smallest normal
 
-{ .mfi
-      nop.m           0
-      fsetc.s2        0x7F,0x41                // Get user's round mode, set ftz
-      nop.i           0
-}
-;;
+// If the answer is = 0, we have underflowed.
+// Then p6 is TRUE. Set the underflow tag, save input in FR_X,
+// do the final calculation for IEEE result, and branch to error return.
 
 { .mfi
-      nop.m           0
-      fma.s.s2        fFtz_urm_f8 = fP, fT, fT // Result with ftz set
-      nop.i           0
+       nop.m 999
+       fsetc.s2 0x7F,0x41
+       nop.i 999
 }
 ;;
 
 { .mfi
-      nop.m           0
-      fsetc.s2        0x7F,0x40                // Turn off ftz in sf2
-      nop.i           0
+       nop.m 999
+       fma.s.s2     exp_ftz_urm_f8  = exp_T,  exp_P6, exp_A
+       nop.i 999
 }
 ;;
 
+
 { .mfi
-      nop.m           0
-      fcmp.eq.s1      p6, p7 = fFtz_urm_f8, f0 // Test for underflow
-      nop.i           0
-}
-{ .mfi
-      nop.m           0
-      fma.s.s0        f8 = fP, fT, fT          // Compute result, set I, maybe U
-      nop.i           0
+       nop.m 999
+       fsetc.s2 0x7F,0x40
+       nop.i 999
 }
 ;;
 
-{ .mbb
-      nop.m           0
-(p6)  br.cond.spnt    EXP_UNDERFLOW_COMMON     // Branch if really underflow
-(p7)  br.ret.sptk     b0                       // Exit if really no underflow
+{ .mfi
+       nop.m 999
+       fcmp.eq.unc.s1 p6, p0     =  exp_ftz_urm_f8, f0
+       nop.i 999
 }
 ;;
 
-EXP_CERTAIN_UNDERFLOW:
-// Here if  x < fMAX_SGL_ZERO_ARG
-// Result will be zero (or smallest denorm if round to +inf) with I, U set
-{ .mmi
-      mov             rTmp = 1
-;;
-      setf.exp        fTmp = rTmp               // Form small normal
-      nop.i           0
+{ .mfb
+       nop.m 999
+       nop.f 999
+(p6)   br.cond.spnt L(EXP_CERTAIN_UNDERFLOW)  // Branch if really underflow 
 }
 ;;
 
-{ .mfi
-      nop.m           0
-      fmerge.se       fTmp = fTmp, f64DivLn2    // Small with non-trial signif
-      nop.i           0
-}
-;;
-      
 { .mfb
-      nop.m           0
-      fma.s.s0        f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result
-      br.cond.sptk    EXP_UNDERFLOW_COMMON
+       nop.m 999
+       fma.s        f8             = exp_T,  exp_P6, exp_A
+       br.ret.sptk     b0                  // Exit if really no underflow
 }
 ;;
 
-EXP_UNDERFLOW_COMMON:
-// Determine if underflow result is zero or nonzero
+L(EXP_CERTAIN_UNDERFLOW):
 { .mfi
-      alloc           r32=ar.pfs,0,3,4,0
-      fcmp.eq.s1      p6, p0 =  f8, f0
-      nop.i           0
+      nop.m 999
+      fmerge.s FR_X = f8,f8
+      nop.i 999
 }
-;;
-
 { .mfb
-      nop.m           0
-      fmerge.s        FR_X = fNormX,fNormX
-(p6)  br.cond.spnt    EXP_UNDERFLOW_ZERO
+      mov        GR_Parameter_TAG = 17
+      fma.s       FR_RESULT  = exp_T, exp_P6, exp_A // Set I,U and tiny result
+      br.cond.sptk  __libm_error_region ;;                             
 }
-;;
 
-EXP_UNDERFLOW_NONZERO:
-// Here if  x < fMIN_SGL_NORM_ARG and result nonzero;
-// I, U are set
-{ .mfb
-      mov             GR_Parameter_TAG = 17
-      nop.f           0                         // FR_RESULT already set
-      br.cond.sptk    __libm_error_region
+L(EXP_CERTAIN_UNDERFLOW_ZERO):
+{ .mmi
+      mov   exp_GR_one = 1 ;;
+      setf.exp     f9 = exp_GR_one
+      nop.i 999 ;;
 }
-;;
 
-EXP_UNDERFLOW_ZERO:
-// Here if x < fMIN_SGL_NORM_ARG and result zero;
-// I, U are set
+{ .mfi
+      nop.m 999
+      fmerge.s FR_X = f8,f8
+      nop.i 999
+}
 { .mfb
-      mov             GR_Parameter_TAG = 17
-      nop.f           0                         // FR_RESULT already set
-      br.cond.sptk    __libm_error_region
+      mov        GR_Parameter_TAG = 17
+      fma.s       FR_RESULT = f9, f9, f0    // Set I,U and tiny (+0.0) result
+      br.cond.sptk  __libm_error_region ;;                             
 }
-;;
 
-GLOBAL_IEEE754_END(expf)
+.endp expf
+ASM_SIZE_DIRECTIVE(expf)
 
 
-LOCAL_LIBM_ENTRY(__libm_error_region)
+.proc __libm_error_region
+__libm_error_region:
 .prologue
 { .mfi
-      add   GR_Parameter_Y=-32,sp             // Parameter 2 value
-      nop.f 0
+        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
+	nop.f 999
 .save   ar.pfs,GR_SAVE_PFS
-      mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
+        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
 }
 { .mfi
 .fframe 64
-      add sp=-64,sp                           // Create new stack
-      nop.f 0
-      mov GR_SAVE_GP=gp                       // Save gp
+        add sp=-64,sp                           // Create new stack
+        nop.f 0
+        mov GR_SAVE_GP=gp                       // Save gp
 };;
 { .mmi
-      stfs [GR_Parameter_Y] = FR_Y,16         // Store Parameter 2 on stack
-      add GR_Parameter_X = 16,sp              // Parameter 1 address
+        stfs [GR_Parameter_Y] = FR_Y,16         // Store Parameter 2 on stack
+        add GR_Parameter_X = 16,sp              // Parameter 1 address
 .save   b0, GR_SAVE_B0
-      mov GR_SAVE_B0=b0                       // Save b0
+        mov GR_SAVE_B0=b0                       // Save b0
 };;
 .body
 { .mfi
-      stfs [GR_Parameter_X] = FR_X            // Store Parameter 1 on stack
-      nop.f 0
-      add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+        stfs [GR_Parameter_X] = FR_X            // Store Parameter 1 on stack
+        nop.f 0
+        add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
 }
 { .mib
-      stfs [GR_Parameter_Y] = FR_RESULT       // Store Parameter 3 on stack
-      add   GR_Parameter_Y = -16,GR_Parameter_Y
-      br.call.sptk b0=__libm_error_support#   // Call error handling function
+        stfs [GR_Parameter_Y] = FR_RESULT       // Store Parameter 3 on stack
+        add   GR_Parameter_Y = -16,GR_Parameter_Y
+        br.call.sptk b0=__libm_error_support#   // Call error handling function
 };;
 
 { .mmi
-      add   GR_Parameter_RESULT = 48,sp
-      nop.m 0
-      nop.i 0
+        nop.m 0
+        nop.m 0
+        add   GR_Parameter_RESULT = 48,sp
 };;
 
 { .mmi
-      ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
+        ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
 .restore sp
-      add   sp = 64,sp                       // Restore stack pointer
-      mov   b0 = GR_SAVE_B0                  // Restore return address
+        add   sp = 64,sp                       // Restore stack pointer
+        mov   b0 = GR_SAVE_B0                  // Restore return address
 };;
 { .mib
-      mov   gp = GR_SAVE_GP                  // Restore gp
-      mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
-      br.ret.sptk     b0                     // Return
-};;
+        mov   gp = GR_SAVE_GP                  // Restore gp 
+        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
+        br.ret.sptk     b0                     // Return
+};; 
 
-LOCAL_LIBM_END(__libm_error_region)
+.endp __libm_error_region
+ASM_SIZE_DIRECTIVE(__libm_error_region)
 
 
 .type   __libm_error_support#,@function