diff options
Diffstat (limited to 'sysdeps/ia64/fpu/e_exp.S')
-rw-r--r-- | sysdeps/ia64/fpu/e_exp.S | 793 |
1 files changed, 0 insertions, 793 deletions
diff --git a/sysdeps/ia64/fpu/e_exp.S b/sysdeps/ia64/fpu/e_exp.S deleted file mode 100644 index fcc247fb1a..0000000000 --- a/sysdeps/ia64/fpu/e_exp.S +++ /dev/null @@ -1,793 +0,0 @@ -.file "exp.s" - - -// Copyright (c) 2000 - 2005, Intel Corporation -// All rights reserved. -// -// Contributed 2000 by the Intel Numerics Group, Intel Corporation -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// -// * The name of Intel Corporation may not be used to endorse or promote -// products derived from this software without specific prior written -// permission. - -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS -// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY -// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING -// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// Intel Corporation is the author of this code, and requests that all -// problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. -// -// History -//============================================================== -// 2/02/00 Initial version -// 3/07/00 exp(inf) = inf but now does NOT call error support -// exp(-inf) = 0 but now does NOT call error support -// 4/04/00 Unwind support added -// 8/15/00 Bundle added after call to __libm_error_support to properly -// set [the previously overwritten] GR_Parameter_RESULT. -// 11/30/00 Reworked to shorten main path, widen main path to include all -// args in normal range, and add quick exit for 0, nan, inf. -// 12/05/00 Loaded constants earlier with setf to save 2 cycles. -// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path -// 05/20/02 Cleaned up namespace and sf0 syntax -// 09/07/02 Force inexact flag -// 11/15/02 Split underflow path into zero/nonzero; eliminated fma in main path -// 05/30/03 Set inexact flag on unmasked overflow/underflow -// 03/31/05 Reformatted delimiters between data tables - -// API -//============================================================== -// double exp(double) - -// Overview of operation -//============================================================== -// Take the input x. w is "how many log2/128 in x?" -// w = x * 128/log2 -// n = int(w) -// x = n log2/128 + r + delta - -// n = 128M + index_1 + 2^4 index_2 -// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta - -// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta) -// Construct 2^M -// Get 2^(index_1/128) from table_1; -// Get 2^(index_2/8) from table_2; -// Calculate exp(r) by 5th order polynomial -// r = x - n (log2/128)_high -// delta = - n (log2/128)_low -// Calculate exp(delta) as 1 + delta - - -// Special values -//============================================================== -// exp(+0) = 1.0 -// exp(-0) = 1.0 - -// exp(+qnan) = +qnan -// exp(-qnan) = -qnan -// exp(+snan) = +qnan -// exp(-snan) = -qnan - -// exp(-inf) = +0 -// exp(+inf) = +inf - -// Overflow and Underflow -//======================= -// exp(x) = largest double normal when -// x = 709.7827 = 0x40862e42fefa39ef - -// exp(x) = smallest double normal when -// x = -708.396 = 0xc086232bdd7abcd2 - -// exp(x) = largest round-to-nearest single zero when -// x = -745.1332 = 0xc0874910d52d3052 - - -// Registers used -//============================================================== -// Floating Point registers used: -// f8, input, output -// f6 -> f15, f32 -> f49 - -// General registers used: -// r14 -> r40 - -// Predicate registers used: -// p6 -> p15 - -// Assembly macros -//============================================================== - -rRshf = r14 -rAD_TB1 = r15 -rAD_T1 = r15 -rAD_TB2 = r16 -rAD_T2 = r16 -rAD_P = r17 -rN = r18 -rIndex_1 = r19 -rIndex_2_16 = r20 -rM = r21 -rBiased_M = r21 -rIndex_1_16 = r21 -rSig_inv_ln2 = r22 -rExp_bias = r23 -rExp_mask = r24 -rTmp = r25 -rRshf_2to56 = r26 -rGt_ln = r27 -rExp_2tom56 = r28 - - -GR_SAVE_B0 = r33 -GR_SAVE_PFS = r34 -GR_SAVE_GP = r35 -GR_SAVE_SP = r36 - -GR_Parameter_X = r37 -GR_Parameter_Y = r38 -GR_Parameter_RESULT = r39 -GR_Parameter_TAG = r40 - - -FR_X = f10 -FR_Y = f1 -FR_RESULT = f8 - -fRSHF_2TO56 = f6 -fINV_LN2_2TO63 = f7 -fW_2TO56_RSH = f9 -f2TOM56 = f11 -fP5 = f12 -fP54 = f12 -fP5432 = f12 -fP4 = f13 -fP3 = f14 -fP32 = f14 -fP2 = f15 -fP = f15 - -fLn2_by_128_hi = f33 -fLn2_by_128_lo = f34 - -fRSHF = f35 -fNfloat = f36 -fNormX = f37 -fR = f38 -fF = f39 - -fRsq = f40 -f2M = f41 -fS1 = f42 -fT1 = f42 -fS2 = f43 -fT2 = f43 -fS = f43 -fWre_urm_f8 = f44 -fFtz_urm_f8 = f44 - -fMIN_DBL_OFLOW_ARG = f45 -fMAX_DBL_ZERO_ARG = f46 -fMAX_DBL_NORM_ARG = f47 -fMIN_DBL_NORM_ARG = f48 -fGt_pln = f49 -fTmp = f49 - - -// Data tables -//============================================================== - -RODATA -.align 16 - -// ************* DO NOT CHANGE ORDER OF THESE TABLES ******************** - -// double-extended 1/ln(2) -// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88 -// 3fff b8aa 3b29 5c17 f0bc -// For speed the significand will be loaded directly with a movl and setf.sig -// and the exponent will be bias+63 instead of bias+0. Thus subsequent -// computations need to scale appropriately. -// The constant 128/ln(2) is needed for the computation of w. This is also -// obtained by scaling the computations. -// -// Two shifting constants are loaded directly with movl and setf.d. -// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7) -// This constant is added to x*1/ln2 to shift the integer part of -// x*128/ln2 into the rightmost bits of the significand. -// The result of this fma is fW_2TO56_RSH. -// 2. fRSHF = 1.1000..00 * 2^(63) -// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give -// the integer part of w, n, as a floating-point number. -// The result of this fms is fNfloat. - - -LOCAL_OBJECT_START(exp_table_1) -data8 0x40862e42fefa39f0 // smallest dbl overflow arg, +709.7827 -data8 0xc0874910d52d3052 // largest arg for rnd-to-nearest 0 result, -745.133 -data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result, +709.7827 -data8 0xc086232bdd7abcd2 // smallest dbl arg to give normal dbl result, -708.396 -data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi -data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo -// -// Table 1 is 2^(index_1/128) where -// index_1 goes from 0 to 15 -// -data8 0x8000000000000000 , 0x00003FFF -data8 0x80B1ED4FD999AB6C , 0x00003FFF -data8 0x8164D1F3BC030773 , 0x00003FFF -data8 0x8218AF4373FC25EC , 0x00003FFF -data8 0x82CD8698AC2BA1D7 , 0x00003FFF -data8 0x8383594EEFB6EE37 , 0x00003FFF -data8 0x843A28C3ACDE4046 , 0x00003FFF -data8 0x84F1F656379C1A29 , 0x00003FFF -data8 0x85AAC367CC487B15 , 0x00003FFF -data8 0x8664915B923FBA04 , 0x00003FFF -data8 0x871F61969E8D1010 , 0x00003FFF -data8 0x87DB357FF698D792 , 0x00003FFF -data8 0x88980E8092DA8527 , 0x00003FFF -data8 0x8955EE03618E5FDD , 0x00003FFF -data8 0x8A14D575496EFD9A , 0x00003FFF -data8 0x8AD4C6452C728924 , 0x00003FFF -LOCAL_OBJECT_END(exp_table_1) - -// Table 2 is 2^(index_1/8) where -// index_2 goes from 0 to 7 -LOCAL_OBJECT_START(exp_table_2) -data8 0x8000000000000000 , 0x00003FFF -data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF -data8 0x9837F0518DB8A96F , 0x00003FFF -data8 0xA5FED6A9B15138EA , 0x00003FFF -data8 0xB504F333F9DE6484 , 0x00003FFF -data8 0xC5672A115506DADD , 0x00003FFF -data8 0xD744FCCAD69D6AF4 , 0x00003FFF -data8 0xEAC0C6E7DD24392F , 0x00003FFF -LOCAL_OBJECT_END(exp_table_2) - - -LOCAL_OBJECT_START(exp_p_table) -data8 0x3f8111116da21757 //P5 -data8 0x3fa55555d787761c //P4 -data8 0x3fc5555555555414 //P3 -data8 0x3fdffffffffffd6a //P2 -LOCAL_OBJECT_END(exp_p_table) - - -.section .text -GLOBAL_IEEE754_ENTRY(exp) - -{ .mlx - nop.m 0 - movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2 -} -{ .mlx - addl rAD_TB1 = @ltoff(exp_table_1), gp - movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56) -} -;; - -{ .mfi - ld8 rAD_TB1 = [rAD_TB1] - fclass.m p8,p0 = f8,0x07 // Test for x=0 - mov rExp_mask = 0x1ffff -} -{ .mfi - mov rExp_bias = 0xffff - fnorm.s1 fNormX = f8 - mov rExp_2tom56 = 0xffff-56 -} -;; - -// Form two constants we need -// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128 -// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand - -{ .mfi - setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63 - fclass.m p9,p0 = f8,0x22 // Test for x=-inf - nop.i 0 -} -{ .mlx - setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56) - movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift -} -;; - -{ .mfi - ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_ZERO_ARG = [rAD_TB1],16 - fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, nan, NaT - nop.i 0 -} -{ .mfb - setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat -(p9) fma.d.s0 f8 = f0,f0,f0 // quick exit for x=-inf -(p9) br.ret.spnt b0 -} -;; - -{ .mfi - ldfpd fMAX_DBL_NORM_ARG, fMIN_DBL_NORM_ARG = [rAD_TB1],16 - nop.f 0 - nop.i 0 -} -{ .mfb - setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63 -(p8) fma.d.s0 f8 = f1,f1,f0 // quick exit for x=0 -(p8) br.ret.spnt b0 -} -;; - -{ .mfb - ldfe fLn2_by_128_hi = [rAD_TB1],16 -(p10) fma.d.s0 f8 = f8,f8,f0 // Result if x=+inf, nan, NaT -(p10) br.ret.spnt b0 // quick exit for x=+inf, nan, NaT -} -;; - -{ .mfi - ldfe fLn2_by_128_lo = [rAD_TB1],16 - fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D - nop.i 0 -} -;; - -// After that last load, rAD_TB1 points to the beginning of table 1 - -// W = X * Inv_log2_by_128 -// By adding 1.10...0*2^63 we shift and get round_int(W) in significand. -// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing. - -{ .mfi - nop.m 0 - fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56 - nop.i 0 -} -;; - -// Divide arguments into the following categories: -// Certain Underflow p11 - -inf < x <= MAX_DBL_ZERO_ARG -// Possible Underflow p13 - MAX_DBL_ZERO_ARG < x < MIN_DBL_NORM_ARG -// Certain Safe - MIN_DBL_NORM_ARG <= x <= MAX_DBL_NORM_ARG -// Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG -// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf -// -// If the input is really a double arg, then there will never be -// "Possible Overflow" arguments. -// - -{ .mfi - add rAD_TB2 = 0x100, rAD_TB1 - fcmp.ge.s1 p15,p0 = fNormX,fMIN_DBL_OFLOW_ARG - nop.i 0 -} -;; - -{ .mfi - add rAD_P = 0x80, rAD_TB2 - fcmp.le.s1 p11,p0 = fNormX,fMAX_DBL_ZERO_ARG - nop.i 0 -} -;; - -{ .mfb - ldfpd fP5, fP4 = [rAD_P] ,16 - fcmp.gt.s1 p14,p0 = fNormX,fMAX_DBL_NORM_ARG -(p15) br.cond.spnt EXP_CERTAIN_OVERFLOW -} -;; - -// Nfloat = round_int(W) -// The signficand of fW_2TO56_RSH contains the rounded integer part of W, -// as a twos complement number in the lower bits (that is, it may be negative). -// That twos complement number (called N) is put into rN. - -// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56 -// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat. -// Thus, fNfloat contains the floating point version of N - -{ .mfb - ldfpd fP3, fP2 = [rAD_P] - fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF -(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW -} -;; - -{ .mfi - getf.sig rN = fW_2TO56_RSH - nop.f 0 - nop.i 0 -} -;; - -// rIndex_1 has index_1 -// rIndex_2_16 has index_2 * 16 -// rBiased_M has M -// rIndex_1_16 has index_1 * 16 - -// rM has true M -// r = x - Nfloat * ln2_by_128_hi -// f = 1 - Nfloat * ln2_by_128_lo -{ .mfi - and rIndex_1 = 0x0f, rN - fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX - shr rM = rN, 0x7 -} -{ .mfi - and rIndex_2_16 = 0x70, rN - fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1 - nop.i 0 -} -;; - -// rAD_T1 has address of T1 -// rAD_T2 has address if T2 - -{ .mmi - add rBiased_M = rExp_bias, rM - add rAD_T2 = rAD_TB2, rIndex_2_16 - shladd rAD_T1 = rIndex_1, 4, rAD_TB1 -} -;; - -// Create Scale = 2^M -{ .mmi - setf.exp f2M = rBiased_M - ldfe fT2 = [rAD_T2] - nop.i 0 -} -;; - -// Load T1 and T2 -{ .mfi - ldfe fT1 = [rAD_T1] - fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fRsq = fR, fR, f0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fP54 = fR, fP5, fP4 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fcmp.lt.s1 p13,p0 = fNormX,fMIN_DBL_NORM_ARG - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fP32 = fR, fP3, fP2 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fP5432 = fRsq, fP54, fP32 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fS1 = f2M,fT1,f0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fS2 = fF,fT2,f0 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fP = fRsq, fP5432, fR - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fS = fS1,fS2,f0 - nop.i 0 -} -;; - -{ .mbb - nop.m 0 -(p13) br.cond.spnt EXP_POSSIBLE_UNDERFLOW -(p14) br.cond.spnt EXP_POSSIBLE_OVERFLOW -} -;; - -{ .mfb - nop.m 0 - fma.d.s0 f8 = fS, fP, fS - br.ret.sptk b0 // Normal path exit -} -;; - - -EXP_POSSIBLE_OVERFLOW: - -// Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG -// This cannot happen if input is a double, only if input higher precision. -// Overflow is a possibility, not a certainty. - -// Recompute result using status field 2 with user's rounding mode, -// and wre set. If result is larger than largest double, then we have -// overflow - -{ .mfi - mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp - fsetc.s2 0x7F,0x42 // Get user's round mode, set wre - nop.i 0 -} -;; - -{ .mfi - setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp - fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fsetc.s2 0x7F,0x40 // Turn off wre in sf2 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow - nop.i 0 -} -;; - -{ .mfb - nop.m 0 - nop.f 0 -(p6) br.cond.spnt EXP_CERTAIN_OVERFLOW // Branch if overflow -} -;; - -{ .mfb - nop.m 0 - fma.d.s0 f8 = fS, fP, fS - br.ret.sptk b0 // Exit if really no overflow -} -;; - -EXP_CERTAIN_OVERFLOW: -{ .mmi - sub rTmp = rExp_mask, r0, 1 -;; - setf.exp fTmp = rTmp - nop.i 0 -} -;; - -{ .mfi - alloc r32=ar.pfs,1,4,4,0 - fmerge.s FR_X = f8,f8 - nop.i 0 -} -{ .mfb - mov GR_Parameter_TAG = 14 - fma.d.s0 FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result - br.cond.sptk __libm_error_region -} -;; - -EXP_POSSIBLE_UNDERFLOW: - -// Here if fMAX_DBL_ZERO_ARG < x < fMIN_DBL_NORM_ARG -// Underflow is a possibility, not a certainty - -// We define an underflow when the answer with -// ftz set -// is zero (tiny numbers become zero) - -// Notice (from below) that if we have an unlimited exponent range, -// then there is an extra machine number E between the largest denormal and -// the smallest normal. - -// So if with unbounded exponent we round to E or below, then we are -// tiny and underflow has occurred. - -// But notice that you can be in a situation where we are tiny, namely -// rounded to E, but when the exponent is bounded we round to smallest -// normal. So the answer can be the smallest normal with underflow. - -// E -// -----+--------------------+--------------------+----- -// | | | -// 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe -// 0.1...11 2^-3ffe (biased, 1) -// largest dn smallest normal - -{ .mfi - nop.m 0 - fsetc.s2 0x7F,0x41 // Get user's round mode, set ftz - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.d.s2 fFtz_urm_f8 = fS, fP, fS // Result with ftz set - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fsetc.s2 0x7F,0x40 // Turn off ftz in sf2 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fcmp.eq.s1 p6, p7 = fFtz_urm_f8, f0 // Test for underflow - nop.i 0 -} -{ .mfi - nop.m 0 - fma.d.s0 f8 = fS, fP, fS // Compute result, set I, maybe U - nop.i 0 -} -;; - -{ .mbb - nop.m 0 -(p6) br.cond.spnt EXP_UNDERFLOW_COMMON // Branch if really underflow -(p7) br.ret.sptk b0 // Exit if really no underflow -} -;; - -EXP_CERTAIN_UNDERFLOW: -// Here if x < fMAX_DBL_ZERO_ARG -// Result will be zero (or smallest denorm if round to +inf) with I, U set -{ .mmi - mov rTmp = 1 -;; - setf.exp fTmp = rTmp // Form small normal - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fmerge.se fTmp = fTmp, fLn2_by_128_lo // Small with signif lsb 1 - nop.i 0 -} -;; - -{ .mfb - nop.m 0 - fma.d.s0 f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result - br.cond.sptk EXP_UNDERFLOW_COMMON -} -;; - -EXP_UNDERFLOW_COMMON: -// Determine if underflow result is zero or nonzero -{ .mfi - alloc r32=ar.pfs,1,4,4,0 - fcmp.eq.s1 p6, p0 = f8, f0 - nop.i 0 -} -;; - -{ .mfb - nop.m 0 - fmerge.s FR_X = fNormX,fNormX -(p6) br.cond.spnt EXP_UNDERFLOW_ZERO -} -;; - -EXP_UNDERFLOW_NONZERO: -// Here if x < fMIN_DBL_NORM_ARG and result nonzero; -// I, U are set -{ .mfb - mov GR_Parameter_TAG = 15 - nop.f 0 // FR_RESULT already set - br.cond.sptk __libm_error_region -} -;; - -EXP_UNDERFLOW_ZERO: -// Here if x < fMIN_DBL_NORM_ARG and result zero; -// I, U are set -{ .mfb - mov GR_Parameter_TAG = 15 - nop.f 0 // FR_RESULT already set - br.cond.sptk __libm_error_region -} -;; - -GLOBAL_IEEE754_END(exp) - - -LOCAL_LIBM_ENTRY(__libm_error_region) -.prologue -{ .mfi - add GR_Parameter_Y=-32,sp // Parameter 2 value - nop.f 0 -.save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS=ar.pfs // Save ar.pfs -} -{ .mfi -.fframe 64 - add sp=-64,sp // Create new stack - nop.f 0 - mov GR_SAVE_GP=gp // Save gp -};; -{ .mmi - stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack - add GR_Parameter_X = 16,sp // Parameter 1 address -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0=b0 // Save b0 -};; -.body -{ .mib - stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack - add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address - nop.b 0 -} -{ .mib - stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack - add GR_Parameter_Y = -16,GR_Parameter_Y - br.call.sptk b0=__libm_error_support# // Call error handling function -};; -{ .mmi - add GR_Parameter_RESULT = 48,sp - nop.m 0 - nop.i 0 -};; -{ .mmi - ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack -.restore sp - add sp = 64,sp // Restore stack pointer - mov b0 = GR_SAVE_B0 // Restore return address -};; -{ .mib - mov gp = GR_SAVE_GP // Restore gp - mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs - br.ret.sptk b0 // Return -};; - -LOCAL_LIBM_END(__libm_error_region) -.type __libm_error_support#,@function -.global __libm_error_support# |