about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_exp.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_exp.S')
-rw-r--r--sysdeps/ia64/fpu/e_exp.S793
1 files changed, 0 insertions, 793 deletions
diff --git a/sysdeps/ia64/fpu/e_exp.S b/sysdeps/ia64/fpu/e_exp.S
deleted file mode 100644
index fcc247fb1a..0000000000
--- a/sysdeps/ia64/fpu/e_exp.S
+++ /dev/null
@@ -1,793 +0,0 @@
-.file "exp.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 2/02/00  Initial version
-// 3/07/00  exp(inf)  = inf but now does NOT call error support
-//          exp(-inf) = 0   but now does NOT call error support
-// 4/04/00  Unwind support added
-// 8/15/00  Bundle added after call to __libm_error_support to properly
-//          set [the previously overwritten] GR_Parameter_RESULT.
-// 11/30/00 Reworked to shorten main path, widen main path to include all
-//          args in normal range, and add quick exit for 0, nan, inf.
-// 12/05/00 Loaded constants earlier with setf to save 2 cycles.
-// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 09/07/02 Force inexact flag
-// 11/15/02 Split underflow path into zero/nonzero; eliminated fma in main path
-// 05/30/03 Set inexact flag on unmasked overflow/underflow
-// 03/31/05 Reformatted delimiters between data tables
-
-// API
-//==============================================================
-// double exp(double)
-
-// Overview of operation
-//==============================================================
-// Take the input x. w is "how many log2/128 in x?"
-//  w = x * 128/log2
-//  n = int(w)
-//  x = n log2/128 + r + delta
-
-//  n = 128M + index_1 + 2^4 index_2
-//  x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
-
-//  exp(x) = 2^M  2^(index_1/128)  2^(index_2/8) exp(r) exp(delta)
-//       Construct 2^M
-//       Get 2^(index_1/128) from table_1;
-//       Get 2^(index_2/8)   from table_2;
-//       Calculate exp(r) by 5th order polynomial
-//          r = x - n (log2/128)_high
-//          delta = - n (log2/128)_low
-//       Calculate exp(delta) as 1 + delta
-
-
-// Special values
-//==============================================================
-// exp(+0)    = 1.0
-// exp(-0)    = 1.0
-
-// exp(+qnan) = +qnan
-// exp(-qnan) = -qnan
-// exp(+snan) = +qnan
-// exp(-snan) = -qnan
-
-// exp(-inf)  = +0
-// exp(+inf)  = +inf
-
-// Overflow and Underflow
-//=======================
-// exp(x) = largest double normal when
-//     x = 709.7827 = 0x40862e42fefa39ef
-
-// exp(x) = smallest double normal when
-//     x = -708.396 = 0xc086232bdd7abcd2
-
-// exp(x) = largest round-to-nearest single zero when
-//     x = -745.1332 = 0xc0874910d52d3052
-
-
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input, output
-// f6 -> f15,  f32 -> f49
-
-// General registers used:
-// r14 -> r40
-
-// Predicate registers used:
-// p6 -> p15
-
-// Assembly macros
-//==============================================================
-
-rRshf                 = r14
-rAD_TB1               = r15
-rAD_T1                = r15
-rAD_TB2               = r16
-rAD_T2                = r16
-rAD_P                 = r17
-rN                    = r18
-rIndex_1              = r19
-rIndex_2_16           = r20
-rM                    = r21
-rBiased_M             = r21
-rIndex_1_16           = r21
-rSig_inv_ln2          = r22
-rExp_bias             = r23
-rExp_mask             = r24
-rTmp                  = r25
-rRshf_2to56           = r26
-rGt_ln                = r27
-rExp_2tom56           = r28
-
-
-GR_SAVE_B0            = r33
-GR_SAVE_PFS           = r34
-GR_SAVE_GP            = r35
-GR_SAVE_SP            = r36
-
-GR_Parameter_X        = r37
-GR_Parameter_Y        = r38
-GR_Parameter_RESULT   = r39
-GR_Parameter_TAG      = r40
-
-
-FR_X                  = f10
-FR_Y                  = f1
-FR_RESULT             = f8
-
-fRSHF_2TO56           = f6
-fINV_LN2_2TO63        = f7
-fW_2TO56_RSH          = f9
-f2TOM56               = f11
-fP5                   = f12
-fP54                  = f12
-fP5432                = f12
-fP4                   = f13
-fP3                   = f14
-fP32                  = f14
-fP2                   = f15
-fP                    = f15
-
-fLn2_by_128_hi        = f33
-fLn2_by_128_lo        = f34
-
-fRSHF                 = f35
-fNfloat               = f36
-fNormX                = f37
-fR                    = f38
-fF                    = f39
-
-fRsq                  = f40
-f2M                   = f41
-fS1                   = f42
-fT1                   = f42
-fS2                   = f43
-fT2                   = f43
-fS                    = f43
-fWre_urm_f8           = f44
-fFtz_urm_f8           = f44
-
-fMIN_DBL_OFLOW_ARG    = f45
-fMAX_DBL_ZERO_ARG     = f46
-fMAX_DBL_NORM_ARG     = f47
-fMIN_DBL_NORM_ARG     = f48
-fGt_pln               = f49
-fTmp                  = f49
-
-
-// Data tables
-//==============================================================
-
-RODATA
-.align 16
-
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
-
-// double-extended 1/ln(2)
-// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
-// For speed the significand will be loaded directly with a movl and setf.sig
-//   and the exponent will be bias+63 instead of bias+0.  Thus subsequent
-//   computations need to scale appropriately.
-// The constant 128/ln(2) is needed for the computation of w.  This is also
-//   obtained by scaling the computations.
-//
-// Two shifting constants are loaded directly with movl and setf.d.
-//   1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
-//        This constant is added to x*1/ln2 to shift the integer part of
-//        x*128/ln2 into the rightmost bits of the significand.
-//        The result of this fma is fW_2TO56_RSH.
-//   2. fRSHF       = 1.1000..00 * 2^(63)
-//        This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
-//        the integer part of w, n, as a floating-point number.
-//        The result of this fms is fNfloat.
-
-
-LOCAL_OBJECT_START(exp_table_1)
-data8 0x40862e42fefa39f0 // smallest dbl overflow arg, +709.7827
-data8 0xc0874910d52d3052 // largest arg for rnd-to-nearest 0 result, -745.133
-data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result, +709.7827
-data8 0xc086232bdd7abcd2 // smallest dbl arg to give normal dbl result, -708.396
-data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
-data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
-//
-// Table 1 is 2^(index_1/128) where
-// index_1 goes from 0 to 15
-//
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x80B1ED4FD999AB6C , 0x00003FFF
-data8 0x8164D1F3BC030773 , 0x00003FFF
-data8 0x8218AF4373FC25EC , 0x00003FFF
-data8 0x82CD8698AC2BA1D7 , 0x00003FFF
-data8 0x8383594EEFB6EE37 , 0x00003FFF
-data8 0x843A28C3ACDE4046 , 0x00003FFF
-data8 0x84F1F656379C1A29 , 0x00003FFF
-data8 0x85AAC367CC487B15 , 0x00003FFF
-data8 0x8664915B923FBA04 , 0x00003FFF
-data8 0x871F61969E8D1010 , 0x00003FFF
-data8 0x87DB357FF698D792 , 0x00003FFF
-data8 0x88980E8092DA8527 , 0x00003FFF
-data8 0x8955EE03618E5FDD , 0x00003FFF
-data8 0x8A14D575496EFD9A , 0x00003FFF
-data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_1)
-
-// Table 2 is 2^(index_1/8) where
-// index_2 goes from 0 to 7
-LOCAL_OBJECT_START(exp_table_2)
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
-data8 0x9837F0518DB8A96F , 0x00003FFF
-data8 0xA5FED6A9B15138EA , 0x00003FFF
-data8 0xB504F333F9DE6484 , 0x00003FFF
-data8 0xC5672A115506DADD , 0x00003FFF
-data8 0xD744FCCAD69D6AF4 , 0x00003FFF
-data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_2)
-
-
-LOCAL_OBJECT_START(exp_p_table)
-data8 0x3f8111116da21757 //P5
-data8 0x3fa55555d787761c //P4
-data8 0x3fc5555555555414 //P3
-data8 0x3fdffffffffffd6a //P2
-LOCAL_OBJECT_END(exp_p_table)
-
-
-.section .text
-GLOBAL_IEEE754_ENTRY(exp)
-
-{ .mlx
-      nop.m           0
-      movl            rSig_inv_ln2 = 0xb8aa3b295c17f0bc  // significand of 1/ln2
-}
-{ .mlx
-      addl            rAD_TB1    = @ltoff(exp_table_1), gp
-      movl            rRshf_2to56 = 0x4768000000000000   // 1.10000 2^(63+56)
-}
-;;
-
-{ .mfi
-      ld8             rAD_TB1    = [rAD_TB1]
-      fclass.m        p8,p0 = f8,0x07  // Test for x=0
-      mov             rExp_mask = 0x1ffff
-}
-{ .mfi
-      mov             rExp_bias = 0xffff
-      fnorm.s1        fNormX   = f8
-      mov             rExp_2tom56 = 0xffff-56
-}
-;;
-
-// Form two constants we need
-//  1/ln2 * 2^63  to compute  w = x * 1/ln2 * 128
-//  1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
-
-{ .mfi
-      setf.sig        fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
-      fclass.m        p9,p0 = f8,0x22  // Test for x=-inf
-      nop.i           0
-}
-{ .mlx
-      setf.d          fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
-      movl            rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
-}
-;;
-
-{ .mfi
-      ldfpd           fMIN_DBL_OFLOW_ARG, fMAX_DBL_ZERO_ARG = [rAD_TB1],16
-      fclass.m        p10,p0 = f8,0x1e1  // Test for x=+inf, nan, NaT
-      nop.i           0
-}
-{ .mfb
-      setf.exp        f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
-(p9)  fma.d.s0        f8 = f0,f0,f0           // quick exit for x=-inf
-(p9)  br.ret.spnt     b0
-}
-;;
-
-{ .mfi
-      ldfpd           fMAX_DBL_NORM_ARG, fMIN_DBL_NORM_ARG = [rAD_TB1],16
-      nop.f           0
-      nop.i           0
-}
-{ .mfb
-      setf.d          fRSHF = rRshf // Form right shift const 1.100 * 2^63
-(p8)  fma.d.s0        f8 = f1,f1,f0           // quick exit for x=0
-(p8)  br.ret.spnt     b0
-}
-;;
-
-{ .mfb
-      ldfe            fLn2_by_128_hi  = [rAD_TB1],16
-(p10) fma.d.s0        f8 = f8,f8,f0  // Result if x=+inf, nan, NaT
-(p10) br.ret.spnt     b0               // quick exit for x=+inf, nan, NaT
-}
-;;
-
-{ .mfi
-      ldfe            fLn2_by_128_lo  = [rAD_TB1],16
-      fcmp.eq.s0      p6,p0 = f8, f0       // Dummy to set D
-      nop.i           0
-}
-;;
-
-// After that last load, rAD_TB1 points to the beginning of table 1
-
-// W = X * Inv_log2_by_128
-// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
-// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
-
-{ .mfi
-      nop.m           0
-      fma.s1          fW_2TO56_RSH  = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
-      nop.i           0
-}
-;;
-
-// Divide arguments into the following categories:
-//  Certain Underflow       p11 - -inf < x <= MAX_DBL_ZERO_ARG
-//  Possible Underflow      p13 - MAX_DBL_ZERO_ARG < x < MIN_DBL_NORM_ARG
-//  Certain Safe                - MIN_DBL_NORM_ARG <= x <= MAX_DBL_NORM_ARG
-//  Possible Overflow       p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
-//  Certain Overflow        p15 - MIN_DBL_OFLOW_ARG <= x < +inf
-//
-// If the input is really a double arg, then there will never be
-// "Possible Overflow" arguments.
-//
-
-{ .mfi
-      add             rAD_TB2 = 0x100, rAD_TB1
-      fcmp.ge.s1      p15,p0 = fNormX,fMIN_DBL_OFLOW_ARG
-      nop.i           0
-}
-;;
-
-{ .mfi
-      add             rAD_P = 0x80, rAD_TB2
-      fcmp.le.s1      p11,p0 = fNormX,fMAX_DBL_ZERO_ARG
-      nop.i           0
-}
-;;
-
-{ .mfb
-      ldfpd           fP5, fP4  = [rAD_P] ,16
-      fcmp.gt.s1      p14,p0 = fNormX,fMAX_DBL_NORM_ARG
-(p15) br.cond.spnt    EXP_CERTAIN_OVERFLOW
-}
-;;
-
-// Nfloat = round_int(W)
-// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
-// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into rN.
-
-// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
-// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
-// Thus, fNfloat contains the floating point version of N
-
-{ .mfb
-      ldfpd           fP3, fP2  = [rAD_P]
-      fms.s1          fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
-(p11) br.cond.spnt    EXP_CERTAIN_UNDERFLOW
-}
-;;
-
-{ .mfi
-      getf.sig        rN        = fW_2TO56_RSH
-      nop.f           0
-      nop.i           0
-}
-;;
-
-// rIndex_1 has index_1
-// rIndex_2_16 has index_2 * 16
-// rBiased_M has M
-// rIndex_1_16 has index_1 * 16
-
-// rM has true M
-// r = x - Nfloat * ln2_by_128_hi
-// f = 1 - Nfloat * ln2_by_128_lo
-{ .mfi
-      and             rIndex_1 = 0x0f, rN
-      fnma.s1         fR   = fNfloat, fLn2_by_128_hi, fNormX
-      shr             rM = rN,  0x7
-}
-{ .mfi
-      and             rIndex_2_16 = 0x70, rN
-      fnma.s1         fF   = fNfloat, fLn2_by_128_lo, f1
-      nop.i           0
-}
-;;
-
-// rAD_T1 has address of T1
-// rAD_T2 has address if T2
-
-{ .mmi
-      add             rBiased_M = rExp_bias, rM
-      add             rAD_T2 = rAD_TB2, rIndex_2_16
-      shladd          rAD_T1 = rIndex_1, 4, rAD_TB1
-}
-;;
-
-// Create Scale = 2^M
-{ .mmi
-      setf.exp        f2M = rBiased_M
-      ldfe            fT2  = [rAD_T2]
-      nop.i           0
-}
-;;
-
-// Load T1 and T2
-{ .mfi
-      ldfe            fT1  = [rAD_T1]
-      fmpy.s0         fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fma.s1          fRsq = fR, fR, f0
-      nop.i           0
-}
-{ .mfi
-      nop.m           0
-      fma.s1          fP54 = fR, fP5, fP4
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fcmp.lt.s1      p13,p0 = fNormX,fMIN_DBL_NORM_ARG
-      nop.i           0
-}
-{ .mfi
-      nop.m           0
-      fma.s1          fP32 = fR, fP3, fP2
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fma.s1          fP5432  = fRsq, fP54, fP32
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fma.s1          fS1  = f2M,fT1,f0
-      nop.i           0
-}
-{ .mfi
-      nop.m           0
-      fma.s1          fS2  = fF,fT2,f0
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fma.s1          fP     = fRsq, fP5432, fR
-      nop.i           0
-}
-{ .mfi
-      nop.m           0
-      fma.s1          fS   = fS1,fS2,f0
-      nop.i           0
-}
-;;
-
-{ .mbb
-      nop.m           0
-(p13) br.cond.spnt    EXP_POSSIBLE_UNDERFLOW
-(p14) br.cond.spnt    EXP_POSSIBLE_OVERFLOW
-}
-;;
-
-{ .mfb
-      nop.m           0
-      fma.d.s0        f8 = fS, fP, fS
-      br.ret.sptk     b0                  // Normal path exit
-}
-;;
-
-
-EXP_POSSIBLE_OVERFLOW:
-
-// Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG
-// This cannot happen if input is a double, only if input higher precision.
-// Overflow is a possibility, not a certainty.
-
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set.  If result is larger than largest double, then we have
-// overflow
-
-{ .mfi
-      mov             rGt_ln  = 0x103ff // Exponent for largest dbl + 1 ulp
-      fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
-      nop.i           0
-}
-;;
-
-{ .mfi
-      setf.exp        fGt_pln = rGt_ln  // Create largest double + 1 ulp
-      fma.d.s2        fWre_urm_f8 = fS, fP, fS    // Result with wre set
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
-      nop.i           0
-}
-;;
-
-{ .mfb
-      nop.m           0
-      nop.f           0
-(p6)  br.cond.spnt    EXP_CERTAIN_OVERFLOW // Branch if overflow
-}
-;;
-
-{ .mfb
-      nop.m           0
-      fma.d.s0        f8 = fS, fP, fS
-      br.ret.sptk     b0                     // Exit if really no overflow
-}
-;;
-
-EXP_CERTAIN_OVERFLOW:
-{ .mmi
-      sub             rTmp = rExp_mask, r0, 1
-;;
-      setf.exp        fTmp = rTmp
-      nop.i           0
-}
-;;
-
-{ .mfi
-      alloc           r32=ar.pfs,1,4,4,0
-      fmerge.s        FR_X = f8,f8
-      nop.i           0
-}
-{ .mfb
-      mov             GR_Parameter_TAG = 14
-      fma.d.s0        FR_RESULT = fTmp, fTmp, fTmp    // Set I,O and +INF result
-      br.cond.sptk    __libm_error_region
-}
-;;
-
-EXP_POSSIBLE_UNDERFLOW:
-
-// Here if fMAX_DBL_ZERO_ARG < x < fMIN_DBL_NORM_ARG
-// Underflow is a possibility, not a certainty
-
-// We define an underflow when the answer with
-//    ftz set
-// is zero (tiny numbers become zero)
-
-// Notice (from below) that if we have an unlimited exponent range,
-// then there is an extra machine number E between the largest denormal and
-// the smallest normal.
-
-// So if with unbounded exponent we round to E or below, then we are
-// tiny and underflow has occurred.
-
-// But notice that you can be in a situation where we are tiny, namely
-// rounded to E, but when the exponent is bounded we round to smallest
-// normal. So the answer can be the smallest normal with underflow.
-
-//                           E
-// -----+--------------------+--------------------+-----
-//      |                    |                    |
-//   1.1...10 2^-3fff    1.1...11 2^-3fff    1.0...00 2^-3ffe
-//   0.1...11 2^-3ffe                                   (biased, 1)
-//    largest dn                               smallest normal
-
-{ .mfi
-      nop.m           0
-      fsetc.s2        0x7F,0x41                // Get user's round mode, set ftz
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fma.d.s2        fFtz_urm_f8 = fS, fP, fS // Result with ftz set
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fsetc.s2        0x7F,0x40                // Turn off ftz in sf2
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fcmp.eq.s1      p6, p7 = fFtz_urm_f8, f0 // Test for underflow
-      nop.i           0
-}
-{ .mfi
-      nop.m           0
-      fma.d.s0        f8 = fS, fP, fS          // Compute result, set I, maybe U
-      nop.i           0
-}
-;;
-
-{ .mbb
-      nop.m           0
-(p6)  br.cond.spnt    EXP_UNDERFLOW_COMMON     // Branch if really underflow
-(p7)  br.ret.sptk     b0                       // Exit if really no underflow
-}
-;;
-
-EXP_CERTAIN_UNDERFLOW:
-// Here if  x < fMAX_DBL_ZERO_ARG
-// Result will be zero (or smallest denorm if round to +inf) with I, U set
-{ .mmi
-      mov             rTmp = 1
-;;
-      setf.exp        fTmp = rTmp               // Form small normal
-      nop.i           0
-}
-;;
-
-{ .mfi
-      nop.m           0
-      fmerge.se       fTmp = fTmp, fLn2_by_128_lo // Small with signif lsb 1
-      nop.i           0
-}
-;;
-      
-{ .mfb
-      nop.m           0
-      fma.d.s0        f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result
-      br.cond.sptk    EXP_UNDERFLOW_COMMON
-}
-;;
-
-EXP_UNDERFLOW_COMMON:
-// Determine if underflow result is zero or nonzero
-{ .mfi
-      alloc           r32=ar.pfs,1,4,4,0
-      fcmp.eq.s1      p6, p0 =  f8, f0
-      nop.i           0
-}
-;;
-
-{ .mfb
-      nop.m           0
-      fmerge.s        FR_X = fNormX,fNormX
-(p6)  br.cond.spnt    EXP_UNDERFLOW_ZERO
-}
-;;
-
-EXP_UNDERFLOW_NONZERO:
-// Here if  x < fMIN_DBL_NORM_ARG and result nonzero;
-// I, U are set
-{ .mfb
-      mov             GR_Parameter_TAG = 15
-      nop.f           0                         // FR_RESULT already set
-      br.cond.sptk    __libm_error_region
-}
-;;
-
-EXP_UNDERFLOW_ZERO:
-// Here if x < fMIN_DBL_NORM_ARG and result zero;
-// I, U are set
-{ .mfb
-      mov             GR_Parameter_TAG = 15
-      nop.f           0                         // FR_RESULT already set
-      br.cond.sptk    __libm_error_region
-}
-;;
-
-GLOBAL_IEEE754_END(exp)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
-        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
-        nop.f 0
-.save   ar.pfs,GR_SAVE_PFS
-        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
-}
-{ .mfi
-.fframe 64
-        add sp=-64,sp                           // Create new stack
-        nop.f 0
-        mov GR_SAVE_GP=gp                       // Save gp
-};;
-{ .mmi
-        stfd [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
-        add GR_Parameter_X = 16,sp              // Parameter 1 address
-.save   b0, GR_SAVE_B0
-        mov GR_SAVE_B0=b0                       // Save b0
-};;
-.body
-{ .mib
-        stfd [GR_Parameter_X] = FR_X            // STORE Parameter 1 on stack
-        add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
-	nop.b 0
-}
-{ .mib
-        stfd [GR_Parameter_Y] = FR_RESULT       // STORE Parameter 3 on stack
-        add   GR_Parameter_Y = -16,GR_Parameter_Y
-        br.call.sptk b0=__libm_error_support#   // Call error handling function
-};;
-{ .mmi
-        add   GR_Parameter_RESULT = 48,sp
-        nop.m 0
-        nop.i 0
-};;
-{ .mmi
-        ldfd  f8 = [GR_Parameter_RESULT]       // Get return result off stack
-.restore sp
-        add   sp = 64,sp                       // Restore stack pointer
-        mov   b0 = GR_SAVE_B0                  // Restore return address
-};;
-{ .mib
-        mov   gp = GR_SAVE_GP                  // Restore gp
-        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
-        br.ret.sptk     b0                     // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type   __libm_error_support#,@function
-.global __libm_error_support#