about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_coshf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_coshf.S')
-rw-r--r--sysdeps/ia64/fpu/e_coshf.S711
1 files changed, 711 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/e_coshf.S b/sysdeps/ia64/fpu/e_coshf.S
new file mode 100644
index 0000000000..97cb4e1771
--- /dev/null
+++ b/sysdeps/ia64/fpu/e_coshf.S
@@ -0,0 +1,711 @@
+.file "coshf.s"
+
+
+// Copyright (c) 2000 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+
+// History
+//*********************************************************************
+// 02/02/00 Initial version
+// 02/16/00 The error tag for coshf overflow changed to 65 (from 64).
+// 04/04/00 Unwind support added
+// 08/15/00 Bundle added after call to __libm_error_support to properly
+//          set [the previously overwritten] GR_Parameter_RESULT.
+// 05/07/01 Reworked to improve speed of all paths
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 11/15/02 Improved algorithm based on expf
+// 03/31/05 Reformatted delimiters between data tables
+//
+// API
+//*********************************************************************
+// float coshf(float)
+//
+// Overview of operation
+//*********************************************************************
+// Case 1:  0 < |x| < 0.25
+//  Evaluate cosh(x) by a 8th order polynomial
+//  Care is take for the order of multiplication; and A2 is not exactly 1/4!,
+//  A3 is not exactly 1/6!, etc.
+//  cosh(x) = 1 + (A1*x^2 + A2*x^4 + A3*x^6 + A4*x^8)
+//
+// Case 2:  0.25 < |x| < 89.41598
+//  Algorithm is based on the identity cosh(x) = ( exp(x) + exp(-x) ) / 2.
+//  The algorithm for exp is described as below.  There are a number of
+//  economies from evaluating both exp(x) and exp(-x).  Although we
+//  are evaluating both quantities, only where the quantities diverge do we
+//  duplicate the computations.  The basic algorithm for exp(x) is described
+//  below.
+//
+// Take the input x. w is "how many log2/128 in x?"
+//  w = x * 64/log2
+//  NJ = int(w)
+//  x = NJ*log2/64 + R
+
+//  NJ = 64*n + j
+//  x = n*log2 + (log2/64)*j + R
+//
+//  So, exp(x) = 2^n * 2^(j/64)* exp(R)
+//
+//  T =  2^n * 2^(j/64)
+//       Construct 2^n
+//       Get 2^(j/64) table
+//           actually all the entries of 2^(j/64) table are stored in DP and
+//           with exponent bits set to 0 -> multiplication on 2^n can be
+//           performed by doing logical "or" operation with bits presenting 2^n
+
+//  exp(R) = 1 + (exp(R) - 1)
+//  P = exp(R) - 1 approximated by Taylor series of 3rd degree
+//      P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
+//
+
+//  The final result is reconstructed as follows
+//  exp(x) = T + T*P
+
+// Special values
+//*********************************************************************
+// coshf(+0)    = 1.0
+// coshf(-0)    = 1.0
+
+// coshf(+qnan) = +qnan
+// coshf(-qnan) = -qnan
+// coshf(+snan) = +qnan
+// coshf(-snan) = -qnan
+
+// coshf(-inf)  = +inf
+// coshf(+inf)  = +inf
+
+// Overflow and Underflow
+//*********************************************************************
+// coshf(x) = largest single normal when
+//     x = 89.41598 = 0x42b2d4fc
+//
+// There is no underflow.
+
+// Registers used
+//*********************************************************************
+// Floating Point registers used:
+// f8 input, output
+// f6,f7, f9 -> f15,  f32 -> f45
+
+// General registers used:
+// r2, r3, r16 -> r38
+
+// Predicate registers used:
+// p6 -> p15
+
+// Assembly macros
+//*********************************************************************
+// integer registers used
+// scratch
+rNJ                   = r2
+rNJ_neg               = r3
+
+rJ_neg                = r16
+rN_neg                = r17
+rSignexp_x            = r18
+rExp_x                = r18
+rExp_mask             = r19
+rExp_bias             = r20
+rAd1                  = r21
+rAd2                  = r22
+rJ                    = r23
+rN                    = r24
+rTblAddr              = r25
+rA3                   = r26
+rExpHalf              = r27
+rLn2Div64             = r28
+rGt_ln                = r29
+r17ones_m1            = r29
+rRightShifter         = r30
+rJ_mask               = r30
+r64DivLn2             = r31
+rN_mask               = r31
+// stacked
+GR_SAVE_PFS           = r32
+GR_SAVE_B0            = r33
+GR_SAVE_GP            = r34
+GR_Parameter_X        = r35
+GR_Parameter_Y        = r36
+GR_Parameter_RESULT   = r37
+GR_Parameter_TAG      = r38
+
+// floating point registers used
+FR_X                  = f10
+FR_Y                  = f1
+FR_RESULT             = f8
+// scratch
+fRightShifter         = f6
+f64DivLn2             = f7
+fNormX                = f9
+fNint                 = f10
+fN                    = f11
+fR                    = f12
+fLn2Div64             = f13
+fA2                   = f14
+fA3                   = f15
+// stacked
+fP                    = f32
+fT                    = f33
+fMIN_SGL_OFLOW_ARG    = f34
+fMAX_SGL_NORM_ARG     = f35
+fRSqr                 = f36
+fA1                   = f37
+fA21                  = f37
+fA4                   = f38
+fA43                  = f38
+fA4321                = f38
+fX4                   = f39
+fTmp                  = f39
+fGt_pln               = f39
+fWre_urm_f8           = f40
+fXsq                  = f40
+fP_neg                = f41
+fT_neg                = f42
+fExp                  = f43
+fExp_neg              = f44
+fAbsX                 = f45
+
+
+RODATA
+.align 16
+
+LOCAL_OBJECT_START(_coshf_table)
+data4 0x42b2d4fd         // Smallest single arg to overflow single result
+data4 0x42b2d4fc         // Largest single arg to give normal single result
+data4 0x00000000         // pad
+data4 0x00000000         // pad
+//
+// 2^(j/64) table, j goes from 0 to 63
+data8 0x0000000000000000 // 2^(0/64)
+data8 0x00002C9A3E778061 // 2^(1/64)
+data8 0x000059B0D3158574 // 2^(2/64)
+data8 0x0000874518759BC8 // 2^(3/64)
+data8 0x0000B5586CF9890F // 2^(4/64)
+data8 0x0000E3EC32D3D1A2 // 2^(5/64)
+data8 0x00011301D0125B51 // 2^(6/64)
+data8 0x0001429AAEA92DE0 // 2^(7/64)
+data8 0x000172B83C7D517B // 2^(8/64)
+data8 0x0001A35BEB6FCB75 // 2^(9/64)
+data8 0x0001D4873168B9AA // 2^(10/64)
+data8 0x0002063B88628CD6 // 2^(11/64)
+data8 0x0002387A6E756238 // 2^(12/64)
+data8 0x00026B4565E27CDD // 2^(13/64)
+data8 0x00029E9DF51FDEE1 // 2^(14/64)
+data8 0x0002D285A6E4030B // 2^(15/64)
+data8 0x000306FE0A31B715 // 2^(16/64)
+data8 0x00033C08B26416FF // 2^(17/64)
+data8 0x000371A7373AA9CB // 2^(18/64)
+data8 0x0003A7DB34E59FF7 // 2^(19/64)
+data8 0x0003DEA64C123422 // 2^(20/64)
+data8 0x0004160A21F72E2A // 2^(21/64)
+data8 0x00044E086061892D // 2^(22/64)
+data8 0x000486A2B5C13CD0 // 2^(23/64)
+data8 0x0004BFDAD5362A27 // 2^(24/64)
+data8 0x0004F9B2769D2CA7 // 2^(25/64)
+data8 0x0005342B569D4F82 // 2^(26/64)
+data8 0x00056F4736B527DA // 2^(27/64)
+data8 0x0005AB07DD485429 // 2^(28/64)
+data8 0x0005E76F15AD2148 // 2^(29/64)
+data8 0x0006247EB03A5585 // 2^(30/64)
+data8 0x0006623882552225 // 2^(31/64)
+data8 0x0006A09E667F3BCD // 2^(32/64)
+data8 0x0006DFB23C651A2F // 2^(33/64)
+data8 0x00071F75E8EC5F74 // 2^(34/64)
+data8 0x00075FEB564267C9 // 2^(35/64)
+data8 0x0007A11473EB0187 // 2^(36/64)
+data8 0x0007E2F336CF4E62 // 2^(37/64)
+data8 0x00082589994CCE13 // 2^(38/64)
+data8 0x000868D99B4492ED // 2^(39/64)
+data8 0x0008ACE5422AA0DB // 2^(40/64)
+data8 0x0008F1AE99157736 // 2^(41/64)
+data8 0x00093737B0CDC5E5 // 2^(42/64)
+data8 0x00097D829FDE4E50 // 2^(43/64)
+data8 0x0009C49182A3F090 // 2^(44/64)
+data8 0x000A0C667B5DE565 // 2^(45/64)
+data8 0x000A5503B23E255D // 2^(46/64)
+data8 0x000A9E6B5579FDBF // 2^(47/64)
+data8 0x000AE89F995AD3AD // 2^(48/64)
+data8 0x000B33A2B84F15FB // 2^(49/64)
+data8 0x000B7F76F2FB5E47 // 2^(50/64)
+data8 0x000BCC1E904BC1D2 // 2^(51/64)
+data8 0x000C199BDD85529C // 2^(52/64)
+data8 0x000C67F12E57D14B // 2^(53/64)
+data8 0x000CB720DCEF9069 // 2^(54/64)
+data8 0x000D072D4A07897C // 2^(55/64)
+data8 0x000D5818DCFBA487 // 2^(56/64)
+data8 0x000DA9E603DB3285 // 2^(57/64)
+data8 0x000DFC97337B9B5F // 2^(58/64)
+data8 0x000E502EE78B3FF6 // 2^(59/64)
+data8 0x000EA4AFA2A490DA // 2^(60/64)
+data8 0x000EFA1BEE615A27 // 2^(61/64)
+data8 0x000F50765B6E4540 // 2^(62/64)
+data8 0x000FA7C1819E90D8 // 2^(63/64)
+LOCAL_OBJECT_END(_coshf_table)
+
+LOCAL_OBJECT_START(cosh_p_table)
+data8 0x3efa3001dcf5905b // A4
+data8 0x3f56c1437543543e // A3
+data8 0x3fa5555572601504 // A2
+data8 0x3fdfffffffe2f097 // A1
+LOCAL_OBJECT_END(cosh_p_table)
+
+
+.section .text
+GLOBAL_IEEE754_ENTRY(coshf)
+
+{ .mlx
+      getf.exp        rSignexp_x = f8  // Must recompute if x unorm
+      movl            r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
+}
+{ .mlx
+      addl            rTblAddr = @ltoff(_coshf_table),gp
+      movl            rRightShifter = 0x43E8000000000000 // DP Right Shifter
+}
+;;
+
+{ .mfi
+      // point to the beginning of the table
+      ld8             rTblAddr = [rTblAddr]
+      fclass.m        p6, p0 = f8, 0x0b   // Test for x=unorm
+      addl            rA3 = 0x3E2AA, r0   // high bits of 1.0/6.0 rounded to SP
+}
+{ .mfi
+      nop.m           0
+      fnorm.s1        fNormX = f8 // normalized x
+      addl            rExpHalf = 0xFFFE, r0 // exponent of 1/2
+}
+;;
+
+{ .mfi
+      setf.d          f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
+      fclass.m        p15, p0 = f8, 0x1e3   // test for NaT,NaN,Inf
+      nop.i           0
+}
+{ .mlx
+      // load Right Shifter to FP reg
+      setf.d          fRightShifter = rRightShifter
+      movl            rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
+}
+;;
+
+{ .mfi
+      mov             rExp_mask = 0x1ffff
+      fcmp.eq.s1      p13, p0 = f0, f8 // test for x = 0.0
+      shl             rA3 = rA3, 12    // 0x3E2AA000, approx to 1.0/6.0 in SP
+}
+{ .mfb
+      nop.m           0
+      nop.f           0
+(p6)  br.cond.spnt    COSH_UNORM            // Branch if x=unorm
+}
+;;
+
+COSH_COMMON:
+{ .mfi
+      setf.exp        fA2 = rExpHalf        // load A2 to FP reg
+      nop.f           0
+      mov             rExp_bias = 0xffff
+}
+{ .mfb
+      setf.d          fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
+(p15) fma.s.s0        f8 = f8, f8, f0       // result if x = NaT,NaN,Inf
+(p15) br.ret.spnt     b0                    // exit here if x = NaT,NaN,Inf
+}
+;;
+
+{ .mfi
+      // min overflow and max normal threshold
+      ldfps           fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
+      nop.f           0
+      and             rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
+}
+{ .mfb
+      setf.s          fA3 = rA3                  // load A3 to FP reg
+(p13) fma.s.s0        f8 = f1, f1, f0            // result if x = 0.0
+(p13) br.ret.spnt     b0                         // exit here if x =0.0
+}
+;;
+
+{ .mfi
+      sub             rExp_x = rExp_x, rExp_bias // True exponent of x
+      fmerge.s        fAbsX = f0, fNormX         // Form |x|
+      nop.i           0
+}
+;;
+
+{ .mfi
+      nop.m           0
+      // x*(64/ln(2)) + Right Shifter
+      fma.s1          fNint = fNormX, f64DivLn2, fRightShifter
+      add             rTblAddr = 8, rTblAddr
+}
+{ .mfb
+      cmp.gt          p7, p0 = -2, rExp_x        // Test |x| < 2^(-2)
+      fma.s1          fXsq = fNormX, fNormX, f0  // x*x for small path
+(p7)  br.cond.spnt    COSH_SMALL                 // Branch if 0 < |x| < 2^-2
+}
+;;
+
+{ .mfi
+      nop.m           0
+      // check for overflow
+      fcmp.ge.s1      p12, p13 = fAbsX, fMIN_SGL_OFLOW_ARG
+      mov             rJ_mask = 0x3f             // 6-bit mask for J
+}
+;;
+
+{ .mfb
+      nop.m           0
+      fms.s1          fN = fNint, f1, fRightShifter // n in FP register
+      // branch out if overflow
+(p12) br.cond.spnt    COSH_CERTAIN_OVERFLOW
+}
+;;
+
+{ .mfi
+      getf.sig        rNJ = fNint                   // bits of n, j
+      // check for possible overflow
+      fcmp.gt.s1      p13, p0 = fAbsX, fMAX_SGL_NORM_ARG
+      nop.i           0
+}
+;;
+
+{ .mfi
+      addl            rN = 0xFFBF - 63, rNJ      // biased and shifted n-1,j
+      fnma.s1         fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
+      and             rJ = rJ_mask, rNJ          // bits of j
+}
+{ .mfi
+      sub             rNJ_neg = r0, rNJ          // bits of n, j for -x
+      nop.f           0
+      andcm           rN_mask = -1, rJ_mask      // 0xff...fc0 to mask N
+}
+;;
+
+{ .mfi
+      shladd          rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
+      nop.f           0
+      and             rN = rN_mask, rN     // biased, shifted n-1
+}
+{ .mfi
+      addl            rN_neg = 0xFFBF - 63, rNJ_neg // -x biased, shifted n-1,j
+      nop.f           0
+      and             rJ_neg = rJ_mask, rNJ_neg     // bits of j for -x
+}
+;;
+
+{ .mfi
+      ld8             rJ = [rJ]                    // Table value
+      nop.f           0
+      shl             rN = rN, 46 // 2^(n-1) bits in DP format
+}
+{ .mfi
+      shladd          rJ_neg = rJ_neg, 3, rTblAddr // addr in 2^(j/64) table -x
+      nop.f           0
+      and             rN_neg = rN_mask, rN_neg     // biased, shifted n-1 for -x
+}
+;;
+
+{ .mfi
+      ld8             rJ_neg = [rJ_neg]            // Table value for -x
+      nop.f           0
+      shl             rN_neg = rN_neg, 46 // 2^(n-1) bits in DP format for -x
+}
+;;
+
+{ .mfi
+      or              rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
+      nop.f           0
+      nop.i           0
+}
+;;
+
+{ .mmf
+      setf.d          fT = rN            // 2^(n-1) * 2^(j/64)
+      or              rN_neg = rN_neg, rJ_neg // -x bits of 2^n * 2^(j/64) in DP
+      fma.s1          fRSqr = fR, fR, f0 // R^2
+}
+;;
+
+{ .mfi
+      setf.d          fT_neg = rN_neg    // 2^(n-1) * 2^(j/64) for -x
+      fma.s1          fP = fA3, fR, fA2  // A3*R + A2
+      nop.i           0
+}
+{ .mfi
+      nop.m           0
+      fnma.s1         fP_neg = fA3, fR, fA2  // A3*R + A2 for -x
+      nop.i           0
+}
+;;
+
+{ .mfi
+      nop.m           0
+      fma.s1          fP = fP, fRSqr, fR // P = (A3*R + A2)*R^2 + R
+      nop.i           0
+}
+{ .mfi
+      nop.m           0
+      fms.s1          fP_neg = fP_neg, fRSqr, fR // P = (A3*R + A2)*R^2 + R, -x
+      nop.i           0
+}
+;;
+
+{ .mfi
+      nop.m           0
+      fmpy.s0         fTmp = fLn2Div64, fLn2Div64       // Force inexact
+      nop.i           0
+}
+;;
+
+{ .mfi
+      nop.m           0
+      fma.s1          fExp = fP, fT, fT                 // exp(x)/2
+      nop.i           0
+}
+{ .mfb
+      nop.m           0
+      fma.s1          fExp_neg = fP_neg, fT_neg, fT_neg // exp(-x)/2
+      // branch out if possible overflow result
+(p13) br.cond.spnt    COSH_POSSIBLE_OVERFLOW
+}
+;;
+
+{ .mfb
+      nop.m           0
+      // final result in the absence of overflow
+      fma.s.s0        f8 = fExp, f1, fExp_neg  // result = (exp(x)+exp(-x))/2
+      // exit here in the absence of overflow
+      br.ret.sptk     b0              // Exit main path, 0.25 <= |x| < 89.41598
+}
+;;
+
+// Here if 0 < |x| < 0.25.  Evaluate 8th order polynomial.
+COSH_SMALL:
+{ .mmi
+      add             rAd1 = 0x200, rTblAddr
+      add             rAd2 = 0x210, rTblAddr
+      nop.i           0
+}
+;;
+
+{ .mmi
+      ldfpd           fA4, fA3 = [rAd1]
+      ldfpd           fA2, fA1 = [rAd2]
+      nop.i           0
+}
+;;
+
+{ .mfi
+      nop.m           0
+      fma.s1          fX4 = fXsq, fXsq, f0
+      nop.i           0
+}
+;;
+
+{ .mfi
+      nop.m           0
+      fma.s1          fA43 = fXsq, fA4, fA3
+      nop.i           0
+}
+{ .mfi
+      nop.m           0
+      fma.s1          fA21 = fXsq, fA2, fA1
+      nop.i           0
+}
+;;
+
+{ .mfi
+      nop.m           0
+      fma.s1          fA4321 = fX4, fA43, fA21
+      nop.i           0
+}
+;;
+
+// Dummy multiply to generate inexact
+{ .mfi
+      nop.m           0
+      fmpy.s0         fTmp = fA4, fA4
+      nop.i           0
+}
+{ .mfb
+      nop.m           0
+      fma.s.s0        f8 = fA4321, fXsq, f1
+      br.ret.sptk     b0                // Exit if 0 < |x| < 0.25
+}
+;;
+
+COSH_POSSIBLE_OVERFLOW:
+
+// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
+// This cannot happen if input is a single, only if input higher precision.
+// Overflow is a possibility, not a certainty.
+
+// Recompute result using status field 2 with user's rounding mode,
+// and wre set.  If result is larger than largest single, then we have
+// overflow
+
+{ .mfi
+      mov             rGt_ln  = 0x1007f // Exponent for largest single + 1 ulp
+      fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
+      nop.i           0
+}
+;;
+
+{ .mfi
+      setf.exp        fGt_pln = rGt_ln  // Create largest single + 1 ulp
+      fma.s.s2        fWre_urm_f8 = fP, fT, fT    // Result with wre set
+      nop.i           0
+}
+;;
+
+{ .mfi
+      nop.m           0
+      fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
+      nop.i           0
+}
+;;
+
+{ .mfi
+      nop.m           0
+      fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
+      nop.i           0
+}
+;;
+
+{ .mfb
+      nop.m           0
+      nop.f           0
+(p6)  br.cond.spnt    COSH_CERTAIN_OVERFLOW // Branch if overflow
+}
+;;
+
+{ .mfb
+      nop.m           0
+      fma.s.s0        f8 = fP, fT, fT
+      br.ret.sptk     b0                     // Exit if really no overflow
+}
+;;
+
+// here if overflow
+COSH_CERTAIN_OVERFLOW:
+{ .mmi
+      addl            r17ones_m1 = 0x1FFFE, r0
+;;
+      setf.exp        fTmp = r17ones_m1
+      nop.i           0
+}
+;;
+
+{ .mfi
+      alloc           r32 = ar.pfs, 0, 3, 4, 0 // get some registers
+      fmerge.s        FR_X = f8,f8
+      nop.i           0
+}
+{ .mfb
+      mov             GR_Parameter_TAG = 65
+      fma.s.s0        FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
+      br.cond.sptk    __libm_error_region
+}
+;;
+
+// Here if x unorm
+COSH_UNORM:
+{ .mfb
+      getf.exp        rSignexp_x = fNormX    // Must recompute if x unorm
+      fcmp.eq.s0      p6, p0 = f8, f0        // Set D flag
+      br.cond.sptk    COSH_COMMON            // Return to main path
+}
+;;
+
+GLOBAL_IEEE754_END(coshf)
+
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
+.prologue
+{ .mfi
+      add   GR_Parameter_Y=-32,sp             // Parameter 2 value
+      nop.f 0
+.save   ar.pfs,GR_SAVE_PFS
+      mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+      add sp=-64,sp                           // Create new stack
+      nop.f 0
+      mov GR_SAVE_GP=gp                       // Save gp
+};;
+{ .mmi
+      stfs [GR_Parameter_Y] = FR_Y,16         // Store Parameter 2 on stack
+      add GR_Parameter_X = 16,sp              // Parameter 1 address
+.save   b0, GR_SAVE_B0
+      mov GR_SAVE_B0=b0                       // Save b0
+};;
+.body
+{ .mfi
+      stfs [GR_Parameter_X] = FR_X            // Store Parameter 1 on stack
+      nop.f 0
+      add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+}
+{ .mib
+      stfs [GR_Parameter_Y] = FR_RESULT       // Store Parameter 3 on stack
+      add   GR_Parameter_Y = -16,GR_Parameter_Y
+      br.call.sptk b0=__libm_error_support#   // Call error handling function
+};;
+
+{ .mmi
+      add   GR_Parameter_RESULT = 48,sp
+      nop.m 0
+      nop.i 0
+};;
+
+{ .mmi
+      ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
+.restore sp
+      add   sp = 64,sp                       // Restore stack pointer
+      mov   b0 = GR_SAVE_B0                  // Restore return address
+};;
+{ .mib
+      mov   gp = GR_SAVE_GP                  // Restore gp
+      mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
+      br.ret.sptk     b0                     // Return
+};;
+
+LOCAL_LIBM_END(__libm_error_region)
+
+
+.type   __libm_error_support#,@function
+.global __libm_error_support#