about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_acoshl.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_acoshl.S')
-rw-r--r--sysdeps/ia64/fpu/e_acoshl.S1716
1 files changed, 1716 insertions, 0 deletions
diff --git a/sysdeps/ia64/fpu/e_acoshl.S b/sysdeps/ia64/fpu/e_acoshl.S
new file mode 100644
index 0000000000..42e1f394ef
--- /dev/null
+++ b/sysdeps/ia64/fpu/e_acoshl.S
@@ -0,0 +1,1716 @@
+.file "acoshl.s"
+
+
+// Copyright (c) 2000 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
+// 
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at 
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+//*********************************************************************
+//
+// History: 
+// 10/01/01 Initial version
+// 10/10/01 Performance inproved
+// 12/11/01 Changed huges_logp to not be global
+// 01/02/02 Corrected .restore syntax
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 08/14/02 Changed mli templates to mlx
+// 02/06/03 Reorganized data tables
+// 03/31/05 Reformatted delimiters between data tables
+//
+//*********************************************************************
+//
+// API
+//==============================================================
+// long double acoshl(long double);
+//
+// Overview of operation
+//==============================================================
+// 
+// There are 6 paths:
+// 1. x = 1
+//    Return acoshl(x) = 0;
+//
+// 2. x < 1
+//    Return acoshl(x) = Nan (Domain error, error handler call with tag 135);
+//
+// 3. x = [S,Q]Nan or +INF
+//    Return acoshl(x) = x + x;
+// 
+// 4. 'Near 1': 1 < x < 1+1/8
+//    Return acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)), 
+//                   where y = 1, P(y)/Q(y) - rational approximation
+//
+// 5. 'Huges': x > 0.5*2^64
+//    Return acoshl(x) = (logl(2*x-1));
+//                    
+// 6. 'Main path': 1+1/8 < x < 0.5*2^64
+//    b_hi + b_lo = x + sqrt(x^2 - 1);
+//    acoshl(x) = logl_special(b_hi, b_lo);
+//  
+// Algorithm description                                                      
+//==============================================================
+//
+// I. Near 1 path algorithm
+// **************************************************************
+// The formula is acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)), 
+//                 where y = 1, P(y)/Q(y) - rational approximation
+//
+// 1) y = x - 1, y2 = 2 * y
+//
+// 2) Compute in parallel sqrtl(2*y) and P(y)/Q(y)
+//    a) sqrtl computation method described below (main path algorithm, item 2))
+//       As result we obtain (gg+gl) - multiprecision result 
+//       as pair of double extended values
+//    b) P(y) and Q(y) calculated without any extra precision manipulations
+//    c) P/Q division:
+//       y = frcpa(Q)         initial approximation of 1/Q
+//       z = P*y              initial approximation of P/Q
+//     
+//       e = 1 - b*y
+//       e2 = e + e^2
+//       e1 = e^2
+//       y1 = y + y*e2 = y + y*(e+e^2)
+//
+//       e3 = e + e1^2
+//       y2 = y + y1*e3 = y + y*(e+e^2+..+e^6)
+//
+//       r = P - Q*z
+//       e = 1 - Q*y2
+//       xx = z + r*y2         high part of a/b
+//
+//       y3 = y2 + y2*e4
+//       r1 = P  - Q*xx
+//       xl = r1*y3            low part of a/b
+//
+// 3) res = sqrt(2*y) - sqrt(2*y)*(P(y)/Q(y)) =
+//        = (gg+gl) - (gg + gl)*(xx+xl);
+//
+//    a) hh = gg*xx; hl = gg*xl; lh = gl*xx; ll = gl*xl;
+//    b) res = ((((gl + ll) + lh) + hl) + hh) + gg;
+//       (exactly in this order)
+//
+// II. Main path algorithm 
+// ( thanks to Peter Markstein for the idea of sqrt(x^2+1) computation! )
+// **********************************************************************
+//
+// There are 3 parts of x+sqrt(x^2-1) computation:
+//
+//  1) m2 = (m2_hi+m2_lo) = x^2-1 obtaining
+//     ------------------------------------
+//     m2_hi = x2_hi - 1, where x2_hi = x * x;
+//     m2_lo = x2_lo + p1_lo, where 
+//                            x2_lo = FMS(x*x-x2_hi), 
+//                            p1_lo = (1 + m2_hi) - x2_hi;
+//
+//  2) g = (g_hi+g_lo) = sqrt(m2) = sqrt(m2_hi+m2_lo)
+//     ----------------------------------------------
+//     r = invsqrt(m2_hi) (8-bit reciprocal square root approximation);
+//     g = m2_hi * r (first 8 bit-approximation of sqrt);
+//     
+//     h = 0.5 * r;
+//     e = 0.5 - g * h;
+//     g = g * e + g (second 16 bit-approximation of sqrt);
+//     
+//     h = h * e + h;
+//     e = 0.5 - g * h;
+//     g = g * e + g (third 32 bit-approximation of sqrt);
+//
+//     h = h * e + h;
+//     e = 0.5 - g * h;
+//     g_hi = g * e + g (fourth 64 bit-approximation of sqrt);
+//  
+//     Remainder computation:
+//     h = h * e + h;
+//     d = (m2_hi - g_hi * g_hi) + m2_lo;
+//     g_lo = d * h;
+//
+//  3) b = (b_hi + b_lo) = x + g, where g = (g_hi + g_lo) = sqrt(x^2-1)
+//     -------------------------------------------------------------------
+//     b_hi = (g_hi + x) + gl;
+//     b_lo = (x - b_hi) + g_hi + gl;
+//     
+//  Now we pass b presented as sum b_hi + b_lo to special version
+//  of logl function which accept a pair of arguments as
+//  mutiprecision value.   
+//  
+//  Special log algorithm overview
+//  ================================
+//   Here we use a table lookup method. The basic idea is that in
+//   order to compute logl(Arg) for an argument Arg in [1,2), 
+//   we construct a value G such that G*Arg is close to 1 and that
+//   logl(1/G) is obtainable easily from a table of values calculated
+//   beforehand. Thus
+//
+//      logl(Arg) = logl(1/G) + logl((G*Arg - 1))
+//
+//   Because |G*Arg - 1| is small, the second term on the right hand
+//   side can be approximated by a short polynomial. We elaborate
+//   this method in four steps.
+//
+//   Step 0: Initialization
+//
+//   We need to calculate logl( X+1 ). Obtain N, S_hi such that
+//
+//      X = 2^N * ( S_hi + S_lo )   exactly
+//
+//   where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
+//   that |S_lo| <= ulp(S_hi).
+//
+//   For the special version of logl: S_lo = b_lo
+//   !-----------------------------------------------!
+//
+//   Step 1: Argument Reduction
+//
+//   Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
+//
+//      G := G_1 * G_2 * G_3
+//      r := (G * S_hi - 1) + G * S_lo
+//
+//   These G_j's have the property that the product is exactly 
+//   representable and that |r| < 2^(-12) as a result.
+//
+//   Step 2: Approximation
+//
+//   logl(1 + r) is approximated by a short polynomial poly(r).
+//
+//   Step 3: Reconstruction
+//
+//   Finally, logl( X ) = logl( X+1 ) is given by
+//
+//   logl( X )   =   logl( 2^N * (S_hi + S_lo) )
+//                 ~=~  N*logl(2) + logl(1/G) + logl(1 + r)
+//                 ~=~  N*logl(2) + logl(1/G) + poly(r).
+//
+//   For detailed description see logl or log1pl function, regular path.
+//
+// Registers used
+//==============================================================
+// Floating Point registers used: 
+// f8, input
+// f32 -> f95 (64 registers)
+
+// General registers used:  
+// r32 -> r67 (36 registers)
+
+// Predicate registers used:
+// p7 -> p11
+// p7  for 'NaNs, Inf' path
+// p8  for 'near 1' path
+// p9  for 'huges' path
+// p10 for x = 1 
+// p11 for x < 1
+//
+//*********************************************************************
+// IEEE Special Conditions:
+//
+//    acoshl(+inf)  = +inf
+//    acoshl(-inf) = QNaN 
+//    acoshl(1)    = 0 
+//    acoshl(x<1)  = QNaN
+//    acoshl(SNaN) = QNaN
+//    acoshl(QNaN) = QNaN
+//
+
+// Data tables
+//==============================================================
+     
+RODATA
+.align 64
+
+// Near 1 path rational aproximation coefficients
+LOCAL_OBJECT_START(Poly_P)
+data8 0xB0978143F695D40F, 0x3FF1  // .84205539791447100108478906277453574946e-4  
+data8 0xB9800D841A8CAD29, 0x3FF6  // .28305085180397409672905983082168721069e-2  
+data8 0xC889F455758C1725, 0x3FF9  // .24479844297887530847660233111267222945e-1  
+data8 0x9BE1DFF006F45F12, 0x3FFB  // .76114415657565879842941751209926938306e-1  
+data8 0x9E34AF4D372861E0, 0x3FFB  // .77248925727776366270605984806795850504e-1  
+data8 0xF3DC502AEE14C4AE, 0x3FA6  // .3077953476682583606615438814166025592e-26  
+LOCAL_OBJECT_END(Poly_P)
+
+//
+LOCAL_OBJECT_START(Poly_Q)
+data8 0xF76E3FD3C7680357, 0x3FF1  // .11798413344703621030038719253730708525e-3  
+data8 0xD107D2E7273263AE, 0x3FF7  // .63791065024872525660782716786703188820e-2  
+data8 0xB609BE5CDE206AEF, 0x3FFB  // .88885771950814004376363335821980079985e-1  
+data8 0xF7DEACAC28067C8A, 0x3FFD  // .48412074662702495416825113623936037072302  
+data8 0x8F9BE5890CEC7E38, 0x3FFF  // 1.1219450873557867470217771071068369729526  
+data8 0xED4F06F3D2BC92D1, 0x3FFE  // .92698710873331639524734537734804056798748  
+LOCAL_OBJECT_END(Poly_Q)
+
+// Q coeffs 
+LOCAL_OBJECT_START(Constants_Q)
+data4  0x00000000,0xB1721800,0x00003FFE,0x00000000 
+data4  0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
+data4  0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
+data4  0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
+data4  0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
+data4  0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000 
+LOCAL_OBJECT_END(Constants_Q)
+
+// Z1 - 16 bit fixed
+LOCAL_OBJECT_START(Constants_Z_1)
+data4  0x00008000
+data4  0x00007879
+data4  0x000071C8
+data4  0x00006BCB
+data4  0x00006667
+data4  0x00006187
+data4  0x00005D18
+data4  0x0000590C
+data4  0x00005556
+data4  0x000051EC
+data4  0x00004EC5
+data4  0x00004BDB
+data4  0x00004925
+data4  0x0000469F
+data4  0x00004445
+data4  0x00004211
+LOCAL_OBJECT_END(Constants_Z_1)
+
+// G1 and H1 - IEEE single and h1 - IEEE double
+LOCAL_OBJECT_START(Constants_G_H_h1)
+data4  0x3F800000,0x00000000
+data8  0x0000000000000000
+data4  0x3F70F0F0,0x3D785196
+data8  0x3DA163A6617D741C
+data4  0x3F638E38,0x3DF13843
+data8  0x3E2C55E6CBD3D5BB
+data4  0x3F579430,0x3E2FF9A0
+data8  0xBE3EB0BFD86EA5E7
+data4  0x3F4CCCC8,0x3E647FD6
+data8  0x3E2E6A8C86B12760
+data4  0x3F430C30,0x3E8B3AE7
+data8  0x3E47574C5C0739BA
+data4  0x3F3A2E88,0x3EA30C68
+data8  0x3E20E30F13E8AF2F
+data4  0x3F321640,0x3EB9CEC8
+data8  0xBE42885BF2C630BD
+data4  0x3F2AAAA8,0x3ECF9927
+data8  0x3E497F3497E577C6
+data4  0x3F23D708,0x3EE47FC5
+data8  0x3E3E6A6EA6B0A5AB
+data4  0x3F1D89D8,0x3EF8947D
+data8  0xBDF43E3CD328D9BE
+data4  0x3F17B420,0x3F05F3A1
+data8  0x3E4094C30ADB090A
+data4  0x3F124920,0x3F0F4303
+data8  0xBE28FBB2FC1FE510
+data4  0x3F0D3DC8,0x3F183EBF
+data8  0x3E3A789510FDE3FA
+data4  0x3F088888,0x3F20EC80
+data8  0x3E508CE57CC8C98F
+data4  0x3F042108,0x3F29516A
+data8  0xBE534874A223106C
+LOCAL_OBJECT_END(Constants_G_H_h1)
+
+// Z2 - 16 bit fixed
+LOCAL_OBJECT_START(Constants_Z_2)
+data4  0x00008000
+data4  0x00007F81
+data4  0x00007F02
+data4  0x00007E85
+data4  0x00007E08
+data4  0x00007D8D
+data4  0x00007D12
+data4  0x00007C98
+data4  0x00007C20
+data4  0x00007BA8
+data4  0x00007B31
+data4  0x00007ABB
+data4  0x00007A45
+data4  0x000079D1
+data4  0x0000795D
+data4  0x000078EB
+LOCAL_OBJECT_END(Constants_Z_2)
+
+// G2 and H2 - IEEE single and h2 - IEEE double
+LOCAL_OBJECT_START(Constants_G_H_h2)
+data4  0x3F800000,0x00000000
+data8  0x0000000000000000
+data4  0x3F7F00F8,0x3B7F875D
+data8  0x3DB5A11622C42273
+data4  0x3F7E03F8,0x3BFF015B
+data8  0x3DE620CF21F86ED3
+data4  0x3F7D08E0,0x3C3EE393
+data8  0xBDAFA07E484F34ED
+data4  0x3F7C0FC0,0x3C7E0586
+data8  0xBDFE07F03860BCF6
+data4  0x3F7B1880,0x3C9E75D2
+data8  0x3DEA370FA78093D6
+data4  0x3F7A2328,0x3CBDC97A
+data8  0x3DFF579172A753D0
+data4  0x3F792FB0,0x3CDCFE47
+data8  0x3DFEBE6CA7EF896B
+data4  0x3F783E08,0x3CFC15D0
+data8  0x3E0CF156409ECB43
+data4  0x3F774E38,0x3D0D874D
+data8  0xBE0B6F97FFEF71DF
+data4  0x3F766038,0x3D1CF49B
+data8  0xBE0804835D59EEE8
+data4  0x3F757400,0x3D2C531D
+data8  0x3E1F91E9A9192A74
+data4  0x3F748988,0x3D3BA322
+data8  0xBE139A06BF72A8CD
+data4  0x3F73A0D0,0x3D4AE46F
+data8  0x3E1D9202F8FBA6CF
+data4  0x3F72B9D0,0x3D5A1756
+data8  0xBE1DCCC4BA796223
+data4  0x3F71D488,0x3D693B9D
+data8  0xBE049391B6B7C239
+LOCAL_OBJECT_END(Constants_G_H_h2)
+
+// G3 and H3 - IEEE single and h3 - IEEE double 
+LOCAL_OBJECT_START(Constants_G_H_h3)
+data4  0x3F7FFC00,0x38800100
+data8  0x3D355595562224CD
+data4  0x3F7FF400,0x39400480
+data8  0x3D8200A206136FF6
+data4  0x3F7FEC00,0x39A00640
+data8  0x3DA4D68DE8DE9AF0
+data4  0x3F7FE400,0x39E00C41
+data8  0xBD8B4291B10238DC
+data4  0x3F7FDC00,0x3A100A21
+data8  0xBD89CCB83B1952CA
+data4  0x3F7FD400,0x3A300F22
+data8  0xBDB107071DC46826
+data4  0x3F7FCC08,0x3A4FF51C
+data8  0x3DB6FCB9F43307DB
+data4  0x3F7FC408,0x3A6FFC1D
+data8  0xBD9B7C4762DC7872
+data4  0x3F7FBC10,0x3A87F20B
+data8  0xBDC3725E3F89154A
+data4  0x3F7FB410,0x3A97F68B
+data8  0xBD93519D62B9D392
+data4  0x3F7FAC18,0x3AA7EB86
+data8  0x3DC184410F21BD9D
+data4  0x3F7FA420,0x3AB7E101
+data8  0xBDA64B952245E0A6
+data4  0x3F7F9C20,0x3AC7E701
+data8  0x3DB4B0ECAABB34B8
+data4  0x3F7F9428,0x3AD7DD7B
+data8  0x3D9923376DC40A7E
+data4  0x3F7F8C30,0x3AE7D474
+data8  0x3DC6E17B4F2083D3
+data4  0x3F7F8438,0x3AF7CBED
+data8  0x3DAE314B811D4394
+data4  0x3F7F7C40,0x3B03E1F3
+data8  0xBDD46F21B08F2DB1
+data4  0x3F7F7448,0x3B0BDE2F
+data8  0xBDDC30A46D34522B
+data4  0x3F7F6C50,0x3B13DAAA
+data8  0x3DCB0070B1F473DB
+data4  0x3F7F6458,0x3B1BD766
+data8  0xBDD65DDC6AD282FD
+data4  0x3F7F5C68,0x3B23CC5C
+data8  0xBDCDAB83F153761A
+data4  0x3F7F5470,0x3B2BC997
+data8  0xBDDADA40341D0F8F
+data4  0x3F7F4C78,0x3B33C711
+data8  0x3DCD1BD7EBC394E8
+data4  0x3F7F4488,0x3B3BBCC6
+data8  0xBDC3532B52E3E695
+data4  0x3F7F3C90,0x3B43BAC0
+data8  0xBDA3961EE846B3DE
+data4  0x3F7F34A0,0x3B4BB0F4
+data8  0xBDDADF06785778D4
+data4  0x3F7F2CA8,0x3B53AF6D
+data8  0x3DCC3ED1E55CE212
+data4  0x3F7F24B8,0x3B5BA620
+data8  0xBDBA31039E382C15
+data4  0x3F7F1CC8,0x3B639D12
+data8  0x3D635A0B5C5AF197
+data4  0x3F7F14D8,0x3B6B9444
+data8  0xBDDCCB1971D34EFC
+data4  0x3F7F0CE0,0x3B7393BC
+data8  0x3DC7450252CD7ADA
+data4  0x3F7F04F0,0x3B7B8B6D
+data8  0xBDB68F177D7F2A42
+LOCAL_OBJECT_END(Constants_G_H_h3)
+
+// Assembly macros
+//==============================================================
+
+// Floating Point Registers
+
+FR_Arg          = f8
+FR_Res          = f8
+
+
+FR_PP0          = f32
+FR_PP1          = f33
+FR_PP2          = f34
+FR_PP3          = f35
+FR_PP4          = f36
+FR_PP5          = f37
+FR_QQ0          = f38
+FR_QQ1          = f39
+FR_QQ2          = f40
+FR_QQ3          = f41
+FR_QQ4          = f42
+FR_QQ5          = f43
+
+FR_Q1           = f44 
+FR_Q2           = f45 
+FR_Q3           = f46  
+FR_Q4           = f47 
+
+FR_Half         = f48
+FR_Two          = f49
+
+FR_log2_hi      = f50  
+FR_log2_lo      = f51  
+
+
+FR_X2           = f52
+FR_M2           = f53
+FR_M2L          = f54
+FR_Rcp          = f55
+FR_GG           = f56
+FR_HH           = f57
+FR_EE           = f58
+FR_DD           = f59
+FR_GL           = f60
+FR_Tmp          = f61
+
+
+FR_XM1          = f62
+FR_2XM1         = f63
+FR_XM12         = f64
+
+
+
+    // Special logl registers
+FR_XLog_Hi      = f65 
+FR_XLog_Lo      = f66 
+
+FR_Y_hi         = f67  
+FR_Y_lo         = f68
+
+FR_S_hi         = f69  
+FR_S_lo         = f70 
+
+FR_poly_lo      = f71
+FR_poly_hi      = f72
+
+FR_G            = f73
+FR_H            = f74
+FR_h            = f75
+
+FR_G2           = f76
+FR_H2           = f77
+FR_h2           = f78 
+
+FR_r            = f79  
+FR_rsq          = f80  
+FR_rcub         = f81 
+
+FR_float_N      = f82 
+
+FR_G3           = f83  
+FR_H3           = f84  
+FR_h3           = f85  
+
+FR_2_to_minus_N = f86 
+
+
+   // Near 1  registers
+FR_PP           = f65
+FR_QQ           = f66
+
+
+FR_PV6          = f69
+FR_PV4          = f70
+FR_PV3          = f71
+FR_PV2          = f72
+
+FR_QV6          = f73
+FR_QV4          = f74
+FR_QV3          = f75
+FR_QV2          = f76
+
+FR_Y0           = f77
+FR_Q0           = f78  
+FR_E0           = f79
+FR_E2           = f80
+FR_E1           = f81
+FR_Y1           = f82
+FR_E3           = f83
+FR_Y2           = f84
+FR_R0           = f85
+FR_E4           = f86
+FR_Y3           = f87
+FR_R1           = f88
+FR_X_Hi         = f89
+FR_X_lo         = f90
+
+FR_HH           = f91
+FR_LL           = f92
+FR_HL           = f93
+FR_LH           = f94
+
+
+
+	// Error handler registers
+FR_Arg_X        = f95
+FR_Arg_Y        = f0
+
+
+// General Purpose Registers
+
+    // General prolog registers
+GR_PFS          = r32
+GR_OneP125      = r33
+GR_TwoP63       = r34
+GR_Arg          = r35
+GR_Half         = r36
+
+    // Near 1 path registers
+GR_Poly_P       = r37
+GR_Poly_Q       = r38
+
+    // Special logl registers
+GR_Index1       = r39 
+GR_Index2       = r40 
+GR_signif       = r41 
+GR_X_0          = r42 
+GR_X_1          = r43 
+GR_X_2          = r44 
+GR_minus_N      = r45
+GR_Z_1          = r46 
+GR_Z_2          = r47 
+GR_N            = r48 
+GR_Bias         = r49 
+GR_M            = r50 
+GR_Index3       = r51 
+GR_exp_2tom80   = r52 
+GR_exp_mask     = r53 
+GR_exp_2tom7    = r54 
+GR_ad_ln10      = r55 
+GR_ad_tbl_1     = r56
+GR_ad_tbl_2     = r57
+GR_ad_tbl_3     = r58
+GR_ad_q         = r59
+GR_ad_z_1       = r60
+GR_ad_z_2       = r61
+GR_ad_z_3       = r62
+
+//
+// Added for unwind support
+//
+GR_SAVE_PFS         = r32
+GR_SAVE_B0          = r33
+GR_SAVE_GP          = r34
+
+GR_Parameter_X      = r64
+GR_Parameter_Y      = r65
+GR_Parameter_RESULT = r66
+GR_Parameter_TAG    = r67
+
+
+
+.section .text
+GLOBAL_LIBM_ENTRY(acoshl)
+
+{ .mfi
+      alloc      GR_PFS       = ar.pfs,0,32,4,0     // Local frame allocation
+      fcmp.lt.s1 p11, p0      = FR_Arg, f1          // if arg is less than 1
+      mov	     GR_Half      = 0xfffe              // 0.5's exp
+}
+{ .mfi
+      addl       GR_Poly_Q    = @ltoff(Poly_Q), gp  // Address of Q-coeff table
+      fma.s1     FR_X2        = FR_Arg, FR_Arg, f0  // Obtain x^2
+      addl       GR_Poly_P    = @ltoff(Poly_P), gp  // Address of P-coeff table
+};; 
+
+{ .mfi 
+      getf.d     GR_Arg       = FR_Arg        // get arument as double (int64)
+      fma.s0        FR_Two       = f1, f1, f1    // construct 2.0
+      addl       GR_ad_z_1    = @ltoff(Constants_Z_1#),gp // logl tables
+}
+{ .mlx 
+      nop.m 0  
+      movl       GR_TwoP63    = 0x43E8000000000000 // 0.5*2^63 (huge arguments)
+};; 
+
+{ .mfi 
+      ld8        GR_Poly_P    = [GR_Poly_P]  // get actual P-coeff table address
+      fcmp.eq.s1 p10, p0      = FR_Arg, f1   // if arg == 1 (return 0)
+      nop.i 0
+}
+{ .mlx   
+      ld8        GR_Poly_Q    = [GR_Poly_Q]  // get actual Q-coeff table address
+      movl       GR_OneP125   = 0x3FF2000000000000  // 1.125 (near 1 path bound)
+};;
+
+{ .mfi   
+      ld8        GR_ad_z_1    = [GR_ad_z_1]      // Get pointer to Constants_Z_1
+      fclass.m   p7,p0        = FR_Arg, 0xe3       // if arg NaN inf
+      cmp.le     p9, p0       = GR_TwoP63, GR_Arg // if arg > 0.5*2^63 ('huges')
+}
+{ .mfb
+      cmp.ge     p8, p0       = GR_OneP125, GR_Arg // if arg<1.125 -near 1 path
+	  fms.s1     FR_XM1       = FR_Arg, f1, f1     // X0 = X-1 (for near 1 path)
+(p11) br.cond.spnt acoshl_lt_pone                  // error branch (less than 1)
+};; 
+
+{ .mmi   
+      setf.exp	FR_Half       = GR_Half     // construct 0.5
+(p9)  setf.s    FR_XLog_Lo    = r0          // Low of logl arg=0 (Huges path)
+      mov        GR_exp_mask  = 0x1FFFF         // Create exponent mask
+};; 
+
+{ .mmf   
+(p8)  ldfe       FR_PP5       = [GR_Poly_P],16     // Load P5
+(p8)  ldfe       FR_QQ5       = [GR_Poly_Q],16     // Load Q5
+      fms.s1     FR_M2        = FR_X2, f1, f1      // m2 = x^2 - 1
+};;
+
+{ .mfi 
+(p8)  ldfe       FR_QQ4       = [GR_Poly_Q],16         // Load Q4
+      fms.s1     FR_M2L       = FR_Arg, FR_Arg, FR_X2  // low part of 
+	                                                   //    m2 = fma(X*X - m2)
+      add        GR_ad_tbl_1  = 0x040, GR_ad_z_1    // Point to Constants_G_H_h1
+}
+{ .mfb
+(p8)  ldfe       FR_PP4       = [GR_Poly_P],16     // Load P4 
+(p7)  fma.s0     FR_Res       = FR_Arg,f1,FR_Arg   // r = a + a (Nan, Inf)
+(p7)  br.ret.spnt b0                               // return    (Nan, Inf)
+};; 
+
+{ .mfi
+(p8)  ldfe       FR_PP3       = [GR_Poly_P],16      // Load P3
+      nop.f 0
+      add        GR_ad_q      = -0x60, GR_ad_z_1    // Point to Constants_P
+}
+{ .mfb
+(p8)  ldfe       FR_QQ3       = [GR_Poly_Q],16      // Load Q3
+(p9)  fms.s1 FR_XLog_Hi       = FR_Two, FR_Arg, f1  // Hi  of log arg = 2*X-1
+(p9)  br.cond.spnt huges_logl                       // special version of log
+}
+;; 
+
+{ .mfi   
+(p8)  ldfe       FR_PP2       = [GR_Poly_P],16       // Load P2
+(p8)  fma.s1     FR_2XM1      = FR_Two, FR_XM1, f0   // 2X0 = 2 * X0
+      add        GR_ad_z_2    = 0x140, GR_ad_z_1    // Point to Constants_Z_2
+}
+{ .mfb
+(p8)  ldfe       FR_QQ2       = [GR_Poly_Q],16       // Load Q2
+(p10) fma.s0   FR_Res         = f0,f1,f0             // r = 0  (arg = 1)
+(p10) br.ret.spnt b0                                 // return (arg = 1)       
+};; 
+
+{ .mmi 
+(p8)  ldfe       FR_PP1       = [GR_Poly_P],16       // Load P1
+(p8)  ldfe       FR_QQ1       = [GR_Poly_Q],16       // Load Q1
+      add        GR_ad_tbl_2  = 0x180, GR_ad_z_1    // Point to Constants_G_H_h2
+}
+;;
+
+{ .mfi   
+(p8)  ldfe       FR_PP0       = [GR_Poly_P]          // Load P0 
+      fma.s1     FR_Tmp       = f1, f1, FR_M2        // Tmp = 1 + m2
+      add        GR_ad_tbl_3  = 0x280, GR_ad_z_1    // Point to Constants_G_H_h3
+}
+{ .mfb
+(p8)  ldfe       FR_QQ0       = [GR_Poly_Q]
+      nop.f 0
+(p8)  br.cond.spnt near_1                            // near 1 path
+};; 
+{ .mfi   
+      ldfe       FR_log2_hi   = [GR_ad_q],16      // Load log2_hi
+      nop.f 0
+      mov        GR_Bias      = 0x0FFFF                  // Create exponent bias
+};;
+{ .mfi 
+      nop.m 0
+      frsqrta.s1 FR_Rcp, p0   = FR_M2           // Rcp = 1/m2 reciprocal appr.
+      nop.i 0
+};; 
+
+{ .mfi
+      ldfe       FR_log2_lo   = [GR_ad_q],16     // Load log2_lo
+      fms.s1     FR_Tmp       = FR_X2, f1, FR_Tmp  // Tmp =  x^2 - Tmp
+      nop.i 0
+};;
+
+{ .mfi
+      ldfe       FR_Q4        = [GR_ad_q],16          // Load Q4
+      fma.s1     FR_GG        = FR_Rcp, FR_M2, f0   // g = Rcp * m2
+                                               // 8 bit Newton Raphson iteration
+      nop.i 0
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_HH 		  = FR_Half, FR_Rcp, f0      // h = 0.5 * Rcp
+      nop.i 0
+};;
+{ .mfi
+      ldfe       FR_Q3        = [GR_ad_q],16   // Load Q3
+      fnma.s1    FR_EE        = FR_GG, FR_HH, FR_Half   // e = 0.5 - g * h
+      nop.i 0
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_M2L       = FR_Tmp, f1, FR_M2L  // low part of m2 = Tmp+m2l
+      nop.i 0
+};;
+
+{ .mfi
+      ldfe       FR_Q2        = [GR_ad_q],16      // Load Q2
+      fma.s1     FR_GG        = FR_GG, FR_EE, FR_GG     // g = g * e + g 
+                                              // 16 bit Newton Raphson iteration
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1     FR_HH        = FR_HH, FR_EE, FR_HH     // h = h * e + h
+      nop.i 0
+};;
+
+{ .mfi
+      ldfe       FR_Q1        = [GR_ad_q]                // Load Q1
+      fnma.s1    FR_EE        = FR_GG, FR_HH, FR_Half   // e = 0.5 - g * h
+      nop.i 0
+};;
+{ .mfi
+      nop.m 0
+      fma.s1    FR_GG         = FR_GG, FR_EE, FR_GG     // g = g * e + g 
+                                              // 32 bit Newton Raphson iteration
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1    FR_HH         = FR_HH, FR_EE, FR_HH     // h = h * e + h
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fnma.s1   FR_EE         = FR_GG, FR_HH, FR_Half   // e = 0.5 - g * h
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1    FR_GG         = FR_GG, FR_EE, FR_GG     // g = g * e + g 
+                                              // 64 bit Newton Raphson iteration
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1    FR_HH         = FR_HH, FR_EE, FR_HH     // h = h * e + h
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fnma.s1   FR_DD         = FR_GG, FR_GG, FR_M2  // Remainder d = g * g - p2
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1    FR_XLog_Hi     = FR_Arg, f1, FR_GG // bh = z + gh
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1    FR_DD         = FR_DD, f1, FR_M2L       // add p2l: d = d + p2l
+      nop.i 0
+};;
+
+{ .mfi
+      getf.sig  GR_signif     = FR_XLog_Hi     // Get significand of x+1
+      nop.f 0
+      mov       GR_exp_2tom7  = 0x0fff8        // Exponent of 2^-7
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1    FR_GL         = FR_DD, FR_HH, f0        // gl = d * h
+      extr.u    GR_Index1     = GR_signif, 59, 4    // Get high 4 bits of signif
+}
+{ .mfi
+      nop.m 0
+      fma.s1    FR_XLog_Hi     = FR_DD,  FR_HH, FR_XLog_Hi // bh = bh + gl
+      nop.i 0
+};;
+
+
+
+{ .mmi
+      shladd    GR_ad_z_1     = GR_Index1, 2, GR_ad_z_1  // Point to Z_1
+      shladd    GR_ad_tbl_1   = GR_Index1, 4, GR_ad_tbl_1  // Point to G_1
+      extr.u    GR_X_0        = GR_signif, 49, 15 // Get high 15 bits of signif.
+};;
+
+{ .mmi
+      ld4       GR_Z_1        = [GR_ad_z_1]    // Load Z_1
+      nop.m 0
+      nop.i 0
+};;
+
+{ .mmi
+      ldfps     FR_G, FR_H    = [GR_ad_tbl_1],8     // Load G_1, H_1
+      nop.m 0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fms.s1    FR_XLog_Lo     = FR_Arg,  f1,   FR_XLog_Hi // bl = x - bh
+      pmpyshr2.u GR_X_1       = GR_X_0,GR_Z_1,15  // Get bits 30-15 of X_0 * Z_1
+};;
+
+// WE CANNOT USE GR_X_1 IN NEXT 3 CYCLES BECAUSE OF POSSIBLE 10 CLOCKS STALL!
+// "DEAD" ZONE!
+
+{ .mfi
+      nop.m 0
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fmerge.se FR_S_hi       =  f1,FR_XLog_Hi            // Form |x+1|
+      nop.i 0
+};;
+
+
+{ .mmi
+      getf.exp  GR_N          =  FR_XLog_Hi    // Get N = exponent of x+1
+      ldfd      FR_h          = [GR_ad_tbl_1]        // Load h_1
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      nop.f 0
+      extr.u    GR_Index2     = GR_X_1, 6, 4      // Extract bits 6-9 of X_1 
+};;
+
+{ .mfi
+      shladd    GR_ad_tbl_2   = GR_Index2, 4, GR_ad_tbl_2  // Point to G_2
+      fma.s1    FR_XLog_Lo    = FR_XLog_Lo, f1, FR_GG // bl = bl + gg
+      mov       GR_exp_2tom80 = 0x0ffaf           // Exponent of 2^-80
+}
+{ .mfi
+      shladd    GR_ad_z_2     = GR_Index2, 2, GR_ad_z_2  // Point to Z_2
+      nop.f 0
+      sub       GR_N          = GR_N, GR_Bias // sub bias from exp
+};;
+
+{ .mmi
+      ldfps     FR_G2, FR_H2  = [GR_ad_tbl_2],8       // Load G_2, H_2
+      ld4       GR_Z_2        = [GR_ad_z_2]                // Load Z_2
+      sub       GR_minus_N    = GR_Bias, GR_N         // Form exponent of 2^(-N)
+};;
+
+{ .mmi
+      ldfd      FR_h2         = [GR_ad_tbl_2]             // Load h_2
+      nop.m 0
+      nop.i 0
+};;
+
+{ .mmi
+      setf.sig  FR_float_N    = GR_N        // Put integer N into rightmost sign
+      setf.exp  FR_2_to_minus_N = GR_minus_N   // Form 2^(-N)
+      pmpyshr2.u GR_X_2       = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
+};;
+
+// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!) 
+// BECAUSE OF POSSIBLE 10 CLOCKS STALL!
+// (Just nops added - nothing to do here)
+
+{ .mfi
+      nop.m 0
+      fma.s1    FR_XLog_Lo     = FR_XLog_Lo, f1, FR_GL // bl = bl + gl
+      nop.i 0
+};;
+{ .mfi
+      nop.m 0
+      nop.f 0
+      nop.i 0
+};;
+{ .mfi
+      nop.m 0
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      nop.f 0
+      extr.u    GR_Index3     = GR_X_2, 1, 5         // Extract bits 1-5 of X_2
+};;
+
+{ .mfi
+      shladd    GR_ad_tbl_3   = GR_Index3, 4, GR_ad_tbl_3  // Point to G_3
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      ldfps     FR_G3, FR_H3  = [GR_ad_tbl_3],8   // Load G_3, H_3
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      ldfd      FR_h3         = [GR_ad_tbl_3]            // Load h_3
+	  fcvt.xf   FR_float_N    = FR_float_N
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fmpy.s1   FR_G          = FR_G, FR_G2              // G = G_1 * G_2
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fadd.s1   FR_H          = FR_H, FR_H2              // H = H_1 + H_2
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fadd.s1   FR_h          = FR_h, FR_h2              // h = h_1 + h_2
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1    FR_S_lo     = FR_XLog_Lo, FR_2_to_minus_N, f0 //S_lo=S_lo*2^(-N)
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fmpy.s1   FR_G          = FR_G, FR_G3             // G = (G_1 * G_2) * G_3
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fadd.s1   FR_H          = FR_H, FR_H3             // H = (H_1 + H_2) + H_3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fadd.s1   FR_h          = FR_h, FR_h3             // h = (h_1 + h_2) + h_3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fms.s1    FR_r          = FR_G, FR_S_hi, f1           // r = G * S_hi - 1
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1    FR_Y_hi       = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1    FR_h          = FR_float_N, FR_log2_lo, FR_h  // h=N*log2_lo+h
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1    FR_r          = FR_G, FR_S_lo, FR_r  // r=G*S_lo+(G*S_hi-1)
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1    FR_poly_lo    = FR_r, FR_Q4, FR_Q3      // poly_lo = r * Q4 + Q3
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fmpy.s1   FR_rsq        = FR_r, FR_r              // rsq = r * r
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1    FR_poly_lo    = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1    FR_rcub       = FR_rsq, FR_r, f0        // rcub = r^3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1    FR_poly_hi    = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1    FR_poly_lo    = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fadd.s0   FR_Y_lo       = FR_poly_hi, FR_poly_lo  
+	                                                     // Y_lo=poly_hi+poly_lo
+      nop.i 0
+};;
+
+{ .mfb
+      nop.m 0
+      fadd.s0   FR_Res        = FR_Y_lo,FR_Y_hi    // Result=Y_lo+Y_hi
+      br.ret.sptk   b0                         // Common exit for 2^-7 < x < inf
+};;
+
+
+huges_logl:
+{ .mmi
+      getf.sig   GR_signif    = FR_XLog_Hi               // Get significand of x+1
+      mov        GR_exp_2tom7 = 0x0fff8            // Exponent of 2^-7
+      nop.i 0
+};;
+
+{ .mfi
+      add        GR_ad_tbl_1  = 0x040, GR_ad_z_1    // Point to Constants_G_H_h1
+      nop.f 0
+      add        GR_ad_q      = -0x60, GR_ad_z_1    // Point to Constants_P
+}
+{ .mfi
+      add        GR_ad_z_2    = 0x140, GR_ad_z_1    // Point to Constants_Z_2
+      nop.f 0
+      add        GR_ad_tbl_2  = 0x180, GR_ad_z_1    // Point to Constants_G_H_h2
+};;
+
+{ .mfi
+      add        GR_ad_tbl_3  = 0x280, GR_ad_z_1    // Point to Constants_G_H_h3
+      nop.f 0
+      extr.u     GR_Index1    = GR_signif, 59, 4    // Get high 4 bits of signif
+};;
+
+{ .mfi
+      shladd     GR_ad_z_1    = GR_Index1, 2, GR_ad_z_1  // Point to Z_1
+      nop.f 0
+      extr.u     GR_X_0       = GR_signif, 49, 15 // Get high 15 bits of signif.
+};;
+
+{ .mfi
+      ld4        GR_Z_1       = [GR_ad_z_1]     // Load Z_1
+      nop.f 0
+      mov        GR_exp_mask  = 0x1FFFF         // Create exponent mask
+}
+{ .mfi
+      shladd     GR_ad_tbl_1  = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
+      nop.f 0
+      mov        GR_Bias      = 0x0FFFF                  // Create exponent bias
+};;
+
+{ .mfi
+      ldfps      FR_G, FR_H   = [GR_ad_tbl_1],8     // Load G_1, H_1
+      fmerge.se  FR_S_hi      =  f1,FR_XLog_Hi            // Form |x|
+      nop.i 0
+};;
+
+{ .mmi
+      getf.exp   GR_N         =  FR_XLog_Hi         // Get N = exponent of x+1
+      ldfd       FR_h         = [GR_ad_tbl_1] // Load h_1
+      nop.i 0
+};;
+
+{ .mfi
+      ldfe       FR_log2_hi   = [GR_ad_q],16      // Load log2_hi
+      nop.f 0
+      pmpyshr2.u GR_X_1       = GR_X_0,GR_Z_1,15  // Get bits 30-15 of X_0 * Z_1
+};;
+
+{ .mmi
+      ldfe       FR_log2_lo   = [GR_ad_q],16     // Load log2_lo
+      sub        GR_N         = GR_N, GR_Bias 
+      mov        GR_exp_2tom80 = 0x0ffaf         // Exponent of 2^-80
+};;
+
+{ .mfi
+      ldfe       FR_Q4        = [GR_ad_q],16          // Load Q4
+      nop.f 0
+      sub        GR_minus_N   = GR_Bias, GR_N         // Form exponent of 2^(-N)
+};;
+
+{ .mmf
+      ldfe       FR_Q3        = [GR_ad_q],16   // Load Q3
+      setf.sig   FR_float_N   = GR_N        // Put integer N into rightmost sign
+      nop.f 0
+};;
+
+{ .mmi
+      ldfe       FR_Q2        = [GR_ad_q],16      // Load Q2
+	  nop.m 0
+      extr.u     GR_Index2    = GR_X_1, 6, 4      // Extract bits 6-9 of X_1 
+};;
+
+{ .mmi
+      ldfe       FR_Q1        = [GR_ad_q]                // Load Q1
+      shladd     GR_ad_z_2    = GR_Index2, 2, GR_ad_z_2  // Point to Z_2
+      nop.i 0
+};;
+
+{ .mmi
+      ld4        GR_Z_2       = [GR_ad_z_2]                // Load Z_2
+      shladd     GR_ad_tbl_2  = GR_Index2, 4, GR_ad_tbl_2  // Point to G_2
+	  nop.i 0
+};;
+
+{ .mmi
+      ldfps      FR_G2, FR_H2 = [GR_ad_tbl_2],8       // Load G_2, H_2
+      nop.m 0
+      nop.i 0
+};;
+
+{ .mmf
+      ldfd       FR_h2        = [GR_ad_tbl_2]         // Load h_2
+      setf.exp FR_2_to_minus_N = GR_minus_N   // Form 2^(-N)
+      nop.f 0
+};;
+
+{ .mfi
+      nop.m 0
+      nop.f 0
+      pmpyshr2.u GR_X_2       = GR_X_1,GR_Z_2,15   // Get bits 30-15 of X_1*Z_2
+};;
+
+// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!) 
+// BECAUSE OF POSSIBLE 10 CLOCKS STALL!
+// (Just nops added - nothing to do here)
+
+{ .mfi
+      nop.m 0
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      nop.f 0
+      extr.u     GR_Index3    = GR_X_2, 1, 5          // Extract bits 1-5 of X_2
+};;
+
+{ .mfi
+      shladd     GR_ad_tbl_3  = GR_Index3, 4, GR_ad_tbl_3  // Point to G_3
+	  fcvt.xf    FR_float_N   = FR_float_N
+      nop.i 0
+};;
+
+{ .mfi
+      ldfps      FR_G3, FR_H3 = [GR_ad_tbl_3],8   // Load G_3, H_3
+      nop.f 0
+      nop.i 0
+};;
+
+{ .mfi
+      ldfd       FR_h3        = [GR_ad_tbl_3]            // Load h_3
+      fmpy.s1    FR_G         = FR_G, FR_G2              // G = G_1 * G_2
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fadd.s1    FR_H         = FR_H, FR_H2              // H = H_1 + H_2
+      nop.i 0
+};;
+
+{ .mmf
+      nop.m 0
+      nop.m 0
+      fadd.s1    FR_h         = FR_h, FR_h2              // h = h_1 + h_2
+};;
+
+{ .mfi
+      nop.m 0
+      fmpy.s1    FR_G         = FR_G, FR_G3              // G = (G_1 * G_2)*G_3
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fadd.s1    FR_H         = FR_H, FR_H3              // H = (H_1 + H_2)+H_3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fadd.s1    FR_h         = FR_h, FR_h3            // h = (h_1 + h_2) + h_3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fms.s1     FR_r         = FR_G, FR_S_hi, f1           // r = G * S_hi - 1
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1     FR_Y_hi      = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1     FR_h         = FR_float_N, FR_log2_lo, FR_h  // h = N*log2_lo+h
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1     FR_poly_lo   = FR_r, FR_Q4, FR_Q3      // poly_lo = r * Q4 + Q3
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fmpy.s1    FR_rsq       = FR_r, FR_r              // rsq = r * r
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1     FR_poly_lo   = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
+      nop.i 0
+}
+{ .mfi
+      nop.m 0
+      fma.s1     FR_rcub      = FR_rsq, FR_r, f0        // rcub = r^3
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1     FR_poly_hi   = FR_Q1, FR_rsq, FR_r     // poly_hi = Q1*rsq + r
+      nop.i 0
+};;
+
+{ .mfi
+      nop.m 0
+      fma.s1     FR_poly_lo   = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
+      nop.i 0
+};;
+{ .mfi
+      nop.m 0
+      fadd.s0    FR_Y_lo      = FR_poly_hi, FR_poly_lo  // Y_lo=poly_hi+poly_lo 
+      nop.i 0
+};;
+{ .mfb
+      nop.m 0
+      fadd.s0    FR_Res       = FR_Y_lo,FR_Y_hi    // Result=Y_lo+Y_hi
+      br.ret.sptk   b0                        // Common exit
+};;
+
+
+// NEAR ONE INTERVAL
+near_1:
+{ .mfi 
+      nop.m 0  
+      frsqrta.s1 FR_Rcp, p0   = FR_2XM1 // Rcp = 1/x reciprocal appr. &SQRT&
+      nop.i 0  
+};;
+
+{ .mfi 
+      nop.m 0  
+      fma.s1     FR_PV6       = FR_PP5, FR_XM1, FR_PP4 // pv6 = P5*xm1+P4 $POLY$
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+	  fma.s1     FR_QV6       = FR_QQ5, FR_XM1, FR_QQ4 // qv6 = Q5*xm1+Q4 $POLY$
+      nop.i 0  
+};;
+
+{ .mfi 
+      nop.m 0  
+	  fma.s1     FR_PV4       = FR_PP3, FR_XM1, FR_PP2 // pv4 = P3*xm1+P2 $POLY$
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+	  fma.s1     FR_QV4       = FR_QQ3, FR_XM1, FR_QQ2 // qv4 = Q3*xm1+Q2 $POLY$
+      nop.i 0  
+};;
+
+{ .mfi 
+      nop.m 0  
+	  fma.s1     FR_XM12      = FR_XM1, FR_XM1, f0 // xm1^2 = xm1 * xm1 $POLY$
+      nop.i 0  
+};;
+
+{ .mfi 
+      nop.m 0  
+	  fma.s1     FR_PV2       = FR_PP1, FR_XM1, FR_PP0 // pv2 = P1*xm1+P0 $POLY$
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+	  fma.s1     FR_QV2       = FR_QQ1, FR_XM1, FR_QQ0 // qv2 = Q1*xm1+Q0 $POLY$
+      nop.i 0  
+};;
+
+{ .mfi 
+      nop.m 0  
+      fma.s1     FR_GG        = FR_Rcp, FR_2XM1, f0 // g = Rcp * x &SQRT&                
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_HH        = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp &SQRT&
+      nop.i 0  
+};;
+
+
+{ .mfi 
+      nop.m 0  
+	  fma.s1    FR_PV3       = FR_XM12, FR_PV6, FR_PV4//pv3=pv6*xm1^2+pv4 $POLY$
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+	  fma.s1    FR_QV3       = FR_XM12, FR_QV6, FR_QV4//qv3=qv6*xm1^2+qv4 $POLY$
+      nop.i 0  
+};;
+
+
+{ .mfi 
+      nop.m 0  
+      fnma.s1   FR_EE        = FR_GG, FR_HH, FR_Half   // e = 0.5 - g * h &SQRT&
+      nop.i 0  
+};;
+
+{ .mfi 
+      nop.m 0  
+	  fma.s1    FR_PP        = FR_XM12, FR_PV3, FR_PV2 //pp=pv3*xm1^2+pv2 $POLY$
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+	  fma.s1    FR_QQ        = FR_XM12, FR_QV3, FR_QV2 //qq=qv3*xm1^2+qv2 $POLY$
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_GG        = FR_GG, FR_EE, FR_GG  // g = g * e + g &SQRT&
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_HH        = FR_HH, FR_EE, FR_HH  // h = h * e + h &SQRT&
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      frcpa.s1   FR_Y0,p0     = f1,FR_QQ // y = frcpa(b)  #DIV#
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fnma.s1    FR_EE        = FR_GG, FR_HH, FR_Half // e = 0.5 - g*h &SQRT&
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_Q0        = FR_PP,FR_Y0,f0 // q = a*y  #DIV#
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fnma.s1    FR_E0        = FR_Y0,FR_QQ,f1 // e = 1 - b*y  #DIV#
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_GG        = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT&             
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_HH        = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_E2        = FR_E0,FR_E0,FR_E0 // e2 = e+e^2 #DIV#
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_E1        = FR_E0,FR_E0,f0 // e1 = e^2 #DIV#
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fnma.s1   FR_EE        = FR_GG, FR_HH, FR_Half   // e = 0.5 - g * h &SQRT&
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+	  fnma.s1   FR_DD        = FR_GG, FR_GG, FR_2XM1   // d = x - g * g &SQRT&
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_Y1        = FR_Y0,FR_E2,FR_Y0 // y1 = y+y*e2 #DIV#
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_E3        = FR_E1,FR_E1,FR_E0 // e3 = e+e1^2 #DIV#
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_GG        = FR_DD, FR_HH, FR_GG // g = d * h + g &SQRT&
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_HH        = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_Y2        = FR_Y1,FR_E3,FR_Y0 // y2 = y+y1*e3 #DIV#
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fnma.s1    FR_R0        = FR_QQ,FR_Q0,FR_PP // r = a-b*q #DIV#
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fnma.s1    FR_DD        = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT&             
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fnma.s1    FR_E4        = FR_QQ,FR_Y2,f1    // e4 = 1-b*y2 #DIV#
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_X_Hi      = FR_R0,FR_Y2,FR_Q0 // x = q+r*y2 #DIV#
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_GL        = FR_DD, FR_HH, f0   // gl = d * h &SQRT&
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_Y3        = FR_Y2,FR_E4,FR_Y2 // y3 = y2+y2*e4 #DIV#
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fnma.s1    FR_R1        = FR_QQ,FR_X_Hi,FR_PP // r1 = a-b*x #DIV#
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_HH        = FR_GG, FR_X_Hi, f0 // hh = gg * x_hi
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_LH        = FR_GL, FR_X_Hi, f0 // lh = gl * x_hi
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_X_lo      = FR_R1,FR_Y3,f0 // x_lo = r1*y3 #DIV#
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_LL        = FR_GL, FR_X_lo, f0 // ll = gl*x_lo
+      nop.i 0  
+}
+{ .mfi
+      nop.m 0  
+      fma.s1     FR_HL        = FR_GG, FR_X_lo, f0 // hl = gg * x_lo
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+	  fms.s1     FR_Res       = FR_GL,  f1, FR_LL // res = gl + ll
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+	  fms.s1     FR_Res       = FR_Res, f1, FR_LH // res = res + lh
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+	  fms.s1     FR_Res       = FR_Res, f1, FR_HL // res = res + hl
+      nop.i 0  
+};;
+
+{ .mfi
+      nop.m 0  
+	  fms.s1     FR_Res       = FR_Res, f1, FR_HH // res = res + hh
+      nop.i 0  
+};;
+
+{ .mfb
+      nop.m 0  
+	  fma.s0     FR_Res       = FR_Res, f1, FR_GG  // result = res + gg
+      br.ret.sptk   b0                     // Exit for near 1 path
+};;
+// NEAR ONE INTERVAL END
+
+
+
+
+acoshl_lt_pone:
+{ .mfi
+      nop.m 0  
+      fmerge.s   FR_Arg_X            = FR_Arg, FR_Arg
+      nop.i 0  
+};;
+{ .mfb
+      mov        GR_Parameter_TAG    = 135
+      frcpa.s0   FR_Res,p0           = f0,f0 // get QNaN,and raise invalid
+      br.cond.sptk  __libm_error_region      // exit if x < 1.0
+};;
+
+GLOBAL_LIBM_END(acoshl)
+
+
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
+.prologue
+{ .mfi
+        add      GR_Parameter_Y      = -32,sp        // Parameter 2 value
+        nop.f 0
+.save   ar.pfs,GR_SAVE_PFS
+        mov      GR_SAVE_PFS         = ar.pfs        // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+        add      sp                  = -64,sp        // Create new stack
+        nop.f 0
+        mov      GR_SAVE_GP          = gp            // Save gp
+};;
+
+{ .mmi
+        stfe     [GR_Parameter_Y]    = FR_Arg_Y,16   // Parameter 2 to stack
+        add      GR_Parameter_X      = 16,sp         // Parameter 1 address
+.save   b0,GR_SAVE_B0
+        mov      GR_SAVE_B0          = b0            // Save b0
+};;
+
+.body
+{ .mib
+        stfe     [GR_Parameter_X]    = FR_Arg_X         // Parameter 1 to stack
+        add      GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+        nop.b 0                                 
+}
+{ .mib
+        stfe     [GR_Parameter_Y]    = FR_Res        // Parameter 3 to stack
+        add      GR_Parameter_Y      = -16,GR_Parameter_Y
+        br.call.sptk b0 = __libm_error_support#      // Error handling function
+};;
+
+{ .mmi
+        nop.m 0
+        nop.m 0
+        add      GR_Parameter_RESULT = 48,sp
+};;
+
+{ .mmi
+        ldfe     f8                  = [GR_Parameter_RESULT]  // Get return res
+.restore sp
+        add      sp                  = 64,sp       // Restore stack pointer
+        mov      b0                  = GR_SAVE_B0  // Restore return address
+};;
+
+{ .mib
+        mov      gp                  = GR_SAVE_GP  // Restore gp
+        mov      ar.pfs              = GR_SAVE_PFS // Restore ar.pfs
+        br.ret.sptk b0                             // Return
+};;
+
+LOCAL_LIBM_END(__libm_error_region#)
+
+.type   __libm_error_support#,@function
+.global __libm_error_support#
+
+
+
+