about summary refs log tree commit diff
path: root/sysdeps/i386/fpu/e_pow.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/i386/fpu/e_pow.S')
-rw-r--r--sysdeps/i386/fpu/e_pow.S320
1 files changed, 320 insertions, 0 deletions
diff --git a/sysdeps/i386/fpu/e_pow.S b/sysdeps/i386/fpu/e_pow.S
new file mode 100644
index 0000000000..75ad211872
--- /dev/null
+++ b/sysdeps/i386/fpu/e_pow.S
@@ -0,0 +1,320 @@
+/* ix87 specific implementation of pow function.
+   Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <machine/asm.h>
+
+#ifdef __ELF__
+	.section .rodata
+#else
+	.text
+#endif
+
+	.align ALIGNARG(4)
+	ASM_TYPE_DIRECTIVE(infinity,@object)
+inf_zero:
+infinity:
+	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
+	ASM_SIZE_DIRECTIVE(infinity)
+	ASM_TYPE_DIRECTIVE(zero,@object)
+zero:	.double 0.0
+	ASM_SIZE_DIRECTIVE(zero)
+	ASM_TYPE_DIRECTIVE(minf_mzero,@object)
+minf_mzero:
+minfinity:
+	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
+mzero:
+	.byte 0, 0, 0, 0, 0, 0, 0, 0x80
+	ASM_SIZE_DIRECTIVE(minf_mzero)
+	ASM_TYPE_DIRECTIVE(one,@object)
+one:	.double 1.0
+	ASM_SIZE_DIRECTIVE(one)
+	ASM_TYPE_DIRECTIVE(limit,@object)
+limit:	.double 0.29
+	ASM_SIZE_DIRECTIVE(limit)
+
+#ifdef PIC
+#define MO(op) op##@GOTOFF(%ecx)
+#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
+#else
+#define MO(op) op
+#define MOX(op,x,f) op(,x,f)
+#endif
+
+	.text
+ENTRY(__ieee754_pow)
+	fldl	12(%esp)	// y
+	fxam
+
+#ifdef	PIC
+	call	1f
+1:	popl	%ecx
+	addl	$_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
+#endif
+
+	fnstsw
+	movb	%ah, %dl
+	andb	$0x45, %ah
+	cmpb	$0x40, %ah	// is y == 0 ?
+	je	11f
+
+	cmpb	$0x05, %ah	// is y == ±inf ?
+	je	12f
+
+	cmpb	$0x01, %ah	// is y == NaN ?
+	je	30f
+
+	fldl	4(%esp)		// x : y
+
+	subl	$8,%esp
+
+	fxam
+	fnstsw
+	movb	%ah, %dh
+	andb	$0x45, %ah
+	cmpb	$0x40, %ah
+	je	20f		// x is ±0
+
+	cmpb	$0x05, %ah
+	je	15f		// x is ±inf
+
+	fxch			// y : x
+
+	/* First see whether `y' is a natural number.  In this case we
+	   can use a more precise algorithm.  */
+	fld	%st		// y : y : x
+	fistpll	(%esp)		// y : x
+	fildll	(%esp)		// int(y) : y : x
+	fucomp	%st(1)		// y : x
+	fnstsw
+	sahf
+	jne	2f
+
+	/* OK, we have an integer value for y.  */
+	popl	%eax
+	popl	%edx
+	orl	$0, %edx
+	fstp	%st(0)		// x
+	jns	4f		// y >= 0, jump
+	fdivrl	MO(one)		// 1/x		(now referred to as x)
+	negl	%eax
+	adcl	$0, %edx
+	negl	%edx
+4:	fldl	MO(one)		// 1 : x
+	fxch
+
+6:	shrdl	$1, %edx, %eax
+	jnc	5f
+	fxch
+	fmul	%st(1)		// x : ST*x
+	fxch
+5:	fmul	%st(0), %st	// x*x : ST*x
+	shrl	$1, %edx
+	movl	%eax, %ecx
+	orl	%edx, %ecx
+	jnz	6b
+	fstp	%st(0)		// ST*x
+30:	ret
+
+	.align ALIGNARG(4)
+2:	/* y is a real number.  */
+	fxch			// x : y
+	fldl	MO(one)		// 1.0 : x : y
+	fld	%st(1)		// x : 1.0 : x : y
+	fsub	%st(1)		// x-1 : 1.0 : x : y
+	fabs			// |x-1| : 1.0 : x : y
+	fcompl	MO(limit)	// 1.0 : x : y
+	fnstsw
+	fxch			// x : 1.0 : y
+	sahf
+	ja	7f
+	fsub	%st(1)		// x-1 : 1.0 : y
+	fyl2xp1			// log2(x) : y
+	jmp	8f
+
+7:	fyl2x			// log2(x) : y
+8:	fmul	%st(1)		// y*log2(x) : y
+	fst	%st(1)		// y*log2(x) : y*log2(x)
+	frndint			// int(y*log2(x)) : y*log2(x)
+	fsubr	%st, %st(1)	// int(y*log2(x)) : fract(y*log2(x))
+	fxch			// fract(y*log2(x)) : int(y*log2(x))
+	f2xm1			// 2^fract(y*log2(x))-1 : int(y*log2(x))
+	faddl	MO(one)		// 2^fract(y*log2(x)) : int(y*log2(x))
+	fscale			// 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
+	addl	$8, %esp
+	fstp	%st(1)		// 2^fract(y*log2(x))*2^int(y*log2(x))
+	ret
+
+
+	// pow(x,±0) = 1
+	.align ALIGNARG(4)
+11:	fstp	%st(0)		// pop y
+	fldl	MO(one)
+	ret
+
+	// y == ±inf
+	.align ALIGNARG(4)
+12:	fstp	%st(0)		// pop y
+	fldl	4(%esp)		// x
+	fabs
+	fcompl	MO(one)		// < 1, == 1, or > 1
+	fnstsw
+	andb	$0x45, %ah
+	cmpb	$0x45, %ah
+	je	13f		// jump if x is NaN
+
+	cmpb	$0x40, %ah
+	je	14f		// jump if |x| == 1
+
+	shlb	$1, %ah
+	xorb	%ah, %dl
+	andl	$2, %edx
+	fldl	MOX(inf_zero, %edx, 4)
+	ret
+
+	.align ALIGNARG(4)
+14:	fldl	MO(infinity)
+	fmull	MO(zero)	// raise invalid exception
+	ret
+
+	.align ALIGNARG(4)
+13:	fldl	4(%esp)		// load x == NaN
+	ret
+
+	.align ALIGNARG(4)
+	// x is ±inf
+15:	fstp	%st(0)		// y
+	testb	$2, %dh
+	jz	16f		// jump if x == +inf
+
+	// We must find out whether y is an odd integer.
+	fld	%st		// y : y
+	fistpll	(%esp)		// y
+	fildll	(%esp)		// int(y) : y
+	fucompp			// <empty>
+	fnstsw
+	sahf
+	jne	17f
+
+	// OK, the value is an integer, but is the number of bits small
+	// enough so that all are coming from the mantissa?
+	popl	%eax
+	popl	%edx
+	andb	$1, %al
+	jz	18f		// jump if not odd
+	movl	%edx, %eax
+	orl	%edx, %edx
+	jns	155f
+	negl	%eax
+155:	cmpl	$0x00200000, %eax
+	ja	18f		// does not fit in mantissa bits
+	// It's an odd integer.
+	shrl	$31, %edx
+	fldl	MOX(minf_mzero, %edx, 8)
+	ret
+
+	.align ALIGNARG(4)
+16:	fcompl	MO(zero)
+	addl	$8, %esp
+	fnstsw
+	shrl	$5, %eax
+	andl	$8, %eax
+	fldl	MOX(inf_zero, %eax, 1)
+	ret
+
+	.align ALIGNARG(4)
+17:	shll	$30, %edx	// sign bit for y in right position
+	addl	$8, %esp
+18:	shrl	$31, %edx
+	fldl	MOX(inf_zero, %edx, 8)
+	ret
+
+	.align ALIGNARG(4)
+	// x is ±0
+20:	fstp	%st(0)		// y
+	testb	$2, %dl
+	jz	21f		// y > 0
+
+	// x is ±0 and y is < 0.  We must find out whether y is an odd integer.
+	testb	$2, %dh
+	jz	25f
+
+	fld	%st		// y : y
+	fistpll	(%esp)		// y
+	fildll	(%esp)		// int(y) : y
+	fucompp			// <empty>
+	fnstsw
+	sahf
+	jne	26f
+
+	// OK, the value is an integer, but is the number of bits small
+	// enough so that all are coming from the mantissa?
+	popl	%eax
+	popl	%edx
+	andb	$1, %al
+	jz	27f		// jump if not odd
+	cmpl	$0xffe00000, %edx
+	jbe	27f		// does not fit in mantissa bits
+	// It's an odd integer.
+	// Raise divide-by-zero exception and get minus infinity value.
+	fldl	MO(one)
+	fdivl	MO(zero)
+	fchs
+	ret
+
+25:	fstp	%st(0)
+26:	popl	%eax
+	popl	%edx
+27:	// Raise divide-by-zero exception and get infinity value.
+	fldl	MO(one)
+	fdivl	MO(zero)
+	ret
+
+	.align ALIGNARG(4)
+	// x is ±0 and y is > 0.  We must find out whether y is an odd integer.
+21:	testb	$2, %dh
+	jz	22f
+
+	fld	%st		// y : y
+	fistpll	(%esp)		// y
+	fildll	(%esp)		// int(y) : y
+	fucompp			// <empty>
+	fnstsw
+	sahf
+	jne	23f
+
+	// OK, the value is an integer, but is the number of bits small
+	// enough so that all are coming from the mantissa?
+	popl	%eax
+	popl	%edx
+	andb	$1, %al
+	jz	24f		// jump if not odd
+	cmpl	$0xffe00000, %edx
+	jae	24f		// does not fit in mantissa bits
+	// It's an odd integer.
+	fldl	MO(mzero)
+	ret
+
+22:	fstp	%st(0)
+23:	popl	%eax
+	popl	%edx
+24:	fldl	MO(zero)
+	ret
+
+END(__ieee754_pow)