about summary refs log tree commit diff
path: root/sysdeps/generic/mul_n.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/generic/mul_n.c')
-rw-r--r--sysdeps/generic/mul_n.c401
1 files changed, 0 insertions, 401 deletions
diff --git a/sysdeps/generic/mul_n.c b/sysdeps/generic/mul_n.c
deleted file mode 100644
index 2120cd4f59..0000000000
--- a/sysdeps/generic/mul_n.c
+++ /dev/null
@@ -1,401 +0,0 @@
-/* mpn_mul_n -- Multiply two natural numbers of length n.
-
-Copyright (C) 1991, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
-
-This file is part of the GNU MP Library.
-
-The GNU MP Library is free software; you can redistribute it and/or modify
-it under the terms of the GNU Lesser General Public License as published by
-the Free Software Foundation; either version 2.1 of the License, or (at your
-option) any later version.
-
-The GNU MP Library is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
-or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
-License for more details.
-
-You should have received a copy of the GNU Lesser General Public License
-along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
-the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
-MA 02111-1307, USA. */
-
-#include "gmp.h"
-#include "gmp-impl.h"
-
-/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
-   both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
-   always stored.  Return the most significant limb.
-
-   Argument constraints:
-   1. PRODP != UP and PRODP != VP, i.e. the destination
-      must be distinct from the multiplier and the multiplicand.  */
-
-/* If KARATSUBA_THRESHOLD is not already defined, define it to a
-   value which is good on most machines.  */
-#ifndef KARATSUBA_THRESHOLD
-#define KARATSUBA_THRESHOLD 32
-#endif
-
-/* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */
-#if KARATSUBA_THRESHOLD < 2
-#undef KARATSUBA_THRESHOLD
-#define KARATSUBA_THRESHOLD 2
-#endif
-
-/* Handle simple cases with traditional multiplication.
-
-   This is the most critical code of multiplication.  All multiplies rely
-   on this, both small and huge.  Small ones arrive here immediately.  Huge
-   ones arrive here as this is the base case for Karatsuba's recursive
-   algorithm below.  */
-
-void
-#if __STDC__
-impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
-#else
-impn_mul_n_basecase (prodp, up, vp, size)
-     mp_ptr prodp;
-     mp_srcptr up;
-     mp_srcptr vp;
-     mp_size_t size;
-#endif
-{
-  mp_size_t i;
-  mp_limb_t cy_limb;
-  mp_limb_t v_limb;
-
-  /* Multiply by the first limb in V separately, as the result can be
-     stored (not added) to PROD.  We also avoid a loop for zeroing.  */
-  v_limb = vp[0];
-  if (v_limb <= 1)
-    {
-      if (v_limb == 1)
-	MPN_COPY (prodp, up, size);
-      else
-	MPN_ZERO (prodp, size);
-      cy_limb = 0;
-    }
-  else
-    cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
-
-  prodp[size] = cy_limb;
-  prodp++;
-
-  /* For each iteration in the outer loop, multiply one limb from
-     U with one limb from V, and add it to PROD.  */
-  for (i = 1; i < size; i++)
-    {
-      v_limb = vp[i];
-      if (v_limb <= 1)
-	{
-	  cy_limb = 0;
-	  if (v_limb == 1)
-	    cy_limb = mpn_add_n (prodp, prodp, up, size);
-	}
-      else
-	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
-
-      prodp[size] = cy_limb;
-      prodp++;
-    }
-}
-
-void
-#if __STDC__
-impn_mul_n (mp_ptr prodp,
-	     mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)
-#else
-impn_mul_n (prodp, up, vp, size, tspace)
-     mp_ptr prodp;
-     mp_srcptr up;
-     mp_srcptr vp;
-     mp_size_t size;
-     mp_ptr tspace;
-#endif
-{
-  if ((size & 1) != 0)
-    {
-      /* The size is odd, the code code below doesn't handle that.
-	 Multiply the least significant (size - 1) limbs with a recursive
-	 call, and handle the most significant limb of S1 and S2
-	 separately.  */
-      /* A slightly faster way to do this would be to make the Karatsuba
-	 code below behave as if the size were even, and let it check for
-	 odd size in the end.  I.e., in essence move this code to the end.
-	 Doing so would save us a recursive call, and potentially make the
-	 stack grow a lot less.  */
-
-      mp_size_t esize = size - 1;	/* even size */
-      mp_limb_t cy_limb;
-
-      MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);
-      cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);
-      prodp[esize + esize] = cy_limb;
-      cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]);
-
-      prodp[esize + size] = cy_limb;
-    }
-  else
-    {
-      /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
-
-	 Split U in two pieces, U1 and U0, such that
-	 U = U0 + U1*(B**n),
-	 and V in V1 and V0, such that
-	 V = V0 + V1*(B**n).
-
-	 UV is then computed recursively using the identity
-
-		2n   n          n                     n
-	 UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
-			1 1        1  0   0  1              0 0
-
-	 Where B = 2**BITS_PER_MP_LIMB.  */
-
-      mp_size_t hsize = size >> 1;
-      mp_limb_t cy;
-      int negflg;
-
-      /*** Product H.	 ________________  ________________
-			|_____U1 x V1____||____U0 x V0_____|  */
-      /* Put result in upper part of PROD and pass low part of TSPACE
-	 as new TSPACE.  */
-      MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);
-
-      /*** Product M.	 ________________
-			|_(U1-U0)(V0-V1)_|  */
-      if (mpn_cmp (up + hsize, up, hsize) >= 0)
-	{
-	  mpn_sub_n (prodp, up + hsize, up, hsize);
-	  negflg = 0;
-	}
-      else
-	{
-	  mpn_sub_n (prodp, up, up + hsize, hsize);
-	  negflg = 1;
-	}
-      if (mpn_cmp (vp + hsize, vp, hsize) >= 0)
-	{
-	  mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);
-	  negflg ^= 1;
-	}
-      else
-	{
-	  mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);
-	  /* No change of NEGFLG.  */
-	}
-      /* Read temporary operands from low part of PROD.
-	 Put result in low part of TSPACE using upper part of TSPACE
-	 as new TSPACE.  */
-      MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);
-
-      /*** Add/copy product H.  */
-      MPN_COPY (prodp + hsize, prodp + size, hsize);
-      cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
-
-      /*** Add product M (if NEGFLG M is a negative number).  */
-      if (negflg)
-	cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
-      else
-	cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
-
-      /*** Product L.	 ________________  ________________
-			|________________||____U0 x V0_____|  */
-      /* Read temporary operands from low part of PROD.
-	 Put result in low part of TSPACE using upper part of TSPACE
-	 as new TSPACE.  */
-      MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);
-
-      /*** Add/copy Product L (twice).  */
-
-      cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
-      if (cy)
-	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
-
-      MPN_COPY (prodp, tspace, hsize);
-      cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
-      if (cy)
-	mpn_add_1 (prodp + size, prodp + size, size, 1);
-    }
-}
-
-void
-#if __STDC__
-impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size)
-#else
-impn_sqr_n_basecase (prodp, up, size)
-     mp_ptr prodp;
-     mp_srcptr up;
-     mp_size_t size;
-#endif
-{
-  mp_size_t i;
-  mp_limb_t cy_limb;
-  mp_limb_t v_limb;
-
-  /* Multiply by the first limb in V separately, as the result can be
-     stored (not added) to PROD.  We also avoid a loop for zeroing.  */
-  v_limb = up[0];
-  if (v_limb <= 1)
-    {
-      if (v_limb == 1)
-	MPN_COPY (prodp, up, size);
-      else
-	MPN_ZERO (prodp, size);
-      cy_limb = 0;
-    }
-  else
-    cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
-
-  prodp[size] = cy_limb;
-  prodp++;
-
-  /* For each iteration in the outer loop, multiply one limb from
-     U with one limb from V, and add it to PROD.  */
-  for (i = 1; i < size; i++)
-    {
-      v_limb = up[i];
-      if (v_limb <= 1)
-	{
-	  cy_limb = 0;
-	  if (v_limb == 1)
-	    cy_limb = mpn_add_n (prodp, prodp, up, size);
-	}
-      else
-	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
-
-      prodp[size] = cy_limb;
-      prodp++;
-    }
-}
-
-void
-#if __STDC__
-impn_sqr_n (mp_ptr prodp,
-	     mp_srcptr up, mp_size_t size, mp_ptr tspace)
-#else
-impn_sqr_n (prodp, up, size, tspace)
-     mp_ptr prodp;
-     mp_srcptr up;
-     mp_size_t size;
-     mp_ptr tspace;
-#endif
-{
-  if ((size & 1) != 0)
-    {
-      /* The size is odd, the code code below doesn't handle that.
-	 Multiply the least significant (size - 1) limbs with a recursive
-	 call, and handle the most significant limb of S1 and S2
-	 separately.  */
-      /* A slightly faster way to do this would be to make the Karatsuba
-	 code below behave as if the size were even, and let it check for
-	 odd size in the end.  I.e., in essence move this code to the end.
-	 Doing so would save us a recursive call, and potentially make the
-	 stack grow a lot less.  */
-
-      mp_size_t esize = size - 1;	/* even size */
-      mp_limb_t cy_limb;
-
-      MPN_SQR_N_RECURSE (prodp, up, esize, tspace);
-      cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]);
-      prodp[esize + esize] = cy_limb;
-      cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]);
-
-      prodp[esize + size] = cy_limb;
-    }
-  else
-    {
-      mp_size_t hsize = size >> 1;
-      mp_limb_t cy;
-
-      /*** Product H.	 ________________  ________________
-			|_____U1 x U1____||____U0 x U0_____|  */
-      /* Put result in upper part of PROD and pass low part of TSPACE
-	 as new TSPACE.  */
-      MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace);
-
-      /*** Product M.	 ________________
-			|_(U1-U0)(U0-U1)_|  */
-      if (mpn_cmp (up + hsize, up, hsize) >= 0)
-	{
-	  mpn_sub_n (prodp, up + hsize, up, hsize);
-	}
-      else
-	{
-	  mpn_sub_n (prodp, up, up + hsize, hsize);
-	}
-
-      /* Read temporary operands from low part of PROD.
-	 Put result in low part of TSPACE using upper part of TSPACE
-	 as new TSPACE.  */
-      MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size);
-
-      /*** Add/copy product H.  */
-      MPN_COPY (prodp + hsize, prodp + size, hsize);
-      cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
-
-      /*** Add product M (if NEGFLG M is a negative number).  */
-      cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
-
-      /*** Product L.	 ________________  ________________
-			|________________||____U0 x U0_____|  */
-      /* Read temporary operands from low part of PROD.
-	 Put result in low part of TSPACE using upper part of TSPACE
-	 as new TSPACE.  */
-      MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
-
-      /*** Add/copy Product L (twice).  */
-
-      cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
-      if (cy)
-	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
-
-      MPN_COPY (prodp, tspace, hsize);
-      cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
-      if (cy)
-	mpn_add_1 (prodp + size, prodp + size, size, 1);
-    }
-}
-
-/* This should be made into an inline function in gmp.h.  */
-void
-#if __STDC__
-mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
-#else
-mpn_mul_n (prodp, up, vp, size)
-     mp_ptr prodp;
-     mp_srcptr up;
-     mp_srcptr vp;
-     mp_size_t size;
-#endif
-{
-  TMP_DECL (marker);
-  TMP_MARK (marker);
-  if (up == vp)
-    {
-      if (size < KARATSUBA_THRESHOLD)
-	{
-	  impn_sqr_n_basecase (prodp, up, size);
-	}
-      else
-	{
-	  mp_ptr tspace;
-	  tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
-	  impn_sqr_n (prodp, up, size, tspace);
-	}
-    }
-  else
-    {
-      if (size < KARATSUBA_THRESHOLD)
-	{
-	  impn_mul_n_basecase (prodp, up, vp, size);
-	}
-      else
-	{
-	  mp_ptr tspace;
-	  tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
-	  impn_mul_n (prodp, up, vp, size, tspace);
-	}
-    }
-  TMP_FREE (marker);
-}