about summary refs log tree commit diff
path: root/stdio/printf_fp.c
diff options
context:
space:
mode:
Diffstat (limited to 'stdio/printf_fp.c')
-rw-r--r--stdio/printf_fp.c990
1 files changed, 0 insertions, 990 deletions
diff --git a/stdio/printf_fp.c b/stdio/printf_fp.c
deleted file mode 100644
index 28d13d61b8..0000000000
--- a/stdio/printf_fp.c
+++ /dev/null
@@ -1,990 +0,0 @@
-/* Floating point output for `printf'.
-Copyright (C) 1995 Free Software Foundation, Inc.
-Written by Ulrich Drepper.
-
-This file is part of the GNU C Library.
-
-The GNU C Library is free software; you can redistribute it and/or
-modify it under the terms of the GNU Library General Public License as
-published by the Free Software Foundation; either version 2 of the
-License, or (at your option) any later version.
-
-The GNU C Library is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-Library General Public License for more details.
-
-You should have received a copy of the GNU Library General Public
-License along with the GNU C Library; see the file COPYING.LIB.	 If
-not, write to the Free Software Foundation, Inc., 675 Mass Ave,
-Cambridge, MA 02139, USA.  */
-
-#ifdef USE_IN_LIBIO
-#  include <libioP.h>
-#else
-#  include <stdio.h>
-#endif
-#include <alloca.h>
-#include <ansidecl.h>
-#include <ctype.h>
-#include <float.h>
-#include <gmp-mparam.h>
-#include "../stdlib/gmp.h"
-#include "../stdlib/gmp-impl.h"
-#include "../stdlib/longlong.h"
-#include "../stdlib/fpioconst.h"
-#include "../locale/localeinfo.h"
-#include <limits.h>
-#include <math.h>
-#include <printf.h>
-#include <string.h>
-#include <unistd.h>
-#include <stdlib.h>
-
-#define NDEBUG			/* Undefine this for debugging assertions.  */
-#include <assert.h>
-
-/* This defines make it possible to use the same code for GNU C library and
-   the GNU I/O library.	 */
-#ifdef USE_IN_LIBIO
-#  define PUT(f, s, n) _IO_sputn (f, s, n)
-#  define PAD(f, c, n) _IO_padn (f, c, n)
-/* We use this file GNU C library and GNU I/O library.	So make
-   names equal.	 */
-#  undef putc
-#  define putc(c, f) _IO_putc (c, f)
-#  define size_t     _IO_size_t
-#  define FILE	     _IO_FILE
-#else	/* ! USE_IN_LIBIO */
-#  define PUT(f, s, n) fwrite (s, 1, n, f)
-#  define PAD(f, c, n) __printf_pad (f, c, n)
-ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c.  */
-#endif	/* USE_IN_LIBIO */
-
-/* Macros for doing the actual output.  */
-
-#define outchar(ch)							      \
-  do									      \
-    {									      \
-      register CONST int outc = (ch);					      \
-      if (putc (outc, fp) == EOF)					      \
-	return -1;							      \
-      ++done;								      \
-    } while (0)
-
-#define PRINT(ptr, len)							      \
-  do									      \
-    {									      \
-      register size_t outlen = (len);					      \
-      if (len > 20)							      \
-	{								      \
-	  if (PUT (fp, ptr, outlen) != outlen)				      \
-	    return -1;							      \
-	  ptr += outlen;						      \
-	  done += outlen;						      \
-	}								      \
-      else								      \
-	{								      \
-	  while (outlen-- > 0)						      \
-	    outchar (*ptr++);						      \
-	}								      \
-    } while (0)
-
-#define PADN(ch, len)							      \
-  do									      \
-    {									      \
-      if (PAD (fp, ch, len) != len)					      \
-	return -1;							      \
-      done += len;							      \
-    }									      \
-  while (0)
-
-/* We use the GNU MP library to handle large numbers.
-
-   An MP variable occupies a varying number of entries in its array.  We keep
-   track of this number for efficiency reasons.  Otherwise we would always
-   have to process the whole array.  */
-#define MPN_VAR(name) mp_limb *name; mp_size_t name##size
-
-#define MPN_ASSIGN(dst,src)						      \
-  memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb))
-#define MPN_GE(u,v) \
-  (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
-
-extern int __isinfl (long double), __isnanl (long double);
-
-extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
-				       int *expt, int *is_neg,
-				       double value);
-extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
-					    int *expt, int *is_neg,
-					    long double value);
-
-
-static unsigned int guess_grouping (unsigned int intdig_max,
-				    const char *grouping, wchar_t sepchar);
-static char *group_number (char *buf, char *bufend, unsigned int intdig_no,
-			   const char *grouping, wchar_t thousands_sep);
-
-
-int
-__printf_fp (fp, info, args)
-     FILE *fp;
-     const struct printf_info *info;
-     const **const args;
-{
-  /* The floating-point value to output.  */
-  union
-    {
-      double dbl;
-      LONG_DOUBLE ldbl;
-    }
-  fpnum;
-
-  /* Locale-dependent representation of decimal point.	*/
-  wchar_t decimal;
-
-  /* Locale-dependent thousands separator and grouping specification.  */
-  wchar_t thousands_sep;
-  const char *grouping;
-
-  /* "NaN" or "Inf" for the special cases.  */
-  CONST char *special = NULL;
-
-  /* We need just a few limbs for the input before shifting to the right
-     position.	*/
-  mp_limb fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
-  /* We need to shift the contents of fp_input by this amount of bits.	*/
-  int to_shift;
-
-  /* The significant of the floting-point value in question  */
-  MPN_VAR(frac);
-  /* and the exponent.	*/
-  int exponent;
-  /* Sign of the exponent.  */
-  int expsign = 0;
-  /* Sign of float number.  */
-  int is_neg = 0;
-
-  /* Scaling factor.  */
-  MPN_VAR(scale);
-
-  /* Temporary bignum value.  */
-  MPN_VAR(tmp);
-
-  /* Digit which is result of last hack_digit() call.  */
-  int digit;
-
-  /* The type of output format that will be used: 'e'/'E' or 'f'.  */
-  int type;
-
-  /* Counter for number of written characters.	*/
-  int done = 0;
-
-  /* General helper (carry limb).  */
-  mp_limb cy;
-
-  char hack_digit (void)
-    {
-      mp_limb hi;
-
-      if (expsign != 0 && type == 'f' && exponent-- > 0)
-	hi = 0;
-      else if (scalesize == 0)
-	{
-	  hi = frac[fracsize - 1];
-	  cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
-	  frac[fracsize - 1] = cy;
-	}
-      else
-	{
-	  if (fracsize < scalesize)
-	    hi = 0;
-	  else
-	    {
-	      hi = __mpn_divmod (tmp, frac, fracsize, scale, scalesize);
-	      tmp[fracsize - scalesize] = hi;
-	      hi = tmp[0];
-
-	      fracsize = __mpn_normal_size (frac, scalesize);
-	      if (fracsize == 0)
-		{
-		  /* We're not prepared for an mpn variable with zero
-		     limbs.  */
-		  fracsize = 1;
-		  return '0' + hi;
-		}
-	    }
-
-	  cy = __mpn_mul_1 (frac, frac, fracsize, 10);
-	  if (cy != 0)
-	    frac[fracsize++] = cy;
-	}
-
-      return '0' + hi;
-    }
-
-
-  /* Figure out the decimal point character.  */
-  if (mbtowc (&decimal, _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT),
-	      strlen (_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT))) <= 0)
-    decimal = (wchar_t) *_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
-
-
-  if (info->group)
-    {
-      grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
-      if (*grouping <= 0 || *grouping == CHAR_MAX)
-	grouping = NULL;
-      else
-	{
-	  /* Figure out the thousands seperator character.  */
-	  if (mbtowc (&thousands_sep, _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP),
-		      strlen (_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP))) <= 0)
-	    thousands_sep = (wchar_t) *_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
-	  if (thousands_sep == L'\0')
-	    grouping = NULL;
-	}
-    }
-  else
-    grouping = NULL;
-
-  /* Fetch the argument value.	*/
-  if (info->is_long_double && sizeof (long double) > sizeof (double))
-    {
-      fpnum.ldbl = *(const long double *) args[0];
-
-      /* Check for special values: not a number or infinity.  */
-      if (__isnanl (fpnum.ldbl))
-	{
-	  special = "NaN";
-	  is_neg = 0;
-	}
-      else if (__isinfl (fpnum.ldbl))
-	{
-	  special = "Inf";
-	  is_neg = fpnum.ldbl < 0;
-	}
-      else
-	{
-	  fracsize = __mpn_extract_long_double (fp_input,
-						(sizeof (fp_input) /
-						 sizeof (fp_input[0])), 
-						&exponent, &is_neg,
-						fpnum.ldbl);
-	  to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
-	}
-    }
-  else
-    {
-      fpnum.dbl = *(const double *) args[0];
-
-      /* Check for special values: not a number or infinity.  */
-      if (__isnan (fpnum.dbl))
-	{
-	  special = "NaN";
-	  is_neg = 0;
-	}
-      else if (__isinf (fpnum.dbl))
-	{
-	  special = "Inf";
-	  is_neg = fpnum.dbl < 0;
-	}
-      else
-	{
-	  fracsize = __mpn_extract_double (fp_input,
-					   (sizeof (fp_input)
-					    / sizeof (fp_input[0])),
-					   &exponent, &is_neg, fpnum.dbl);
-	  to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
-	}
-    }
-
-  if (special)
-    {
-      int width = info->prec > info->width ? info->prec : info->width;
-
-      if (is_neg || info->showsign || info->space)
-	--width;
-      width -= 3;
-
-      if (!info->left && width > 0)
-	PADN (' ', width);
-
-      if (is_neg)
-	outchar ('-');
-      else if (info->showsign)
-	outchar ('+');
-      else if (info->space)
-	outchar (' ');
-
-      PRINT (special, 3);
-
-      if (info->left && width > 0)
-	PADN (' ', width);
-
-      return done;
-    }
-
-
-  /* We need three multiprecision variables.  Now that we have the exponent
-     of the number we can allocate the needed memory.  It would be more
-     efficient to use variables of the fixed maximum size but because this
-     would be really big it could lead to memory problems.  */
-  {
-    mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
-			     / BITS_PER_MP_LIMB + 3) * sizeof (mp_limb);
-    frac = (mp_limb *) alloca (bignum_size);
-    tmp = (mp_limb *) alloca (bignum_size);
-    scale = (mp_limb *) alloca (bignum_size);
-  }
-
-  /* We now have to distinguish between numbers with positive and negative
-     exponents because the method used for the one is not applicable/efficient
-     for the other.  */
-  scalesize = 0;
-  if (exponent > 2)
-    {
-      /* |FP| >= 1.0.  */
-      int scaleexpo = 0;
-      int explog = LDBL_MAX_10_EXP_LOG;
-      int exp10 = 0;
-      const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
-      int cnt_h, cnt_l, i;
-
-      if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
-	{
-	  MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
-			 fp_input, fracsize);
-	  fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
-	}
-      else
-	{
-	  cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
-			     fp_input, fracsize,
-			     (exponent + to_shift) % BITS_PER_MP_LIMB);
-	  fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
-	  if (cy)
-	    frac[fracsize++] = cy;
-	}
-      MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
-
-      assert (tens > &_fpioconst_pow10[0]);
-      do
-	{
-	  --tens;
-
-	  /* The number of the product of two binary numbers with n and m
-	     bits respectively has m+n or m+n-1 bits.	*/
-	  if (exponent >= scaleexpo + tens->p_expo - 1)
-	    {
-	      if (scalesize == 0)
-		MPN_ASSIGN (tmp, tens->array);
-	      else
-		{
-		  cy = __mpn_mul (tmp, scale, scalesize,
-				  tens->array + 2, tens->arraysize - 2);
-		  tmpsize = scalesize + tens->arraysize - 2;
-		  if (cy == 0)
-		    --tmpsize;
-		}
-
-	      if (MPN_GE (frac, tmp))
-		{
-		  int cnt;
-		  MPN_ASSIGN (scale, tmp);
-		  count_leading_zeros (cnt, scale[scalesize - 1]);
-		  scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
-		  exp10 |= 1 << explog;
-		}
-	    }
-	  --explog;
-	}
-      while (tens > &_fpioconst_pow10[0]);
-      exponent = exp10;
-
-      /* Optimize number representations.  We want to represent the numbers
-	 with the lowest number of bytes possible without losing any
-	 bytes. Also the highest bit in the scaling factor has to be set
-	 (this is a requirement of the MPN division routines).  */
-      if (scalesize > 0)
-	{
-	  /* Determine minimum number of zero bits at the end of
-	     both numbers.  */
-	  for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
-	    ;
-
-	  /* Determine number of bits the scaling factor is misplaced.	*/
-	  count_leading_zeros (cnt_h, scale[scalesize - 1]);
-
-	  if (cnt_h == 0)
-	    {
-	      /* The highest bit of the scaling factor is already set.	So
-		 we only have to remove the trailing empty limbs.  */
-	      if (i > 0)
-		{
-		  MPN_COPY_INCR (scale, scale + i, scalesize - i);
-		  scalesize -= i;
-		  MPN_COPY_INCR (frac, frac + i, fracsize - i);
-		  fracsize -= i;
-		}
-	    }
-	  else
-	    {
-	      if (scale[i] != 0)
-		{
-		  count_trailing_zeros (cnt_l, scale[i]);
-		  if (frac[i] != 0)
-		    {
-		      int cnt_l2;
-		      count_trailing_zeros (cnt_l2, frac[i]);
-		      if (cnt_l2 < cnt_l)
-			cnt_l = cnt_l2;
-		    }
-		}
-	      else
-		count_trailing_zeros (cnt_l, frac[i]);
-
-	      /* Now shift the numbers to their optimal position.  */
-	      if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
-		{
-		  /* We cannot save any memory.	 So just roll both numbers
-		     so that the scaling factor has its highest bit set.  */
-
-		  (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
-		  cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
-		  if (cy != 0)
-		    frac[fracsize++] = cy;
-		}
-	      else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
-		{
-		  /* We can save memory by removing the trailing zero limbs
-		     and by packing the non-zero limbs which gain another
-		     free one. */
-
-		  (void) __mpn_rshift (scale, scale + i, scalesize - i,
-				       BITS_PER_MP_LIMB - cnt_h);
-		  scalesize -= i + 1;
-		  (void) __mpn_rshift (frac, frac + i, fracsize - i,
-				       BITS_PER_MP_LIMB - cnt_h);
-		  fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
-		}
-	      else
-		{
-		  /* We can only save the memory of the limbs which are zero.
-		     The non-zero parts occupy the same number of limbs.  */
-
-		  (void) __mpn_rshift (scale, scale + (i - 1),
-				       scalesize - (i - 1),
-				       BITS_PER_MP_LIMB - cnt_h);
-		  scalesize -= i;
-		  (void) __mpn_rshift (frac, frac + (i - 1),
-				       fracsize - (i - 1),
-				       BITS_PER_MP_LIMB - cnt_h);
-		  fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
-		}
-	    }
-	}
-    }
-  else if (exponent < 0)
-    {
-      /* |FP| < 1.0.  */
-      int exp10 = 0;
-      int explog = LDBL_MAX_10_EXP_LOG;
-      const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
-      mp_size_t used_limbs = fracsize - 1;
-
-      /* Now shift the input value to its right place.	*/
-      cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
-      frac[fracsize++] = cy; 
-      assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
-
-      expsign = 1;
-      exponent = -exponent;
-
-      assert (tens != &_fpioconst_pow10[0]);
-      do
-	{
-	  --tens;
-
-	  if (exponent >= tens->m_expo)
-	    {
-	      int i, incr, cnt_h, cnt_l;
-	      mp_limb topval[2];
-
-	      /* The __mpn_mul function expects the first argument to be
-		 bigger than the second.  */
-	      if (fracsize < tens->arraysize - 2)
-		cy = __mpn_mul (tmp, &tens->array[2], tens->arraysize - 2,
-				frac, fracsize);
-	      else
-		cy = __mpn_mul (tmp, frac, fracsize,
-				&tens->array[2], tens->arraysize - 2);
-	      tmpsize = fracsize + tens->arraysize - 2;
-	      if (cy == 0)
-		--tmpsize;
-
-	      count_leading_zeros (cnt_h, tmp[tmpsize - 1]); 
-	      incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
-		     + BITS_PER_MP_LIMB - 1 - cnt_h;
-
-	      assert (incr <= tens->p_expo);
-
-	      /* If we increased the exponent by exactly 3 we have to test
-		 for overflow.	This is done by comparing with 10 shifted
-		 to the right position.	 */
-	      if (incr == exponent + 3)
-		if (cnt_h <= BITS_PER_MP_LIMB - 4)
-		  {
-		    topval[0] = 0;
-		    topval[1] = 10 << (BITS_PER_MP_LIMB - 4 - cnt_h);
-		  }
-		else
-		  {
-		    topval[0] = 10 << (BITS_PER_MP_LIMB - 4);
-		    topval[1] = 0;
-		    (void) __mpn_lshift (topval, topval, 2,
-					 BITS_PER_MP_LIMB - cnt_h);
-		  }
-
-	      /* We have to be careful when multiplying the last factor.
-		 If the result is greater than 1.0 be have to test it
-		 against 10.0.  If it is greater or equal to 10.0 the
-		 multiplication was not valid.  This is because we cannot
-		 determine the number of bits in the result in advance.  */
-	      if (incr < exponent + 3
-		  || (incr == exponent + 3 &&
-		      (tmp[tmpsize - 1] < topval[1]
-		       || (tmp[tmpsize - 1] == topval[1]
-			   && tmp[tmpsize - 2] < topval[0]))))
-		{
-		  /* The factor is right.  Adapt binary and decimal
-		     exponents.	 */ 
-		  exponent -= incr;
-		  exp10 |= 1 << explog;
-
-		  /* If this factor yields a number greater or equal to
-		     1.0, we must not shift the non-fractional digits down. */
-		  if (exponent < 0)
-		    cnt_h += -exponent;
-
-		  /* Now we optimize the number representation.	 */
-		  for (i = 0; tmp[i] == 0; ++i);
-		  if (cnt_h == BITS_PER_MP_LIMB - 1)
-		    {
-		      MPN_COPY (frac, tmp + i, tmpsize - i);
-		      fracsize = tmpsize - i;
-		    }
-		  else
-		    {
-		      count_trailing_zeros (cnt_l, tmp[i]);
-
-		      /* Now shift the numbers to their optimal position.  */
-		      if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
-			{
-			  /* We cannot save any memory.	 Just roll the
-			     number so that the leading digit is in a
-			     seperate limb.  */
-
-			  cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
-			  fracsize = tmpsize + 1;
-			  frac[fracsize - 1] = cy;
-			}
-		      else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
-			{
-			  (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
-					       BITS_PER_MP_LIMB - 1 - cnt_h);
-			  fracsize = tmpsize - i;
-			}
-		      else
-			{
-			  /* We can only save the memory of the limbs which
-			     are zero.	The non-zero parts occupy the same
-			     number of limbs.  */
-
-			  (void) __mpn_rshift (frac, tmp + (i - 1),
-					       tmpsize - (i - 1),
-					       BITS_PER_MP_LIMB - 1 - cnt_h);
-			  fracsize = tmpsize - (i - 1);
-			}
-		    }
-		  used_limbs = fracsize - 1;
-		}
-	    }
-	  --explog;
-	}
-      while (tens != &_fpioconst_pow10[1] && exponent > 0);
-      /* All factors but 10^-1 are tested now.	*/
-      if (exponent > 0)
-	{
-	  cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
-	  tmpsize = fracsize;
-	  assert (cy == 0 || tmp[tmpsize - 1] < 20);
-
-	  (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
-	  fracsize = tmpsize;
-	  exp10 |= 1;
-	  assert (frac[fracsize - 1] < 10);
-	}
-      exponent = exp10;
-    }
-  else
-    {
-      /* This is a special case.  We don't need a factor because the
-	 numbers are in the range of 0.0 <= fp < 8.0.  We simply
-	 shift it to the right place and divide it by 1.0 to get the
-	 leading digit.	 (Of course this division is not really made.)	*/
-      assert (0 <= exponent && exponent < 3 &&
-	      exponent + to_shift < BITS_PER_MP_LIMB);
-
-      /* Now shift the input value to its right place.	*/
-      cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
-      frac[fracsize++] = cy; 
-      exponent = 0;
-    }
-
-  {
-    int width = info->width;
-    char *buffer, *startp, *cp;
-    int chars_needed;
-    int expscale;
-    int intdig_max, intdig_no = 0;
-    int fracdig_min, fracdig_max, fracdig_no = 0;
-    int dig_max;
-    int significant;
-
-    if (tolower (info->spec) == 'e')
-      {
-	type = info->spec;
-	intdig_max = 1;
-	fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
-	chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
-	/*	       d   .	 ddd	     e	 +-  ddd  */
-	dig_max = INT_MAX;		/* Unlimited.  */
-	significant = 1;		/* Does not matter here.  */
-      }
-    else if (info->spec == 'f')
-      {
-	type = 'f';
-	fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
-	if (expsign == 0)
-	  {
-	    intdig_max = exponent + 1;
-	    /* This can be really big!	*/  /* XXX Maybe malloc if too big? */
-	    chars_needed = exponent + 1 + 1 + fracdig_max;
-	  }
-	else
-	  {
-	    intdig_max = 1;
-	    chars_needed = 1 + 1 + fracdig_max;
-	  }
-	dig_max = INT_MAX;		/* Unlimited.  */
-	significant = 1;		/* Does not matter here.  */
-      }
-    else
-      {
-	dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
-	if ((expsign == 0 && exponent >= dig_max)
-	    || (expsign != 0 && exponent > 4))
-	  {
-	    type = isupper (info->spec) ? 'E' : 'e';
-	    fracdig_max = dig_max - 1;
-	    intdig_max = 1;
-	    chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
-	  }
-	else
-	  {
-	    type = 'f';
-	    intdig_max = expsign == 0 ? exponent + 1 : 0;
-	    fracdig_max = dig_max - intdig_max;
-	    /* We need space for the significant digits and perhaps for
-	       leading zeros when < 1.0.  Pessimistic guess: dig_max.  */
-	    chars_needed = dig_max + dig_max + 1;
-	  }
-	fracdig_min = info->alt ? fracdig_max : 0;
-	significant = 0;		/* We count significant digits.	 */
-      }
-
-    if (grouping)
-      /* Guess the number of groups we will make, and thus how
-	 many spaces we need for separator characters.  */
-      chars_needed += guess_grouping (intdig_max, grouping, thousands_sep);
-
-    /* Allocate buffer for output.  We need two more because while rounding
-       it is possible that we need two more characters in front of all the
-       other output.  */
-    buffer = alloca (2 + chars_needed);
-    cp = startp = buffer + 2;	/* Let room for rounding.  */ 
-
-    /* Do the real work: put digits in allocated buffer.  */
-    if (expsign == 0 || type != 'f')
-      {
-	assert (expsign == 0 || intdig_max == 1);
-	while (intdig_no < intdig_max)
-	  {
-	    ++intdig_no;
-	    *cp++ = hack_digit ();
-	  }
-	significant = 1;
-	if (info->alt
-	    || fracdig_min > 0
-	    || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
-	  *cp++ = decimal;
-      }
-    else
-      {
-	/* |fp| < 1.0 and the selected type is 'f', so put "0."
-	   in the buffer.  */
-	*cp++ = '0';
-	--exponent;
-	*cp++ = decimal;
-      }
-
-    /* Generate the needed number of fractional digits.	 */
-    while (fracdig_no < fracdig_min
-	   || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
-      {
-	++fracdig_no;
-	*cp = hack_digit ();
-	if (*cp != '0')
-	  significant = 1;
-	else if (significant == 0)
-	  {
-	    ++fracdig_max;
-	    if (fracdig_min > 0)
-	      ++fracdig_min;
-	  }
-	++cp;
-      }
-
-    /* Do rounding.  */
-    digit = hack_digit ();
-    if (digit > '4')
-      {
-	char *tp = cp;
-
-	if (digit == '5')
-	  /* This is the critical case.	 */
-	  if (fracsize == 1 && frac[0] == 0)
-	    /* Rest of the number is zero -> round to even.
-	       (IEEE 754-1985 4.1 says this is the default rounding.)  */
-	    if ((*(cp - 1) & 1) == 0)
-	      goto do_expo;
-
-	if (fracdig_no > 0)
-	  {
-	    /* Process fractional digits.  Terminate if not rounded or
-	       radix character is reached.  */
-	    while (*--tp != decimal && *tp == '9')
-	      *tp = '0';
-	    if (*tp != decimal)
-	      /* Round up.  */
-	      (*tp)++;
-	  }
-
-	if (fracdig_no == 0 || *tp == decimal)
-	  {
-	    /* Round the integer digits.  */
-	    if (*(tp - 1) == decimal)
-	      --tp;
-
-	    while (--tp >= startp && *tp == '9')
-	      *tp = '0';
-
-	    if (tp >= startp)
-	      /* Round up.  */
-	      (*tp)++;
-	    else
-	      /* It is more citical.  All digits were 9's.  */
-	      {
-		if (type != 'f')
-		  {
-		    *startp = '1';
-		    exponent += expsign == 0 ? 1 : -1;
-		  }
-		else if (intdig_no == dig_max)
-		  {
-		    /* This is the case where for type %g the number fits
-		       really in the range for %f output but after rounding
-		       the number of digits is too big.	 */
-		    *--startp = decimal;
-		    *--startp = '1';
-
-		    if (info->alt || fracdig_no > 0)
-		      {
-			/* Overwrite the old radix character.  */
-			startp[intdig_no + 2] = '0';
-			++fracdig_no;
-		      }
-
-		    fracdig_no += intdig_no;
-		    intdig_no = 1;
-		    fracdig_max = intdig_max - intdig_no;
-		    ++exponent;
-		    /* Now we must print the exponent.	*/
-		    type = isupper (info->spec) ? 'E' : 'e';
-		  }
-		else
-		  {
-		    /* We can simply add another another digit before the
-		       radix.  */
-		    *--startp = '1';
-		    ++intdig_no;
-		  }
-
-		/* While rounding the number of digits can change.
-		   If the number now exceeds the limits remove some
-		   fractional digits.  */
-		if (intdig_no + fracdig_no > dig_max)
-		  {
-		    cp -= intdig_no + fracdig_no - dig_max;
-		    fracdig_no -= intdig_no + fracdig_no - dig_max;
-		  }
-	      }
-	  }
-      }
-
-  do_expo:
-    /* Now remove unnecessary '0' at the end of the string.  */
-    while (fracdig_no > fracdig_min && *(cp - 1) == '0')
-      {
-	--cp;
-	--fracdig_no;
-      }
-    /* If we eliminate all fractional digits we perhaps also can remove
-       the radix character.  */
-    if (fracdig_no == 0 && !info->alt && *(cp - 1) == decimal)
-      --cp;
-
-    if (grouping)
-      /* Add in separator characters, overwriting the same buffer.  */
-      cp = group_number (startp, cp, intdig_no, grouping, thousands_sep);
-
-    /* Write the exponent if it is needed.  */
-    if (type != 'f')
-      {
-	*cp++ = type;
-	*cp++ = expsign ? '-' : '+';
-
-	/* Find the magnitude of the exponent.	*/
-	expscale = 10;
-	while (expscale <= exponent)
-	  expscale *= 10;
-
-	if (exponent < 10)
-	  /* Exponent always has at least two digits.  */
-	  *cp++ = '0';
-	else
-	  do
-	    {
-	      expscale /= 10;
-	      *cp++ = '0' + (exponent / expscale);
-	      exponent %= expscale;
-	    }
-	  while (expscale > 10);
-	*cp++ = '0' + exponent;
-      }
-
-    /* Compute number of characters which must be filled with the padding
-       character.  */ 
-    if (is_neg || info->showsign || info->space)
-      --width;
-    width -= cp - startp;
-
-    if (!info->left && info->pad != '0' && width > 0)
-      PADN (info->pad, width);
-
-    if (is_neg)
-      outchar ('-');
-    else if (info->showsign)
-      outchar ('+');
-    else if (info->space)
-      outchar (' ');
-
-    if (!info->left && info->pad == '0' && width > 0)
-      PADN ('0', width);
-
-    PRINT (startp, cp - startp);
-
-    if (info->left && width > 0)
-      PADN (info->pad, width);
-  }
-  return done;
-}
-
-/* Return the number of extra grouping characters that will be inserted
-   into a number with INTDIG_MAX integer digits.  */
-
-static unsigned int
-guess_grouping (unsigned int intdig_max, const char *grouping, wchar_t sepchar)
-{
-  unsigned int groups;
-
-  /* We treat all negative values like CHAR_MAX.  */
-
-  if (*grouping == CHAR_MAX || *grouping <= 0)
-    /* No grouping should be done.  */
-    return 0;
-
-  groups = 0;
-  while (intdig_max > (unsigned int) *grouping)
-    {
-      ++groups;
-      intdig_max -= *grouping++;
-
-      if (*grouping == CHAR_MAX || *grouping < 0)
-	/* No more grouping should be done.  */
-	break;
-      else if (*grouping == 0)
-	{
-	  /* Same grouping repeats.  */
-	  groups += intdig_max / grouping[-1];
-	  break;
-	}
-    }
-
-  return groups;
-}
-
-/* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
-   There is guaranteed enough space past BUFEND to extend it.
-   Return the new end of buffer.  */
-
-static char *
-group_number (char *buf, char *bufend, unsigned int intdig_no,
-	      const char *grouping, wchar_t thousands_sep)
-{
-  unsigned int groups = guess_grouping (intdig_no, grouping, thousands_sep);
-  char *p;
-
-  if (groups == 0)
-    return bufend;
-
-  /* Move the fractional part down.  */
-  memmove (buf + intdig_no + groups, buf + intdig_no,
-	   bufend - (buf + intdig_no));
-
-  p = buf + intdig_no + groups - 1;
-  do
-    {
-      unsigned int len = *grouping++;
-      do
-	*p-- = buf[--intdig_no];
-      while (--len > 0);
-      *p-- = thousands_sep;
-
-      if (*grouping == CHAR_MAX || *grouping < 0)
-	/* No more grouping should be done.  */
-	break;
-      else if (*grouping == 0)
-	/* Same grouping repeats.  */
-	--grouping;
-    } while (intdig_no > (unsigned int) *grouping);
-
-  /* Copy the remaining ungrouped digits.  */
-  do
-    *p-- = buf[--intdig_no];
-  while (p > buf);
-
-  return bufend + groups;
-}