diff options
Diffstat (limited to 'manual/=process.texinfo')
-rw-r--r-- | manual/=process.texinfo | 1452 |
1 files changed, 0 insertions, 1452 deletions
diff --git a/manual/=process.texinfo b/manual/=process.texinfo deleted file mode 100644 index 4618cff5fa..0000000000 --- a/manual/=process.texinfo +++ /dev/null @@ -1,1452 +0,0 @@ -@node Processes, Job Control, Signal Handling, Top -@chapter Processes - -@cindex process -@dfn{Processes} are the primitive units for allocation of system -resources. Each process has its own address space and (usually) one -thread of control. A process executes a program; you can have multiple -processes executing the same program, but each process has its own copy -of the program within its own address space and executes it -independently of the other copies. - -Processes are organized hierarchically. Child processes are created by -a parent process, and inherit many of their attributes from the parent -process. - -This chapter describes how a program can create, terminate, and control -child processes. - -@menu -* Program Arguments:: Parsing the command-line arguments to - a program. -* Environment Variables:: How to access parameters inherited from - a parent process. -* Program Termination:: How to cause a process to terminate and - return status information to its parent. -* Creating New Processes:: Running other programs. -@end menu - - -@node Program Arguments, Environment Variables, , Processes -@section Program Arguments -@cindex program arguments -@cindex command line arguments - -@cindex @code{main} function -When your C program starts, it begins by executing the function called -@code{main}. You can define @code{main} either to take no arguments, -or to take two arguments that represent the command line arguments -to the program, like this: - -@example -int main (int @var{argc}, char *@var{argv}[]) -@end example - -@cindex argc (program argument count) -@cindex argv (program argument vector) -The command line arguments are the whitespace-separated tokens typed by -the user to the shell in invoking the program. The value of the -@var{argc} argument is the number of command line arguments. The -@var{argv} argument is a vector of pointers to @code{char}; sometimes it -is also declared as @samp{char **@var{argv}}. The elements of -@var{argv} are the individual command line argument strings. By -convention, @code{@var{argv}[0]} is the file name of the program being -run, and @code{@var{argv}[@var{argc}]} is a null pointer. - -If the syntax for the command line arguments to your program is simple -enough, you can simply pick the arguments off from @var{argv} by hand. -But unless your program takes a fixed number of arguments, or all of the -arguments are interpreted in the same way (as file names, for example), -you are usually better off using @code{getopt} to do the parsing. - -@menu -* Argument Syntax Conventions:: By convention, program - options are specified by a - leading hyphen. -* Parsing Program Arguments:: The @code{getopt} function. -* Example Using getopt:: An example of @code{getopt}. -@end menu - -@node Argument Syntax Conventions, Parsing Program Arguments, , Program Arguments -@subsection Program Argument Syntax Conventions -@cindex program argument syntax -@cindex syntax, for program arguments -@cindex command argument syntax - -The @code{getopt} function decodes options following the usual -conventions for POSIX utilities: - -@itemize @bullet -@item -Arguments are options if they begin with a hyphen delimiter (@samp{-}). - -@item -Multiple options may follow a hyphen delimiter in a single token if -the options do not take arguments. Thus, @samp{-abc} is equivalent to -@samp{-a -b -c}. - -@item -Option names are single alphanumeric (as for @code{isalnum}; -see @ref{Classification of Characters}). - -@item -Certain options require an argument. For example, the @samp{-o} -command of the ld command requires an argument---an output file name. - -@item -An option and its argument may or may appear as separate tokens. (In -other words, the whitespace separating them is optional.) Thus, -@samp{-o foo} and @samp{-ofoo} are equivalent. - -@item -Options typically precede other non-option arguments. - -The implementation of @code{getopt} in the GNU C library normally makes -it appear as if all the option arguments were specified before all the -non-option arguments for the purposes of parsing, even if the user of -your program intermixed option and non-option arguments. It does this -by reordering the elements of the @var{argv} array. This behavior is -nonstandard; if you want to suppress it, define the -@code{_POSIX_OPTION_ORDER} environment variable. @xref{Standard -Environment Variables}. - -@item -The argument @samp{--} terminates all options; any following arguments -are treated as non-option arguments, even if they begin with a hyphen. - -@item -A token consisting of a single hyphen character is interpreted as an -ordinary non-option argument. By convention, it is used to specify -input from or output to the standard input and output streams. - -@item -Options may be supplied in any order, or appear multiple times. The -interpretation is left up to the particular application program. -@end itemize - -@node Parsing Program Arguments, Example Using getopt, Argument Syntax Conventions, Program Arguments -@subsection Parsing Program Arguments -@cindex program arguments, parsing -@cindex command arguments, parsing -@cindex parsing program arguments - -Here are the details about how to call the @code{getopt} function. To -use this facility, your program must include the header file -@file{unistd.h}. -@pindex unistd.h - -@comment unistd.h -@comment POSIX.2 -@deftypevar int opterr -If the value of this variable is nonzero, then @code{getopt} prints an -error message to the standard error stream if it encounters an unknown -option character or an option with a missing required argument. This is -the default behavior. If you set this variable to zero, @code{getopt} -does not print any messages, but it still returns @code{?} to indicate -an error. -@end deftypevar - -@comment unistd.h -@comment POSIX.2 -@deftypevar int optopt -When @code{getopt} encounters an unknown option character or an option -with a missing required argument, it stores that option character in -this variable. You can use this for providing your own diagnostic -messages. -@end deftypevar - -@comment unistd.h -@comment POSIX.2 -@deftypevar int optind -This variable is set by @code{getopt} to the index of the next element -of the @var{argv} array to be processed. Once @code{getopt} has found -all of the option arguments, you can use this variable to determine -where the remaining non-option arguments begin. The initial value of -this variable is @code{1}. -@end deftypevar - -@comment unistd.h -@comment POSIX.2 -@deftypevar {char *} optarg -This variable is set by @code{getopt} to point at the value of the -option argument, for those options that accept arguments. -@end deftypevar - -@comment unistd.h -@comment POSIX.2 -@deftypefun int getopt (int @var{argc}, char **@var{argv}, const char *@var{options}) -The @code{getopt} function gets the next option argument from the -argument list specified by the @var{argv} and @var{argc} arguments. -Normally these arguments' values come directly from the arguments of -@code{main}. - -The @var{options} argument is a string that specifies the option -characters that are valid for this program. An option character in this -string can be followed by a colon (@samp{:}) to indicate that it takes a -required argument. - -If the @var{options} argument string begins with a hyphen (@samp{-}), this -is treated specially. It permits arguments without an option to be -returned as if they were associated with option character @samp{\0}. - -The @code{getopt} function returns the option character for the next -command line option. When no more option arguments are available, it -returns @code{-1}. There may still be more non-option arguments; you -must compare the external variable @code{optind} against the @var{argv} -parameter to check this. - -If the options has an argument, @code{getopt} returns the argument by -storing it in the varables @var{optarg}. You don't ordinarily need to -copy the @code{optarg} string, since it is a pointer into the original -@var{argv} array, not into a static area that might be overwritten. - -If @code{getopt} finds an option character in @var{argv} that was not -included in @var{options}, or a missing option argument, it returns -@samp{?} and sets the external variable @code{optopt} to the actual -option character. In addition, if the external variable @code{opterr} -is nonzero, @code{getopt} prints an error message. -@end deftypefun - -@node Example Using getopt, , Parsing Program Arguments, Program Arguments -@subsection Example of Parsing Program Arguments - -Here is an example showing how @code{getopt} is typically used. The -key points to notice are: - -@itemize @bullet -@item -Normally, @code{getopt} is called in a loop. When @code{getopt} returns -@code{-1}, indicating no more options are present, the loop terminates. - -@item -A @code{switch} statement is used to dispatch on the return value from -@code{getopt}. In typical use, each case just sets a variable that -is used later in the program. - -@item -A second loop is used to process the remaining non-option arguments. -@end itemize - -@example -@include testopt.c.texi -@end example - -Here are some examples showing what this program prints with different -combinations of arguments: - -@example -% testopt -aflag = 0, bflag = 0, cvalue = (null) - -% testopt -a -b -aflag = 1, bflag = 1, cvalue = (null) - -% testopt -ab -aflag = 1, bflag = 1, cvalue = (null) - -% testopt -c foo -aflag = 0, bflag = 0, cvalue = foo - -% testopt -cfoo -aflag = 0, bflag = 0, cvalue = foo - -% testopt arg1 -aflag = 0, bflag = 0, cvalue = (null) -Non-option argument arg1 - -% testopt -a arg1 -aflag = 1, bflag = 0, cvalue = (null) -Non-option argument arg1 - -% testopt -c foo arg1 -aflag = 0, bflag = 0, cvalue = foo -Non-option argument arg1 - -% testopt -a -- -b -aflag = 1, bflag = 0, cvalue = (null) -Non-option argument -b - -% testopt -a - -aflag = 1, bflag = 0, cvalue = (null) -Non-option argument - -@end example - -@node Environment Variables, Program Termination, Program Arguments, Processes -@section Environment Variables - -@cindex environment variable -When a program is executed, it receives information about the context in -which it was invoked in two ways. The first mechanism uses the -@var{argv} and @var{argc} arguments to its @code{main} function, and is -discussed in @ref{Program Arguments}. The second mechanism is -uses @dfn{environment variables} and is discussed in this section. - -The @var{argv} mechanism is typically used to pass command-line -arguments specific to the particular program being invoked. The -environment, on the other hand, keeps track of information that is -shared by many programs, changes infrequently, and that is less -frequently accessed. - -The environment variables discussed in this section are the same -environment variables that you set using the assignments and the -@code{export} command in the shell. Programs executed from the shell -inherit all of the environment variables from the shell. - -@cindex environment -Standard environment variables are used for information about the user's -home directory, terminal type, current locale, and so on; you can define -additional variables for other purposes. The set of all environment -variables that have values is collectively known as the -@dfn{environment}. - -Names of environment variables are case-sensitive and must not contain -the character @samp{=}. System-defined environment variables are -invariably uppercase. - -The values of environment variables can be anything that can be -represented as a string. A value must not contain an embedded null -character, since this is assumed to terminate the string. - - -@menu -* Environment Access:: How to get and set the values of - environment variables. -* Standard Environment Variables:: These environment variables have - standard interpretations. -@end menu - -@node Environment Access, Standard Environment Variables, , Environment Variables -@subsection Environment Access -@cindex environment access -@cindex environment representation - -The value of an environment variable can be accessed with the -@code{getenv} function. This is declared in the header file -@file{stdlib.h}. -@pindex stdlib.h - -@comment stdlib.h -@comment ISO -@deftypefun {char *} getenv (const char *@var{name}) -This function returns a string that is the value of the environment -variable @var{name}. You must not modify this string. In some systems -not using the GNU library, it might be overwritten by subsequent calls -to @code{getenv} (but not by any other library function). If the -environment variable @var{name} is not defined, the value is a null -pointer. -@end deftypefun - - -@comment stdlib.h -@comment SVID -@deftypefun int putenv (const char *@var{string}) -The @code{putenv} function adds or removes definitions from the environment. -If the @var{string} is of the form @samp{@var{name}=@var{value}}, the -definition is added to the environment. Otherwise, the @var{string} is -interpreted as the name of an environment variable, and any definition -for this variable in the environment is removed. - -The GNU library provides this function for compatibility with SVID; it -may not be available in other systems. -@end deftypefun - -You can deal directly with the underlying representation of environment -objects to add more variables to the environment (for example, to -communicate with another program you are about to execute; see -@ref{Executing a File}). - -@comment unistd.h -@comment POSIX.1 -@deftypevar {char **} environ -The environment is represented as an array of strings. Each string is -of the format @samp{@var{name}=@var{value}}. The order in which -strings appear in the environment is not significant, but the same -@var{name} must not appear more than once. The last element of the -array is a null pointer. - -This variable is not declared in any header file, but if you declare it -in your own program as @code{extern}, the right thing will happen. - -If you just want to get the value of an environment variable, use -@code{getenv}. -@end deftypevar - -@node Standard Environment Variables, , Environment Access, Environment Variables -@subsection Standard Environment Variables -@cindex standard environment variables - -These environment variables have standard meanings. -This doesn't mean that they are always present in the -environment, though; it just means that if these variables @emph{are} -present, they have these meanings, and that you shouldn't try to use -these environment variable names for some other purpose. - -@table @code -@item HOME -@cindex HOME environment variable -@cindex home directory -This is a string representing the user's @dfn{home directory}, or -initial default working directory. @xref{User Database}, for a -more secure way of determining this information. - -@comment RMS says to explay why HOME is better, but I don't know why. - -@item LOGNAME -@cindex LOGNAME environment variable -This is the name that the user used to log in. Since the value in the -environment can be tweaked arbitrarily, this is not a reliable way to -identify the user who is running a process; a function like -@code{getlogin} (@pxref{User Identification Functions}) is better for -that purpose. - -@comment RMS says to explay why LOGNAME is better, but I don't know why. - -@item PATH -@cindex PATH environment variable -A @dfn{path} is a sequence of directory names which is used for -searching for a file. The variable @var{PATH} holds a path The -@code{execlp} and @code{execvp} functions (@pxref{Executing a File}) -uses this environment variable, as do many shells and other utilities -which are implemented in terms of those functions. - -The syntax of a path is a sequence of directory names separated by -colons. An empty string instead of a directory name stands for the -current directory. (@xref{Working Directory}.) - -A typical value for this environment variable might be a string like: - -@example -.:/bin:/etc:/usr/bin:/usr/new/X11:/usr/new:/usr/local:/usr/local/bin -@end example - -This means that if the user tries to execute a program named @code{foo}, -the system will look for files named @file{./foo}, @file{/bin/foo}, -@file{/etc/foo}, and so on. The first of these files that exists is -the one that is executed. - -@item TERM -@cindex TERM environment variable -This specifies the kind of terminal that is receiving program output. -Some programs can make use of this information to take advantage of -special escape sequences or terminal modes supported by particular kinds -of terminals. Many programs which use the termcap library -(@pxref{Finding a Terminal Description,Find,,termcap,The Termcap Library -Manual}) use the @code{TERM} environment variable, for example. - -@item TZ -@cindex TZ environment variable -This specifies the time zone. @xref{Time Zone}, for information about -the format of this string and how it is used. - -@item LANG -@cindex LANG environment variable -This specifies the default locale to use for attribute categories where -neither @code{LC_ALL} nor the specific environment variable for that -category is set. @xref{Locales}, for more information about -locales. - -@item LC_ALL -@cindex LC_ALL environment variable -This is similar to the @code{LANG} environment variable. However, its -value takes precedence over any values provided for the individual -attribute category environment variables, or for the @code{LANG} -environment variable. - -@item LC_COLLATE -@cindex LC_COLLATE environment variable -This specifies what locale to use for string sorting. - -@item LC_CTYPE -@cindex LC_CTYPE environment variable -This specifies what locale to use for character sets and character -classification. - -@item LC_MONETARY -@cindex LC_MONETARY environment variable -This specifies what locale to use for formatting monetary values. - -@item LC_NUMERIC -@cindex LC_NUMERIC environment variable -This specifies what locale to use for formatting numbers. - -@item LC_TIME -@cindex LC_TIME environment variable -This specifies what locale to use for formatting date/time values. - -@item _POSIX_OPTION_ORDER -@cindex _POSIX_OPTION_ORDER environment variable. -If this environment variable is defined, it suppresses the usual -reordering of command line arguments by @code{getopt}. @xref{Program -Argument Syntax Conventions}. -@end table - -@node Program Termination, Creating New Processes, Environment Variables, Processes -@section Program Termination -@cindex program termination -@cindex process termination - -@cindex exit status value -The usual way for a program to terminate is simply for its @code{main} -function to return. The @dfn{exit status value} returned from the -@code{main} function is used to report information back to the process's -parent process or shell. - -A program can also terminate normally calling the @code{exit} -function - -In addition, programs can be terminated by signals; this is discussed in -more detail in @ref{Signal Handling}. The @code{abort} function causes -a terminal that kills the program. - -@menu -* Normal Program Termination:: -* Exit Status:: Exit Status -* Cleanups on Exit:: Cleanups on Exit -* Aborting a Program:: -* Termination Internals:: Termination Internals -@end menu - -@node Normal Program Termination, Exit Status, , Program Termination -@subsection Normal Program Termination - -@comment stdlib.h -@comment ISO -@deftypefun void exit (int @var{status}) -The @code{exit} function causes normal program termination with status -@var{status}. This function does not return. -@end deftypefun - -When a program terminates normally by returning from its @code{main} -function or by calling @code{exit}, the following actions occur in -sequence: - -@enumerate -@item -Functions that were registered with the @code{atexit} or @code{on_exit} -functions are called in the reverse order of their registration. This -mechanism allows your application to specify its own ``cleanup'' actions -to be performed at program termination. Typically, this is used to do -things like saving program state information in a file, or unlock locks -in shared data bases. - -@item -All open streams are closed; writing out any buffered output data. See -@ref{Opening and Closing Streams}. In addition, temporary files opened -with the @code{tmpfile} function are removed; see @ref{Temporary Files}. - -@item -@code{_exit} is called. @xref{Termination Internals} -@end enumerate - -@node Exit Status, Cleanups on Exit, Normal Program Termination, Program Termination -@subsection Exit Status -@cindex exit status - -When a program exits, it can return to the parent process a small -amount of information about the cause of termination, using the -@dfn{exit status}. This is a value between 0 and 255 that the exiting -process passes as an argument to @code{exit}. - -Normally you should use the exit status to report very broad information -about success or failure. You can't provide a lot of detail about the -reasons for the failure, and most parent processes would not want much -detail anyway. - -There are conventions for what sorts of status values certain programs -should return. The most common convention is simply 0 for success and 1 -for failure. Programs that perform comparison use a different -convention: they use status 1 to indicate a mismatch, and status 2 to -indicate an inability to compare. Your program should follow an -existing convention if an existing convention makes sense for it. - -A general convention reserves status values 128 and up for special -purposes. In particular, the value 128 is used to indicate failure to -execute another program in a subprocess. This convention is not -universally obeyed, but it is a good idea to follow it in your programs. - -@strong{Warning:} Don't try to use the number of errors as the exit -status. This is actually not very useful; a parent process would -generally not care how many errors occurred. Worse than that, it does -not work, because the status value is truncated to eight bits. -Thus, if the program tried to report 256 errors, the parent would -receive a report of 0 errors---that is, success. - -For the same reason, it does not work to use the value of @code{errno} -as the exit status---these can exceed 255. - -@strong{Portability note:} Some non-POSIX systems use different -conventions for exit status values. For greater portability, you can -use the macros @code{EXIT_SUCCESS} and @code{EXIT_FAILURE} for the -conventional status value for success and failure, respectively. They -are declared in the file @file{stdlib.h}. -@pindex stdlib.h - -@comment stdlib.h -@comment ISO -@deftypevr Macro int EXIT_SUCCESS -This macro can be used with the @code{exit} function to indicate -successful program completion. - -On POSIX systems, the value of this macro is @code{0}. On other -systems, the value might be some other (possibly non-constant) integer -expression. -@end deftypevr - -@comment stdlib.h -@comment ISO -@deftypevr Macro int EXIT_FAILURE -This macro can be used with the @code{exit} function to indicate -unsuccessful program completion in a general sense. - -On POSIX systems, the value of this macro is @code{1}. On other -systems, the value might be some other (possibly non-constant) integer -expression. Other nonzero status values also indicate future. Certain -programs use different nonzero status values to indicate particular -kinds of "non-success". For example, @code{diff} uses status value -@code{1} to mean that the files are different, and @code{2} or more to -mean that there was difficulty in opening the files. -@end deftypevr - -@node Cleanups on Exit, Aborting a Program, Exit Status, Program Termination -@subsection Cleanups on Exit - -@comment stdlib.h -@comment ISO -@deftypefun int atexit (void (*@var{function})) -The @code{atexit} function registers the function @var{function} to be -called at normal program termination. The @var{function} is called with -no arguments. - -The return value from @code{atexit} is zero on success and nonzero if -the function cannot be registered. -@end deftypefun - -@comment stdlib.h -@comment GNU -@deftypefun int on_exit (void (*@var{function})(int @var{status}, void *@var{arg}), void *@var{arg}) -This function is a somewhat more powerful variant of @code{atexit}. It -accepts two arguments, a function @var{function} and an arbitrary -pointer @var{arg}. At normal program termination, the @var{function} is -called with two arguments: the @var{status} value passed to @code{exit}, -and the @var{arg}. - -This function is a GNU extension, and may not be supported by other -implementations. -@end deftypefun - -Here's a trivial program that illustrates the use of @code{exit} and -@code{atexit}: - -@example -#include <stdio.h> -#include <stdlib.h> - -void bye (void) -@{ - printf ("Goodbye, cruel world....\n"); -@} - -void main (void) -@{ - atexit (bye); - exit (EXIT_SUCCESS); -@} -@end example - -@noindent -When this program is executed, it just prints the message and exits. - - -@node Aborting a Program, Termination Internals, Cleanups on Exit, Program Termination -@subsection Aborting a Program -@cindex aborting a program - -You can abort your program using the @code{abort} function. The prototype -for this function is in @file{stdlib.h}. -@pindex stdlib.h - -@comment stdlib.h -@comment ISO -@deftypefun void abort () -The @code{abort} function causes abnormal program termination, without -executing functions registered with @code{atexit} or @code{on_exit}. - -This function actually terminates the process by raising a -@code{SIGABRT} signal, and your program can include a handler to -intercept this signal; see @ref{Signal Handling}. - -@strong{Incomplete:} Why would you want to define such a handler? -@end deftypefun - -@node Termination Internals, , Aborting a Program, Program Termination -@subsection Termination Internals - -The @code{_exit} function is the primitive used for process termination -by @code{exit}. It is declared in the header file @file{unistd.h}. -@pindex unistd.h - -@comment unistd.h -@comment POSIX.1 -@deftypefun void _exit (int @var{status}) -The @code{_exit} function is the primitive for causing a process to -terminate with status @var{status}. Calling this function does not -execute cleanup functions registered with @code{atexit} or -@code{on_exit}. -@end deftypefun - -When a process terminates for any reason---either by an explicit -termination call, or termination as a result of a signal---the -following things happen: - -@itemize @bullet -@item -All open file descriptors in the process are closed. @xref{Low-Level -Input/Output}. - -@item -The low-order 8 bits of the return status code are saved to be reported -back to the parent process via @code{wait} or @code{waitpid}; see -@ref{Process Completion}. - -@item -Any child processes of the process being terminated are assigned a new -parent process. (This is the @code{init} process, with process ID 1.) - -@item -A @code{SIGCHLD} signal is sent to the parent process. - -@item -If the process is a session leader that has a controlling terminal, then -a @code{SIGHUP} signal is sent to each process in the foreground job, -and the controlling terminal is disassociated from that session. -@xref{Job Control}. - -@item -If termination of a process causes a process group to become orphaned, -and any member of that process group is stopped, then a @code{SIGHUP} -signal and a @code{SIGCONT} signal are sent to each process in the -group. @xref{Job Control}. -@end itemize - -@node Creating New Processes, , Program Termination, Processes -@section Creating New Processes - -This section describes how your program can cause other programs to be -executed. Actually, there are three distinct operations involved: -creating a new child process, causing the new process to execute a -program, and coordinating the completion of the child process with the -original program. - -The @code{system} function provides a simple, portable mechanism for -running another program; it does all three steps automatically. If you -need more control over the details of how this is done, you can use the -primitive functions to do each step individually instead. - -@menu -* Running a Command:: The easy way to run another program. -* Process Creation Concepts:: An overview of the hard way to do it. -* Process Identification:: How to get the process ID of a process. -* Creating a Process:: How to fork a child process. -* Executing a File:: How to get a process to execute another - program. -* Process Completion:: How to tell when a child process has - completed. -* Process Completion Status:: How to interpret the status value - returned from a child process. -* BSD wait Functions:: More functions, for backward - compatibility. -* Process Creation Example:: A complete example program. -@end menu - - -@node Running a Command, Process Creation Concepts, , Creating New Processes -@subsection Running a Command -@cindex running a command - -The easy way to run another program is to use the @code{system} -function. This function does all the work of running a subprogram, but -it doesn't give you much control over the details: you have to wait -until the subprogram terminates before you can do anything else. - -@pindex stdlib.h - -@comment stdlib.h -@comment ISO -@deftypefun int system (const char *@var{command}) -This function executes @var{command} as a shell command. In the GNU C -library, it always uses the default shell @code{sh} to run the command. -In particular, it searching the directories in @code{PATH} to find -programs to execute. The return value is @code{-1} if it wasn't -possible to create the shell process, and otherwise is the status of the -shell process. @xref{Process Completion}, for details on how this -status code can be interpreted. -@pindex sh -@end deftypefun - -The @code{system} function is declared in the header file -@file{stdlib.h}. - -@strong{Portability Note:} Some C implementations may not have any -notion of a command processor that can execute other programs. You can -determine whether a command processor exists by executing @code{system -(o)}; in this case the return value is nonzero if and only if such a -processor is available. - -The @code{popen} and @code{pclose} functions (@pxref{Pipe to a -Subprocess}) are closely related to the @code{system} function. They -allow the parent process to communicate with the standard input and -output channels of the command being executed. - -@node Process Creation Concepts, Process Identification, Running a Command, Creating New Processes -@subsection Process Creation Concepts - -This section gives an overview of processes and of the steps involved in -creating a process and making it run another program. - -@cindex process ID -@cindex process lifetime -Each process is named by a @dfn{process ID} number. A unique process ID -is allocated to each process when it is created. The @dfn{lifetime} of -a process ends when its termination is reported to its parent process; -at that time, all of the process resources, including its process ID, -are freed. - -@cindex creating a process -@cindex forking a process -@cindex child process -@cindex parent process -Processes are created with the @code{fork} system call (so the operation -of creating a new process is sometimes called @dfn{forking} a process). -The @dfn{child process} created by @code{fork} is an exact clone of the -original @dfn{parent process}, except that it has its own process ID. - -After forking a child process, both the parent and child processes -continue to execute normally. If you want your program to wait for a -child process to finish executing before continuing, you must do this -explicitly after the fork operation. This is done with the @code{wait} -or @code{waitpid} functions (@pxref{Process Completion}). These -functions give the parent information about why the child -terminated---for example, its exit status code. - -A newly forked child process continues to execute the same program as -its parent process, at the point where the @code{fork} call returns. -You can use the return value from @code{fork} to tell whether the program -is running in the parent process or the child. - -@cindex process image -Having all processes run the same program is usually not very useful. -But the child can execute another program using one of the @code{exec} -functions; see @ref{Executing a File}. The program that the process is -executing is called its @dfn{process image}. Starting execution of a -new program causes the process to forget all about its current process -image; when the new program exits, the process exits too, instead of -returning to the previous process image. - - -@node Process Identification, Creating a Process, Process Creation Concepts, Creating New Processes -@subsection Process Identification - -The @code{pid_t} data type represents process IDs. You can get the -process ID of a process by calling @code{getpid}. The function -@code{getppid} returns the process ID of the parent of the parent of the -current process (this is also known as the @dfn{parent process ID}). -Your program should include the header files @file{unistd.h} and -@file{sys/types.h} to use these functions. -@pindex sys/types.h -@pindex unistd.h - -@comment sys/types.h -@comment POSIX.1 -@deftp {Data Type} pid_t -The @code{pid_t} data type is a signed integer type which is capable -of representing a process ID. In the GNU library, this is an @code{int}. -@end deftp - -@comment unistd.h -@comment POSIX.1 -@deftypefun pid_t getpid () -The @code{getpid} function returns the process ID of the current process. -@end deftypefun - -@comment unistd.h -@comment POSIX.1 -@deftypefun pid_t getppid () -The @code{getppid} function returns the process ID of the parent of the -current process. -@end deftypefun - -@node Creating a Process, Executing a File, Process Identification, Creating New Processes -@subsection Creating a Process - -The @code{fork} function is the primitive for creating a process. -It is declared in the header file @file{unistd.h}. -@pindex unistd.h - -@comment unistd.h -@comment POSIX.1 -@deftypefun pid_t fork () -The @code{fork} function creates a new process. - -If the operation is successful, there are then both parent and child -processes and both see @code{fork} return, but with different values: it -returns a value of @code{0} in the child process and returns the child's -process ID in the parent process. If the child process could not be -created, a value of @code{-1} is returned in the parent process. The -following @code{errno} error conditions are defined for this function: - -@table @code -@item EAGAIN -There aren't enough system resources to create another process, or the -user already has too many processes running. - -@item ENOMEM -The process requires more space than the system can supply. -@end table -@end deftypefun - -The specific attributes of the child process that differ from the -parent process are: - -@itemize @bullet -@item -The child process has its own unique process ID. - -@item -The parent process ID of the child process is the process ID of its -parent process. - -@item -The child process gets its own copies of the parent process's open file -descriptors. Subsequently changing attributes of the file descriptors -in the parent process won't affect the file descriptors in the child, -and vice versa. @xref{Control Operations}. - -@item -The elapsed processor times for the child process are set to zero; -see @ref{Processor Time}. - -@item -The child doesn't inherit file locks set by the parent process. -@xref{Control Operations}. - -@item -The child doesn't inherit alarms set by the parent process. -@xref{Setting an Alarm}. - -@item -The set of pending signals (@pxref{Delivery of Signal}) for the child -process is cleared. (The child process inherits its mask of blocked -signals and signal actions from the parent process.) -@end itemize - - -@comment unistd.h -@comment BSD -@deftypefun pid_t vfork (void) -The @code{vfork} function is similar to @code{fork} but more efficient; -however, there are restrictions you must follow to use it safely. - -While @code{fork} makes a complete copy of the calling process's address -space and allows both the parent and child to execute independently, -@code{vfork} does not make this copy. Instead, the child process -created with @code{vfork} shares its parent's address space until it calls -one of the @code{exec} functions. In the meantime, the parent process -suspends execution. - -You must be very careful not to allow the child process created with -@code{vfork} to modify any global data or even local variables shared -with the parent. Furthermore, the child process cannot return from (or -do a long jump out of) the function that called @code{vfork}! This -would leave the parent process's control information very confused. If -in doubt, use @code{fork} instead. - -Some operating systems don't really implement @code{vfork}. The GNU C -library permits you to use @code{vfork} on all systems, but actually -executes @code{fork} if @code{vfork} isn't available. -@end deftypefun - -@node Executing a File, Process Completion, Creating a Process, Creating New Processes -@subsection Executing a File -@cindex executing a file -@cindex @code{exec} functions - -This section describes the @code{exec} family of functions, for executing -a file as a process image. You can use these functions to make a child -process execute a new program after it has been forked. - -The functions in this family differ in how you specify the arguments, -but otherwise they all do the same thing. They are declared in the -header file @file{unistd.h}. -@pindex unistd.h - -@comment unistd.h -@comment POSIX.1 -@deftypefun int execv (const char *@var{filename}, char *const @var{argv}@t{[]}) -The @code{execv} function executes the file named by @var{filename} as a -new process image. - -The @var{argv} argument is an array of null-terminated strings that is -used to provide a value for the @code{argv} argument to the @code{main} -function of the program to be executed. The last element of this array -must be a null pointer. @xref{Program Arguments}, for information on -how programs can access these arguments. - -The environment for the new process image is taken from the -@code{environ} variable of the current process image; see @ref{Environment -Variables}, for information about environments. -@end deftypefun - -@comment unistd.h -@comment POSIX.1 -@deftypefun int execl (const char *@var{filename}, const char *@var{arg0}, @dots{}) -This is similar to @code{execv}, but the @var{argv} strings are -specified individually instead of as an array. A null pointer must be -passed as the last such argument. -@end deftypefun - -@comment unistd.h -@comment POSIX.1 -@deftypefun int execve (const char *@var{filename}, char *const @var{argv}@t{[]}, char *const @var{env}@t{[]}) -This is similar to @code{execv}, but permits you to specify the environment -for the new program explicitly as the @var{env} argument. This should -be an array of strings in the same format as for the @code{environ} -variable; see @ref{Environment Access}. -@end deftypefun - -@comment unistd.h -@comment POSIX.1 -@deftypefun int execle (const char *@var{filename}, const char *@var{arg0}, char *const @var{env}@t{[]}, @dots{}) -This is similar to @code{execl}, but permits you to specify the -environment for the new program explicitly. The environment argument is -passed following the null pointer that marks the last @var{argv} -argument, and should be an array of strings in the same format as for -the @code{environ} variable. -@end deftypefun - -@comment unistd.h -@comment POSIX.1 -@deftypefun int execvp (const char *@var{filename}, char *const @var{argv}@t{[]}) -The @code{execvp} function is similar to @code{execv}, except that it -searches the directories listed in the @code{PATH} environment variable -(@pxref{Standard Environment Variables}) to find the full file name of a -file from @var{filename} if @var{filename} does not contain a slash. - -This function is useful for executing installed system utility programs, -so that the user can control where to look for them. It is also useful -in shells, for executing commands typed by the user. -@end deftypefun - -@comment unistd.h -@comment POSIX.1 -@deftypefun int execlp (const char *@var{filename}, const char *@var{arg0}, @dots{}) -This function is like @code{execl}, except that it performs the same -file name searching as the @code{execvp} function. -@end deftypefun - - -The size of the argument list and environment list taken together must not -be greater than @code{ARG_MAX} bytes. @xref{System Parameters}. - -@strong{Incomplete:} The POSIX.1 standard requires some statement here -about how null terminators, null pointers, and alignment requirements -affect the total size of the argument and environment lists. - -These functions normally don't return, since execution of a new program -causes the currently executing program to go away completely. A value -of @code{-1} is returned in the event of a failure. In addition to the -usual file name syntax errors (@pxref{File Name Errors}), the following -@code{errno} error conditions are defined for these functions: - -@table @code -@item E2BIG -The combined size of the new program's argument list and environment list -is larger than @code{ARG_MAX} bytes. - -@item ENOEXEC -The specified file can't be executed because it isn't in the right format. - -@item ENOMEM -Executing the specified file requires more storage than is available. -@end table - -If execution of the new file is successful, the access time field of the -file is updated as if the file had been opened. @xref{File Times}, for -more details about access times of files. - -The point at which the file is closed again is not specified, but -is at some point before the process exits or before another process -image is executed. - -Executing a new process image completely changes the contents of memory, -except for the arguments and the environment, but many other attributes -of the process are unchanged: - -@itemize @bullet -@item -The process ID and the parent process ID. @xref{Process Creation Concepts}. - -@item -Session and process group membership. @xref{Job Control Concepts}. - -@item -Real user ID and group ID, and supplementary group IDs. @xref{User/Group -IDs of a Process}. - -@item -Pending alarms. @xref{Setting an Alarm}. - -@item -Current working directory and root directory. @xref{Working Directory}. - -@item -File mode creation mask. @xref{Setting Permissions}. - -@item -Process signal mask; see @ref{Process Signal Mask}. - -@item -Pending signals; see @ref{Blocking Signals}. - -@item -Elapsed processor time associated with the process; see @ref{Processor Time}. -@end itemize - -If the set-user-ID and set-group-ID mode bits of the process image file -are set, this affects the effective user ID and effective group ID -(respectively) of the process. These concepts are discussed in detail -in @ref{User/Group IDs of a Process}. - -Signals that are set to be ignored in the existing process image are -also set to be ignored in the new process image. All other signals are -set to the default action in the new process image. For more -information about signals, see @ref{Signal Handling}. - -File descriptors open in the existing process image remain open in the -new process image, unless they have the @code{FD_CLOEXEC} -(close-on-exec) flag set. The files that remain open inherit all -attributes of the open file description from the existing process image, -including file locks. File descriptors are discussed in @ref{Low-Level -Input/Output}. - -Streams, by contrast, cannot survive through @code{exec} functions, -because they are located in the memory of the process itself. The new -process image has no streams except those it creates afresh. Each of -the streams in the pre-@code{exec} process image has a descriptor inside -it, and these descriptors do survive through @code{exec} (provided that -they do not have @code{FD_CLOEXEC} set. The new process image can -reconnect these to new streams using @code{fdopen}. - -@node Process Completion, Process Completion Status, Executing a File, Creating New Processes -@subsection Process Completion -@cindex process completion -@cindex waiting for completion of child process -@cindex testing exit status of child process - -The functions described in this section are used to wait for a child -process to terminate or stop, and determine its status. These functions -are declared in the header file @file{sys/wait.h}. -@pindex sys/wait.h - -@comment sys/wait.h -@comment POSIX.1 -@deftypefun pid_t waitpid (pid_t @var{pid}, int *@var{status_ptr}, int @var{options}) -The @code{waitpid} function is used to request status information from a -child process whose process ID is @var{pid}. Normally, the calling -process is suspended until the child process makes status information -available by terminating. - -Other values for the @var{pid} argument have special interpretations. A -value of @code{-1} or @code{WAIT_ANY} requests status information for -any child process; a value of @code{0} or @code{WAIT_MYPGRP} requests -information for any child process in the same process group as the -calling process; and any other negative value @minus{} @var{pgid} -requests information for any child process whose process group ID is -@var{pgid}. - -If status information for a child process is available immediately, this -function returns immediately without waiting. If more than one eligible -child process has status information available, one of them is chosen -randomly, and its status is returned immediately. To get the status -from the other programs, you need to call @code{waitpid} again. - -The @var{options} argument is a bit mask. Its value should be the -bitwise OR (that is, the @samp{|} operator) of zero or more of the -@code{WNOHANG} and @code{WUNTRACED} flags. You can use the -@code{WNOHANG} flag to indicate that the parent process shouldn't wait; -and the @code{WUNTRACED} flag to request status information from stopped -processes as well as processes that have terminated. - -The status information from the child process is stored in the object -that @var{status_ptr} points to, unless @var{status_ptr} is a null pointer. - -The return value is normally the process ID of the child process whose -status is reported. If the @code{WNOHANG} option was specified and no -child process is waiting to be noticed, a value of zero is returned. A -value of @code{-1} is returned in case of error. The following -@code{errno} error conditions are defined for this function: - -@table @code -@item EINTR -The function was interrupted by delivery of a signal to the calling -process. - -@item ECHILD -There are no child processes to wait for, or the specified @var{pid} -is not a child of the calling process. - -@item EINVAL -An invalid value was provided for the @var{options} argument. -@end table -@end deftypefun - -These symbolic constants are defined as values for the @var{pid} argument -to the @code{waitpid} function. - -@table @code -@item WAIT_ANY -This constant macro (whose value is @code{-1}) specifies that -@code{waitpid} should return status information about any child process. - -@item WAIT_MYPGRP -This constant (with value @code{0}) specifies that @code{waitpid} should -return status information about any child process in the same process -group as the calling process. - -These symbolic constants are defined as flags for the @var{options} -argument to the @code{waitpid} function. You can bitwise-OR the flags -together to obtain a value to use as the argument. - -@item WNOHANG -This flag specifies that @code{waitpid} should return immediately -instead of waiting if there is no child process ready to be noticed. - -@item WUNTRACED -This macro is used to specify that @code{waitpid} should also report the -status of any child processes that have been stopped as well as those -that have terminated. -@end table - -@deftypefun pid_t wait (int *@var{status_ptr}) -This is a simplified version of @code{waitpid}, and is used to wait -until any one child process terminates. - -@example -wait (&status) -@end example - -@noindent -is equivalent to: - -@example -waitpid (-1, &status, 0) -@end example - -Here's an example of how to use @code{waitpid} to get the status from -all child processes that have terminated, without ever waiting. This -function is designed to be used as a handler for @code{SIGCHLD}, the -signal that indicates that at least one child process has terminated. - -@example -void -sigchld_handler (int signum) -@{ - int pid; - int status; - while (1) @{ - pid = waitpid (WAIT_ANY, Estatus, WNOHANG); - if (pid < 0) @{ - perror ("waitpid"); - break; - @} - if (pid == 0) - break; - notice_termination (pid, status); - @} -@} -@end example -@end deftypefun - -@node Process Completion Status, BSD wait Functions, Process Completion, Creating New Processes -@subsection Process Completion Status - -If the exit status value (@pxref{Program Termination}) of the child -process is zero, then the status value reported by @code{waitpid} or -@code{wait} is also zero. You can test for other kinds of information -encoded in the returned status value using the following macros. -These macros are defined in the header file @file{sys/wait.h}. -@pindex sys/wait.h - -@comment sys/wait.h -@comment POSIX.1 -@deftypefn Macro int WIFEXITED (int @var{status}) -This macro returns a non-zero value if the child process terminated -normally with @code{exit} or @code{_exit}. -@end deftypefn - -@comment sys/wait.h -@comment POSIX.1 -@deftypefn Macro int WEXITSTATUS (int @var{status}) -If @code{WIFEXITED} is true of @var{status}, this macro returns the -low-order 8 bits of the exit status value from the child process. -@end deftypefn - -@comment sys/wait.h -@comment POSIX.1 -@deftypefn Macro int WIFSIGNALED (int @var{status}) -This macro returns a non-zero value if the child process terminated -by receiving a signal that was not handled. -@end deftypefn - -@comment sys/wait.h -@comment POSIX.1 -@deftypefn Macro int WTERMSIG (int @var{status}) -If @code{WIFSIGNALED} is true of @var{status}, this macro returns the -number of the signal that terminated the child process. -@end deftypefn - -@comment sys/wait.h -@comment BSD -@deftypefn Macro int WCOREDUMP (int @var{status}) -This macro returns a non-zero value if the child process terminated -and produced a core dump. -@end deftypefn - -@comment sys/wait.h -@comment POSIX.1 -@deftypefn Macro int WIFSTOPPED (int @var{status}) -This macro returns a non-zero value if the child process is stopped. -@end deftypefn - -@comment sys/wait.h -@comment POSIX.1 -@deftypefn Macro int WSTOPSIG (int @var{status}) -If @code{WIFSTOPPED} is true of @var{status}, this macro returns the -number of the signal that caused the child process to stop. -@end deftypefn - - -@node BSD wait Functions, Process Creation Example, Process Completion Status, Creating New Processes -@subsection BSD Process Completion Functions - -The GNU library also provides these related facilities for compatibility -with BSD Unix. BSD uses the @code{union wait} data type to represent -status values rather than an @code{int}. The two representations are -actually interchangeable; they describe the same bit patterns. The macros -such as @code{WEXITSTATUS} are defined so that they will work on either -kind of object, and the @code{wait} function is defined to accept either -type of pointer as its @var{status_ptr} argument. - -These functions are declared in @file{sys/wait.h}. -@pindex sys/wait.h - -@comment sys/wait.h -@comment BSD -@deftp {union Type} wait -This data type represents program termination status values. It has -the following members: - -@table @code -@item int w_termsig -This member is equivalent to the @code{WTERMSIG} macro. - -@item int w_coredump -This member is equivalent to the @code{WCOREDUMP} macro. - -@item int w_retcode -This member is equivalent to the @code{WEXISTATUS} macro. - -@item int w_stopsig -This member is equivalent to the @code{WSTOPSIG} macro. -@end table - -Instead of accessing these members directly, you should use the -equivalent macros. -@end deftp - -@comment sys/wait.h -@comment BSD -@deftypefun pid_t wait3 (union wait *@var{status_ptr}, int @var{options}, void * @var{usage}) -If @var{usage} is a null pointer, this function is equivalent to -@code{waitpid (-1, @var{status_ptr}, @var{options})}. - -The @var{usage} argument may also be a pointer to a -@code{struct rusage} object. Information about system resources used by -terminated processes (but not stopped processes) is returned in this -structure. - -@strong{Incomplete:} The description of the @code{struct rusage} structure -hasn't been written yet. Put in a cross-reference here. -@end deftypefun - -@comment sys/wait.h -@comment BSD -@deftypefun pid_t wait4 (pid_t @var{pid}, union wait *@var{status_ptr}, int @var{options}, void *@var{usage}) -If @var{usage} is a null pointer, this function is equivalent to -@code{waitpid (@var{pid}, @var{status_ptr}, @var{options})}. - -The @var{usage} argument may also be a pointer to a -@code{struct rusage} object. Information about system resources used by -terminated processes (but not stopped processes) is returned in this -structure. - -@strong{Incomplete:} The description of the @code{struct rusage} structure -hasn't been written yet. Put in a cross-reference here. -@end deftypefun - -@node Process Creation Example, , BSD wait Functions, Creating New Processes -@subsection Process Creation Example - -Here is an example program showing how you might write a function -similar to the built-in @code{system}. It executes its @var{command} -argument using the equivalent of @samp{sh -c @var{command}}. - -@example -#include <stddef.h> -#include <stdlib.h> -#include <unistd.h> -#include <sys/types.h> -#include <sys/wait.h> - -/* @r{Execute the command using this shell program.} */ -#define SHELL "/bin/sh" - -int -my_system (char *command) -@{ - int status; - pid_t pid; - - pid = fork (); - if (pid == 0) @{ - /* @r{This is the child process. Execute the shell command.} */ - execl (SHELL, SHELL, "-c", command, NULL); - exit (EXIT_FAILURE); - @} - else if (pid < 0) - /* @r{The fork failed. Report failure.} */ - status = -1; - else @{ - /* @r{This is the parent process. Wait for the child to complete.} */ - if (waitpid (pid, &status, 0) != pid) - status = -1; - @} - return status; -@} -@end example - -@comment Yes, this example has been tested. - -There are a couple of things you should pay attention to in this -example. - -Remember that the first @code{argv} argument supplied to the program -represents the name of the program being executed. That is why, in the -call to @code{execl}, @code{SHELL} is supplied once to name the program -to execute and a second time to supply a value for @code{argv[0]}. - -The @code{execl} call in the child process doesn't return if it is -successful. If it fails, you must do something to make the child -process terminate. Just returning a bad status code with @code{return} -would leave two processes running the original program. Instead, the -right behavior is for the child process to report failure to its parent -process. To do this, @code{exit} is called with a failure status. |