about summary refs log tree commit diff
path: root/malloc
diff options
context:
space:
mode:
Diffstat (limited to 'malloc')
-rw-r--r--malloc/Makefile40
-rw-r--r--malloc/malloc.c3443
-rw-r--r--malloc/malloc.h169
-rw-r--r--malloc/mallocbug.c67
-rw-r--r--malloc/obstack.c551
-rw-r--r--malloc/obstack.h575
-rw-r--r--malloc/thread-m.h176
7 files changed, 5021 insertions, 0 deletions
diff --git a/malloc/Makefile b/malloc/Makefile
new file mode 100644
index 0000000000..a6213949e1
--- /dev/null
+++ b/malloc/Makefile
@@ -0,0 +1,40 @@
+# Copyright (C) 1991, 92, 93, 94, 95, 96 Free Software Foundation, Inc.
+# This file is part of the GNU C Library.
+
+# The GNU C Library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Library General Public License as
+# published by the Free Software Foundation; either version 2 of the
+# License, or (at your option) any later version.
+
+# The GNU C Library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# Library General Public License for more details.
+
+# You should have received a copy of the GNU Library General Public
+# License along with the GNU C Library; see the file COPYING.LIB.  If not,
+# write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+# Boston, MA 02111-1307, USA.
+
+#
+#	Makefile for malloc routines
+#
+subdir	:= new-malloc
+
+all:
+
+dist-headers := malloc.h
+headers := $(dist-headers) obstack.h
+tests := mallocbug
+
+distribute = thread-m.h
+
+# Things which get pasted together into gmalloc.c.
+gmalloc-routines := malloc morecore
+# Things to include in the standalone distribution.
+dist-routines = $(gmalloc-routines)
+routines = $(dist-routines) obstack
+
+include ../Rules
+
+CFLAGS-obstack.c = -Wno-strict-prototypes
diff --git a/malloc/malloc.c b/malloc/malloc.c
new file mode 100644
index 0000000000..ed24d5d76d
--- /dev/null
+++ b/malloc/malloc.c
@@ -0,0 +1,3443 @@
+/* Malloc implementation for multiple threads without lock contention.
+   Copyright (C) 1996 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Wolfram Gloger <wmglo@dent.med.uni-muenchen.de>, 1996.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* VERSION 2.6.4-pt Wed Dec  4 00:35:54 MET 1996
+
+  This work is mainly derived from malloc-2.6.4 by Doug Lea
+  <dl@cs.oswego.edu>, which is available from:
+
+                 ftp://g.oswego.edu/pub/misc/malloc.c
+
+  Most of the original comments are reproduced in the code below.
+
+* Why use this malloc?
+
+  This is not the fastest, most space-conserving, most portable, or
+  most tunable malloc ever written. However it is among the fastest
+  while also being among the most space-conserving, portable and tunable.
+  Consistent balance across these factors results in a good general-purpose
+  allocator. For a high-level description, see
+     http://g.oswego.edu/dl/html/malloc.html
+
+  On many systems, the standard malloc implementation is by itself not
+  thread-safe, and therefore wrapped with a single global lock around
+  all malloc-related functions.  In some applications, especially with
+  multiple available processors, this can lead to contention problems
+  and bad performance.  This malloc version was designed with the goal
+  to avoid waiting for locks as much as possible.  Statistics indicate
+  that this goal is achieved in many cases.
+
+* Synopsis of public routines
+
+  (Much fuller descriptions are contained in the program documentation below.)
+
+  ptmalloc_init();
+     Initialize global configuration.  When compiled for multiple threads,
+     this function must be called once before any other function in the
+     package.  It is not required otherwise. It is called automatically
+     in the Linux/GNU C libray.
+  malloc(size_t n);
+     Return a pointer to a newly allocated chunk of at least n bytes, or null
+     if no space is available.
+  free(Void_t* p);
+     Release the chunk of memory pointed to by p, or no effect if p is null.
+  realloc(Void_t* p, size_t n);
+     Return a pointer to a chunk of size n that contains the same data
+     as does chunk p up to the minimum of (n, p's size) bytes, or null
+     if no space is available. The returned pointer may or may not be
+     the same as p. If p is null, equivalent to malloc.  Unless the
+     #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
+     size argument of zero (re)allocates a minimum-sized chunk.
+  memalign(size_t alignment, size_t n);
+     Return a pointer to a newly allocated chunk of n bytes, aligned
+     in accord with the alignment argument, which must be a power of
+     two.
+  valloc(size_t n);
+     Equivalent to memalign(pagesize, n), where pagesize is the page
+     size of the system (or as near to this as can be figured out from
+     all the includes/defines below.)
+  pvalloc(size_t n);
+     Equivalent to valloc(minimum-page-that-holds(n)), that is,
+     round up n to nearest pagesize.
+  calloc(size_t unit, size_t quantity);
+     Returns a pointer to quantity * unit bytes, with all locations
+     set to zero.
+  cfree(Void_t* p);
+     Equivalent to free(p).
+  malloc_trim(size_t pad);
+     Release all but pad bytes of freed top-most memory back
+     to the system. Return 1 if successful, else 0.
+  malloc_usable_size(Void_t* p);
+     Report the number usable allocated bytes associated with allocated
+     chunk p. This may or may not report more bytes than were requested,
+     due to alignment and minimum size constraints.
+  malloc_stats();
+     Prints brief summary statistics on stderr.
+  mallinfo()
+     Returns (by copy) a struct containing various summary statistics.
+  mallopt(int parameter_number, int parameter_value)
+     Changes one of the tunable parameters described below. Returns
+     1 if successful in changing the parameter, else 0.
+
+* Vital statistics:
+
+  Alignment:                            8-byte
+       8 byte alignment is currently hardwired into the design.  This
+       seems to suffice for all current machines and C compilers.
+
+  Assumed pointer representation:       4 or 8 bytes
+       Code for 8-byte pointers is untested by me but has worked
+       reliably by Wolfram Gloger, who contributed most of the
+       changes supporting this.
+
+  Assumed size_t  representation:       4 or 8 bytes
+       Note that size_t is allowed to be 4 bytes even if pointers are 8.
+
+  Minimum overhead per allocated chunk: 4 or 8 bytes
+       Each malloced chunk has a hidden overhead of 4 bytes holding size
+       and status information.
+
+  Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
+                          8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
+
+       When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
+       ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
+       needed; 4 (8) for a trailing size field
+       and 8 (16) bytes for free list pointers. Thus, the minimum
+       allocatable size is 16/24/32 bytes.
+
+       Even a request for zero bytes (i.e., malloc(0)) returns a
+       pointer to something of the minimum allocatable size.
+
+  Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
+                          8-byte size_t: 2^63 - 16 bytes
+
+       It is assumed that (possibly signed) size_t bit values suffice to
+       represent chunk sizes. `Possibly signed' is due to the fact
+       that `size_t' may be defined on a system as either a signed or
+       an unsigned type. To be conservative, values that would appear
+       as negative numbers are avoided.
+       Requests for sizes with a negative sign bit will return a
+       minimum-sized chunk.
+
+  Maximum overhead wastage per allocated chunk: normally 15 bytes
+
+       Alignnment demands, plus the minimum allocatable size restriction
+       make the normal worst-case wastage 15 bytes (i.e., up to 15
+       more bytes will be allocated than were requested in malloc), with
+       two exceptions:
+         1. Because requests for zero bytes allocate non-zero space,
+            the worst case wastage for a request of zero bytes is 24 bytes.
+         2. For requests >= mmap_threshold that are serviced via
+            mmap(), the worst case wastage is 8 bytes plus the remainder
+            from a system page (the minimal mmap unit); typically 4096 bytes.
+
+* Limitations
+
+    Here are some features that are NOT currently supported
+
+    * No user-definable hooks for callbacks and the like.
+    * No automated mechanism for fully checking that all accesses
+      to malloced memory stay within their bounds.
+    * No support for compaction.
+
+* Synopsis of compile-time options:
+
+    People have reported using previous versions of this malloc on all
+    versions of Unix, sometimes by tweaking some of the defines
+    below. It has been tested most extensively on Solaris and
+    Linux. People have also reported adapting this malloc for use in
+    stand-alone embedded systems.
+
+    The implementation is in straight, hand-tuned ANSI C.  Among other
+    consequences, it uses a lot of macros.  Because of this, to be at
+    all usable, this code should be compiled using an optimizing compiler
+    (for example gcc -O2) that can simplify expressions and control
+    paths.
+
+  __STD_C                  (default: derived from C compiler defines)
+     Nonzero if using ANSI-standard C compiler, a C++ compiler, or
+     a C compiler sufficiently close to ANSI to get away with it.
+  MALLOC_DEBUG             (default: NOT defined)
+     Define to enable debugging. Adds fairly extensive assertion-based
+     checking to help track down memory errors, but noticeably slows down
+     execution.
+  REALLOC_ZERO_BYTES_FREES (default: NOT defined)
+     Define this if you think that realloc(p, 0) should be equivalent
+     to free(p). Otherwise, since malloc returns a unique pointer for
+     malloc(0), so does realloc(p, 0).
+  HAVE_MEMCPY               (default: defined)
+     Define if you are not otherwise using ANSI STD C, but still
+     have memcpy and memset in your C library and want to use them.
+     Otherwise, simple internal versions are supplied.
+  USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
+     Define as 1 if you want the C library versions of memset and
+     memcpy called in realloc and calloc (otherwise macro versions are used).
+     At least on some platforms, the simple macro versions usually
+     outperform libc versions.
+  HAVE_MMAP                 (default: defined as 1)
+     Define to non-zero to optionally make malloc() use mmap() to
+     allocate very large blocks.
+  HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
+     Define to non-zero to optionally make realloc() use mremap() to
+     reallocate very large blocks.
+  malloc_getpagesize        (default: derived from system #includes)
+     Either a constant or routine call returning the system page size.
+  HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
+     Optionally define if you are on a system with a /usr/include/malloc.h
+     that declares struct mallinfo. It is not at all necessary to
+     define this even if you do, but will ensure consistency.
+  INTERNAL_SIZE_T           (default: size_t)
+     Define to a 32-bit type (probably `unsigned int') if you are on a
+     64-bit machine, yet do not want or need to allow malloc requests of
+     greater than 2^31 to be handled. This saves space, especially for
+     very small chunks.
+  _LIBC                     (default: NOT defined)
+     Defined only when compiled as part of the Linux libc/glibc.
+     Also note that there is some odd internal name-mangling via defines
+     (for example, internally, `malloc' is named `mALLOc') needed
+     when compiling in this case. These look funny but don't otherwise
+     affect anything.
+  LACKS_UNISTD_H            (default: undefined)
+     Define this if your system does not have a <unistd.h>.
+  MORECORE                  (default: sbrk)
+     The name of the routine to call to obtain more memory from the system.
+  MORECORE_FAILURE          (default: -1)
+     The value returned upon failure of MORECORE.
+  MORECORE_CLEARS           (default 1)
+     True (1) if the routine mapped to MORECORE zeroes out memory (which
+     holds for sbrk).
+  DEFAULT_TRIM_THRESHOLD
+  DEFAULT_TOP_PAD
+  DEFAULT_MMAP_THRESHOLD
+  DEFAULT_MMAP_MAX
+     Default values of tunable parameters (described in detail below)
+     controlling interaction with host system routines (sbrk, mmap, etc).
+     These values may also be changed dynamically via mallopt(). The
+     preset defaults are those that give best performance for typical
+     programs/systems.
+
+
+*/
+
+/*
+
+* Compile-time options for multiple threads:
+
+  USE_PTHREADS, USE_THR, USE_SPROC
+     Define one of these as 1 to select the thread interface:
+     POSIX threads, Solaris threads or SGI sproc's, respectively.
+     If none of these is defined as non-zero, you get a `normal'
+     malloc implementation which is not thread-safe.  Support for
+     multiple threads requires HAVE_MMAP=1.  As an exception, when
+     compiling for GNU libc, i.e. when _LIBC is defined, then none of
+     the USE_... symbols have to be defined.
+
+  HEAP_MIN_SIZE
+  HEAP_MAX_SIZE
+     When thread support is enabled, additional `heap's are created
+     with mmap calls.  These are limited in size; HEAP_MIN_SIZE should
+     be a multiple of the page size, while HEAP_MAX_SIZE must be a power
+     of two for alignment reasons.  HEAP_MAX_SIZE should be at least
+     twice as large as the mmap threshold.
+  THREAD_STATS
+     When this is defined as non-zero, some statistics on mutex locking
+     are computed.
+
+*/
+
+
+
+
+/* Macros for handling mutexes and thread-specific data.  This is
+   included first, because some thread-related header files (such as
+   pthread.h) should be included before any others. */
+#include "thread-m.h"
+
+
+/* Preliminaries */
+
+#ifndef __STD_C
+#if defined (__STDC__)
+#define __STD_C     1
+#else
+#if __cplusplus
+#define __STD_C     1
+#else
+#define __STD_C     0
+#endif /*__cplusplus*/
+#endif /*__STDC__*/
+#endif /*__STD_C*/
+
+#ifndef Void_t
+#if __STD_C
+#define Void_t      void
+#else
+#define Void_t      char
+#endif
+#endif /*Void_t*/
+
+#if __STD_C
+#include <stddef.h>   /* for size_t */
+#else
+#include <sys/types.h>
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <stdio.h>    /* needed for malloc_stats */
+
+
+/*
+  Compile-time options
+*/
+
+
+/*
+    Debugging:
+
+    Because freed chunks may be overwritten with link fields, this
+    malloc will often die when freed memory is overwritten by user
+    programs.  This can be very effective (albeit in an annoying way)
+    in helping track down dangling pointers.
+
+    If you compile with -DMALLOC_DEBUG, a number of assertion checks are
+    enabled that will catch more memory errors. You probably won't be
+    able to make much sense of the actual assertion errors, but they
+    should help you locate incorrectly overwritten memory.  The
+    checking is fairly extensive, and will slow down execution
+    noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set will
+    attempt to check every non-mmapped allocated and free chunk in the
+    course of computing the summmaries. (By nature, mmapped regions
+    cannot be checked very much automatically.)
+
+    Setting MALLOC_DEBUG may also be helpful if you are trying to modify
+    this code. The assertions in the check routines spell out in more
+    detail the assumptions and invariants underlying the algorithms.
+
+*/
+
+#if MALLOC_DEBUG
+#include <assert.h>
+#else
+#define assert(x) ((void)0)
+#endif
+
+
+/*
+  INTERNAL_SIZE_T is the word-size used for internal bookkeeping
+  of chunk sizes. On a 64-bit machine, you can reduce malloc
+  overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
+  at the expense of not being able to handle requests greater than
+  2^31. This limitation is hardly ever a concern; you are encouraged
+  to set this. However, the default version is the same as size_t.
+*/
+
+#ifndef INTERNAL_SIZE_T
+#define INTERNAL_SIZE_T size_t
+#endif
+
+/*
+  REALLOC_ZERO_BYTES_FREES should be set if a call to
+  realloc with zero bytes should be the same as a call to free.
+  Some people think it should. Otherwise, since this malloc
+  returns a unique pointer for malloc(0), so does realloc(p, 0).
+*/
+
+
+/*   #define REALLOC_ZERO_BYTES_FREES */
+
+
+/*
+  HAVE_MEMCPY should be defined if you are not otherwise using
+  ANSI STD C, but still have memcpy and memset in your C library
+  and want to use them in calloc and realloc. Otherwise simple
+  macro versions are defined here.
+
+  USE_MEMCPY should be defined as 1 if you actually want to
+  have memset and memcpy called. People report that the macro
+  versions are often enough faster than libc versions on many
+  systems that it is better to use them.
+
+*/
+
+#define HAVE_MEMCPY
+
+#ifndef USE_MEMCPY
+#ifdef HAVE_MEMCPY
+#define USE_MEMCPY 1
+#else
+#define USE_MEMCPY 0
+#endif
+#endif
+
+#if (__STD_C || defined(HAVE_MEMCPY))
+
+#if __STD_C
+void* memset(void*, int, size_t);
+void* memcpy(void*, const void*, size_t);
+#else
+Void_t* memset();
+Void_t* memcpy();
+#endif
+#endif
+
+#if USE_MEMCPY
+
+/* The following macros are only invoked with (2n+1)-multiples of
+   INTERNAL_SIZE_T units, with a positive integer n. This is exploited
+   for fast inline execution when n is small. */
+
+#define MALLOC_ZERO(charp, nbytes)                                            \
+do {                                                                          \
+  INTERNAL_SIZE_T mzsz = (nbytes);                                            \
+  if(mzsz <= 9*sizeof(mzsz)) {                                                \
+    INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
+    if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
+                                     *mz++ = 0;                               \
+      if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
+                                     *mz++ = 0;                               \
+        if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
+                                     *mz++ = 0; }}}                           \
+                                     *mz++ = 0;                               \
+                                     *mz++ = 0;                               \
+                                     *mz   = 0;                               \
+  } else memset((charp), 0, mzsz);                                            \
+} while(0)
+
+#define MALLOC_COPY(dest,src,nbytes)                                          \
+do {                                                                          \
+  INTERNAL_SIZE_T mcsz = (nbytes);                                            \
+  if(mcsz <= 9*sizeof(mcsz)) {                                                \
+    INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
+    INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
+    if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
+                                     *mcdst++ = *mcsrc++;                     \
+      if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
+                                     *mcdst++ = *mcsrc++;                     \
+        if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
+                                     *mcdst++ = *mcsrc++; }}}                 \
+                                     *mcdst++ = *mcsrc++;                     \
+                                     *mcdst++ = *mcsrc++;                     \
+                                     *mcdst   = *mcsrc  ;                     \
+  } else memcpy(dest, src, mcsz);                                             \
+} while(0)
+
+#else /* !USE_MEMCPY */
+
+/* Use Duff's device for good zeroing/copying performance. */
+
+#define MALLOC_ZERO(charp, nbytes)                                            \
+do {                                                                          \
+  INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
+  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
+  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
+  switch (mctmp) {                                                            \
+    case 0: for(;;) { *mzp++ = 0;                                             \
+    case 7:           *mzp++ = 0;                                             \
+    case 6:           *mzp++ = 0;                                             \
+    case 5:           *mzp++ = 0;                                             \
+    case 4:           *mzp++ = 0;                                             \
+    case 3:           *mzp++ = 0;                                             \
+    case 2:           *mzp++ = 0;                                             \
+    case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
+  }                                                                           \
+} while(0)
+
+#define MALLOC_COPY(dest,src,nbytes)                                          \
+do {                                                                          \
+  INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
+  INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
+  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
+  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
+  switch (mctmp) {                                                            \
+    case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
+    case 7:           *mcdst++ = *mcsrc++;                                    \
+    case 6:           *mcdst++ = *mcsrc++;                                    \
+    case 5:           *mcdst++ = *mcsrc++;                                    \
+    case 4:           *mcdst++ = *mcsrc++;                                    \
+    case 3:           *mcdst++ = *mcsrc++;                                    \
+    case 2:           *mcdst++ = *mcsrc++;                                    \
+    case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
+  }                                                                           \
+} while(0)
+
+#endif
+
+
+/*
+  Define HAVE_MMAP to optionally make malloc() use mmap() to
+  allocate very large blocks.  These will be returned to the
+  operating system immediately after a free().
+*/
+
+#ifndef HAVE_MMAP
+#define HAVE_MMAP 1
+#endif
+
+/*
+  Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
+  large blocks.  This is currently only possible on Linux with
+  kernel versions newer than 1.3.77.
+*/
+
+#ifndef HAVE_MREMAP
+#define HAVE_MREMAP defined(__linux__)
+#endif
+
+#if HAVE_MMAP
+
+#include <unistd.h>
+#include <fcntl.h>
+#include <sys/mman.h>
+
+#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
+#define MAP_ANONYMOUS MAP_ANON
+#endif
+
+#endif /* HAVE_MMAP */
+
+/*
+  Access to system page size. To the extent possible, this malloc
+  manages memory from the system in page-size units.
+
+  The following mechanics for getpagesize were adapted from
+  bsd/gnu getpagesize.h
+*/
+
+#ifndef LACKS_UNISTD_H
+#  include <unistd.h>
+#endif
+
+#ifndef malloc_getpagesize
+#  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
+#    ifndef _SC_PAGE_SIZE
+#      define _SC_PAGE_SIZE _SC_PAGESIZE
+#    endif
+#  endif
+#  ifdef _SC_PAGE_SIZE
+#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
+#  else
+#    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
+       extern size_t getpagesize();
+#      define malloc_getpagesize getpagesize()
+#    else
+#      include <sys/param.h>
+#      ifdef EXEC_PAGESIZE
+#        define malloc_getpagesize EXEC_PAGESIZE
+#      else
+#        ifdef NBPG
+#          ifndef CLSIZE
+#            define malloc_getpagesize NBPG
+#          else
+#            define malloc_getpagesize (NBPG * CLSIZE)
+#          endif
+#        else
+#          ifdef NBPC
+#            define malloc_getpagesize NBPC
+#          else
+#            ifdef PAGESIZE
+#              define malloc_getpagesize PAGESIZE
+#            else
+#              define malloc_getpagesize (4096) /* just guess */
+#            endif
+#          endif
+#        endif
+#      endif
+#    endif
+#  endif
+#endif
+
+
+
+/*
+
+  This version of malloc supports the standard SVID/XPG mallinfo
+  routine that returns a struct containing the same kind of
+  information you can get from malloc_stats. It should work on
+  any SVID/XPG compliant system that has a /usr/include/malloc.h
+  defining struct mallinfo. (If you'd like to install such a thing
+  yourself, cut out the preliminary declarations as described above
+  and below and save them in a malloc.h file. But there's no
+  compelling reason to bother to do this.)
+
+  The main declaration needed is the mallinfo struct that is returned
+  (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
+  bunch of fields, most of which are not even meaningful in this
+  version of malloc. Some of these fields are are instead filled by
+  mallinfo() with other numbers that might possibly be of interest.
+
+  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
+  /usr/include/malloc.h file that includes a declaration of struct
+  mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
+  version is declared below.  These must be precisely the same for
+  mallinfo() to work.
+
+*/
+
+/* #define HAVE_USR_INCLUDE_MALLOC_H */
+
+#if HAVE_USR_INCLUDE_MALLOC_H
+#include "/usr/include/malloc.h"
+#else
+#include "malloc.h"
+#endif
+
+
+
+#ifndef DEFAULT_TRIM_THRESHOLD
+#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
+#endif
+
+/*
+    M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
+      to keep before releasing via malloc_trim in free().
+
+      Automatic trimming is mainly useful in long-lived programs.
+      Because trimming via sbrk can be slow on some systems, and can
+      sometimes be wasteful (in cases where programs immediately
+      afterward allocate more large chunks) the value should be high
+      enough so that your overall system performance would improve by
+      releasing.
+
+      The trim threshold and the mmap control parameters (see below)
+      can be traded off with one another. Trimming and mmapping are
+      two different ways of releasing unused memory back to the
+      system. Between these two, it is often possible to keep
+      system-level demands of a long-lived program down to a bare
+      minimum. For example, in one test suite of sessions measuring
+      the XF86 X server on Linux, using a trim threshold of 128K and a
+      mmap threshold of 192K led to near-minimal long term resource
+      consumption.
+
+      If you are using this malloc in a long-lived program, it should
+      pay to experiment with these values.  As a rough guide, you
+      might set to a value close to the average size of a process
+      (program) running on your system.  Releasing this much memory
+      would allow such a process to run in memory.  Generally, it's
+      worth it to tune for trimming rather tham memory mapping when a
+      program undergoes phases where several large chunks are
+      allocated and released in ways that can reuse each other's
+      storage, perhaps mixed with phases where there are no such
+      chunks at all.  And in well-behaved long-lived programs,
+      controlling release of large blocks via trimming versus mapping
+      is usually faster.
+
+      However, in most programs, these parameters serve mainly as
+      protection against the system-level effects of carrying around
+      massive amounts of unneeded memory. Since frequent calls to
+      sbrk, mmap, and munmap otherwise degrade performance, the default
+      parameters are set to relatively high values that serve only as
+      safeguards.
+
+      The default trim value is high enough to cause trimming only in
+      fairly extreme (by current memory consumption standards) cases.
+      It must be greater than page size to have any useful effect.  To
+      disable trimming completely, you can set to (unsigned long)(-1);
+
+
+*/
+
+
+#ifndef DEFAULT_TOP_PAD
+#define DEFAULT_TOP_PAD        (0)
+#endif
+
+/*
+    M_TOP_PAD is the amount of extra `padding' space to allocate or
+      retain whenever sbrk is called. It is used in two ways internally:
+
+      * When sbrk is called to extend the top of the arena to satisfy
+        a new malloc request, this much padding is added to the sbrk
+        request.
+
+      * When malloc_trim is called automatically from free(),
+        it is used as the `pad' argument.
+
+      In both cases, the actual amount of padding is rounded
+      so that the end of the arena is always a system page boundary.
+
+      The main reason for using padding is to avoid calling sbrk so
+      often. Having even a small pad greatly reduces the likelihood
+      that nearly every malloc request during program start-up (or
+      after trimming) will invoke sbrk, which needlessly wastes
+      time.
+
+      Automatic rounding-up to page-size units is normally sufficient
+      to avoid measurable overhead, so the default is 0.  However, in
+      systems where sbrk is relatively slow, it can pay to increase
+      this value, at the expense of carrying around more memory than
+      the program needs.
+
+*/
+
+
+#ifndef DEFAULT_MMAP_THRESHOLD
+#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
+#endif
+
+/*
+
+    M_MMAP_THRESHOLD is the request size threshold for using mmap()
+      to service a request. Requests of at least this size that cannot
+      be allocated using already-existing space will be serviced via mmap.
+      (If enough normal freed space already exists it is used instead.)
+
+      Using mmap segregates relatively large chunks of memory so that
+      they can be individually obtained and released from the host
+      system. A request serviced through mmap is never reused by any
+      other request (at least not directly; the system may just so
+      happen to remap successive requests to the same locations).
+
+      Segregating space in this way has the benefit that mmapped space
+      can ALWAYS be individually released back to the system, which
+      helps keep the system level memory demands of a long-lived
+      program low. Mapped memory can never become `locked' between
+      other chunks, as can happen with normally allocated chunks, which
+      menas that even trimming via malloc_trim would not release them.
+
+      However, it has the disadvantages that:
+
+         1. The space cannot be reclaimed, consolidated, and then
+            used to service later requests, as happens with normal chunks.
+         2. It can lead to more wastage because of mmap page alignment
+            requirements
+         3. It causes malloc performance to be more dependent on host
+            system memory management support routines which may vary in
+            implementation quality and may impose arbitrary
+            limitations. Generally, servicing a request via normal
+            malloc steps is faster than going through a system's mmap.
+
+      All together, these considerations should lead you to use mmap
+      only for relatively large requests.
+
+
+*/
+
+
+
+#ifndef DEFAULT_MMAP_MAX
+#if HAVE_MMAP
+#define DEFAULT_MMAP_MAX       (1024)
+#else
+#define DEFAULT_MMAP_MAX       (0)
+#endif
+#endif
+
+/*
+    M_MMAP_MAX is the maximum number of requests to simultaneously
+      service using mmap. This parameter exists because:
+
+         1. Some systems have a limited number of internal tables for
+            use by mmap.
+         2. In most systems, overreliance on mmap can degrade overall
+            performance.
+         3. If a program allocates many large regions, it is probably
+            better off using normal sbrk-based allocation routines that
+            can reclaim and reallocate normal heap memory. Using a
+            small value allows transition into this mode after the
+            first few allocations.
+
+      Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
+      the default value is 0, and attempts to set it to non-zero values
+      in mallopt will fail.
+*/
+
+
+
+#define HEAP_MIN_SIZE (32*1024)
+#define HEAP_MAX_SIZE (1024*1024) /* must be a power of two */
+
+/* HEAP_MIN_SIZE and HEAP_MAX_SIZE limit the size of mmap()ed heaps
+      that are dynamically created for multi-threaded programs.  The
+      maximum size must be a power of two, for fast determination of
+      which heap belongs to a chunk.  It should be much larger than
+      the mmap threshold, so that requests with a size just below that
+      threshold can be fulfilled without creating too many heaps.
+*/
+
+
+
+#ifndef THREAD_STATS
+#define THREAD_STATS 0
+#endif
+
+/* If THREAD_STATS is non-zero, some statistics on mutex locking are
+   computed. */
+
+
+/*
+
+  Special defines for the Linux/GNU C library.
+
+*/
+
+
+#ifdef _LIBC
+
+#if __STD_C
+
+Void_t * __default_morecore (ptrdiff_t);
+static Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
+
+#else
+
+Void_t * __default_morecore ();
+static Void_t *(*__morecore)() = __default_morecore;
+
+#endif
+
+#define MORECORE (*__morecore)
+#define MORECORE_FAILURE 0
+#define MORECORE_CLEARS 1
+
+#else /* _LIBC */
+
+#if __STD_C
+extern Void_t*     sbrk(ptrdiff_t);
+#else
+extern Void_t*     sbrk();
+#endif
+
+#ifndef MORECORE
+#define MORECORE sbrk
+#endif
+
+#ifndef MORECORE_FAILURE
+#define MORECORE_FAILURE -1
+#endif
+
+#ifndef MORECORE_CLEARS
+#define MORECORE_CLEARS 1
+#endif
+
+#endif /* _LIBC */
+
+#if 0 && defined(_LIBC)
+
+#define cALLOc          __libc_calloc
+#define fREe            __libc_free
+#define mALLOc          __libc_malloc
+#define mEMALIGn        __libc_memalign
+#define rEALLOc         __libc_realloc
+#define vALLOc          __libc_valloc
+#define pvALLOc         __libc_pvalloc
+#define mALLINFo        __libc_mallinfo
+#define mALLOPt         __libc_mallopt
+
+#pragma weak calloc = __libc_calloc
+#pragma weak free = __libc_free
+#pragma weak cfree = __libc_free
+#pragma weak malloc = __libc_malloc
+#pragma weak memalign = __libc_memalign
+#pragma weak realloc = __libc_realloc
+#pragma weak valloc = __libc_valloc
+#pragma weak pvalloc = __libc_pvalloc
+#pragma weak mallinfo = __libc_mallinfo
+#pragma weak mallopt = __libc_mallopt
+
+#else
+
+#define cALLOc          calloc
+#define fREe            free
+#define mALLOc          malloc
+#define mEMALIGn        memalign
+#define rEALLOc         realloc
+#define vALLOc          valloc
+#define pvALLOc         pvalloc
+#define mALLINFo        mallinfo
+#define mALLOPt         mallopt
+
+#endif
+
+/* Public routines */
+
+#if __STD_C
+
+#ifndef _LIBC
+void    ptmalloc_init(void);
+#endif
+Void_t* mALLOc(size_t);
+void    fREe(Void_t*);
+Void_t* rEALLOc(Void_t*, size_t);
+Void_t* mEMALIGn(size_t, size_t);
+Void_t* vALLOc(size_t);
+Void_t* pvALLOc(size_t);
+Void_t* cALLOc(size_t, size_t);
+void    cfree(Void_t*);
+int     malloc_trim(size_t);
+size_t  malloc_usable_size(Void_t*);
+void    malloc_stats(void);
+int     mALLOPt(int, int);
+struct mallinfo mALLINFo(void);
+#else
+#ifndef _LIBC
+void    ptmalloc_init();
+#endif
+Void_t* mALLOc();
+void    fREe();
+Void_t* rEALLOc();
+Void_t* mEMALIGn();
+Void_t* vALLOc();
+Void_t* pvALLOc();
+Void_t* cALLOc();
+void    cfree();
+int     malloc_trim();
+size_t  malloc_usable_size();
+void    malloc_stats();
+int     mALLOPt();
+struct mallinfo mALLINFo();
+#endif
+
+
+#ifdef __cplusplus
+};  /* end of extern "C" */
+#endif
+
+#if !defined(NO_THREADS) && !HAVE_MMAP
+"Can't have threads support without mmap"
+#endif
+
+
+/*
+  Type declarations
+*/
+
+
+struct malloc_chunk
+{
+  INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
+  INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
+  struct malloc_chunk* fd;   /* double links -- used only if free. */
+  struct malloc_chunk* bk;
+};
+
+typedef struct malloc_chunk* mchunkptr;
+
+/*
+
+   malloc_chunk details:
+
+    (The following includes lightly edited explanations by Colin Plumb.)
+
+    Chunks of memory are maintained using a `boundary tag' method as
+    described in e.g., Knuth or Standish.  (See the paper by Paul
+    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
+    survey of such techniques.)  Sizes of free chunks are stored both
+    in the front of each chunk and at the end.  This makes
+    consolidating fragmented chunks into bigger chunks very fast.  The
+    size fields also hold bits representing whether chunks are free or
+    in use.
+
+    An allocated chunk looks like this:
+
+
+    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Size of previous chunk, if allocated            | |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Size of chunk, in bytes                         |P|
+      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             User data starts here...                          .
+            .                                                               .
+            .             (malloc_usable_space() bytes)                     .
+            .                                                               |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Size of chunk                                     |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+
+    Where "chunk" is the front of the chunk for the purpose of most of
+    the malloc code, but "mem" is the pointer that is returned to the
+    user.  "Nextchunk" is the beginning of the next contiguous chunk.
+
+    Chunks always begin on even word boundries, so the mem portion
+    (which is returned to the user) is also on an even word boundary, and
+    thus double-word aligned.
+
+    Free chunks are stored in circular doubly-linked lists, and look like this:
+
+    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Size of previous chunk                            |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+    `head:' |             Size of chunk, in bytes                         |P|
+      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Forward pointer to next chunk in list             |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Back pointer to previous chunk in list            |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+            |             Unused space (may be 0 bytes long)                .
+            .                                                               .
+            .                                                               |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+    `foot:' |             Size of chunk, in bytes                           |
+            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
+    chunk size (which is always a multiple of two words), is an in-use
+    bit for the *previous* chunk.  If that bit is *clear*, then the
+    word before the current chunk size contains the previous chunk
+    size, and can be used to find the front of the previous chunk.
+    (The very first chunk allocated always has this bit set,
+    preventing access to non-existent (or non-owned) memory.)
+
+    Note that the `foot' of the current chunk is actually represented
+    as the prev_size of the NEXT chunk. (This makes it easier to
+    deal with alignments etc).
+
+    The two exceptions to all this are
+
+     1. The special chunk `top', which doesn't bother using the
+        trailing size field since there is no
+        next contiguous chunk that would have to index off it. (After
+        initialization, `top' is forced to always exist.  If it would
+        become less than MINSIZE bytes long, it is replenished via
+        malloc_extend_top.)
+
+     2. Chunks allocated via mmap, which have the second-lowest-order
+        bit (IS_MMAPPED) set in their size fields.  Because they are
+        never merged or traversed from any other chunk, they have no
+        foot size or inuse information.
+
+    Available chunks are kept in any of several places (all declared below):
+
+    * `av': An array of chunks serving as bin headers for consolidated
+       chunks. Each bin is doubly linked.  The bins are approximately
+       proportionally (log) spaced.  There are a lot of these bins
+       (128). This may look excessive, but works very well in
+       practice.  All procedures maintain the invariant that no
+       consolidated chunk physically borders another one. Chunks in
+       bins are kept in size order, with ties going to the
+       approximately least recently used chunk.
+
+       The chunks in each bin are maintained in decreasing sorted order by
+       size.  This is irrelevant for the small bins, which all contain
+       the same-sized chunks, but facilitates best-fit allocation for
+       larger chunks. (These lists are just sequential. Keeping them in
+       order almost never requires enough traversal to warrant using
+       fancier ordered data structures.)  Chunks of the same size are
+       linked with the most recently freed at the front, and allocations
+       are taken from the back.  This results in LRU or FIFO allocation
+       order, which tends to give each chunk an equal opportunity to be
+       consolidated with adjacent freed chunks, resulting in larger free
+       chunks and less fragmentation.
+
+    * `top': The top-most available chunk (i.e., the one bordering the
+       end of available memory) is treated specially. It is never
+       included in any bin, is used only if no other chunk is
+       available, and is released back to the system if it is very
+       large (see M_TRIM_THRESHOLD).
+
+    * `last_remainder': A bin holding only the remainder of the
+       most recently split (non-top) chunk. This bin is checked
+       before other non-fitting chunks, so as to provide better
+       locality for runs of sequentially allocated chunks.
+
+    *  Implicitly, through the host system's memory mapping tables.
+       If supported, requests greater than a threshold are usually
+       serviced via calls to mmap, and then later released via munmap.
+
+*/
+
+/*
+   Bins
+
+    The bins are an array of pairs of pointers serving as the
+    heads of (initially empty) doubly-linked lists of chunks, laid out
+    in a way so that each pair can be treated as if it were in a
+    malloc_chunk. (This way, the fd/bk offsets for linking bin heads
+    and chunks are the same).
+
+    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
+    8 bytes apart. Larger bins are approximately logarithmically
+    spaced. (See the table below.)
+
+    Bin layout:
+
+    64 bins of size       8
+    32 bins of size      64
+    16 bins of size     512
+     8 bins of size    4096
+     4 bins of size   32768
+     2 bins of size  262144
+     1 bin  of size what's left
+
+    There is actually a little bit of slop in the numbers in bin_index
+    for the sake of speed. This makes no difference elsewhere.
+
+    The special chunks `top' and `last_remainder' get their own bins,
+    (this is implemented via yet more trickery with the av array),
+    although `top' is never properly linked to its bin since it is
+    always handled specially.
+
+*/
+
+#define NAV             128   /* number of bins */
+
+typedef struct malloc_chunk* mbinptr;
+
+/* An arena is a configuration of malloc_chunks together with an array
+   of bins.  With multiple threads, it must be locked via a mutex
+   before changing its data structures.  One or more `heaps' are
+   associated with each arena, except for the main_arena, which is
+   associated only with the `main heap', i.e.  the conventional free
+   store obtained with calls to MORECORE() (usually sbrk).  The `av'
+   array is never mentioned directly in the code, but instead used via
+   bin access macros. */
+
+typedef struct _arena {
+  mbinptr av[2*NAV + 2];
+  struct _arena *next;
+  mutex_t mutex;
+} arena;
+
+
+/* A heap is a single contiguous memory region holding (coalescable)
+   malloc_chunks.  It is allocated with mmap() and always starts at an
+   address aligned to HEAP_MAX_SIZE.  Not used unless compiling for
+   multiple threads. */
+
+typedef struct _heap_info {
+  arena *ar_ptr;
+  size_t size;
+} heap_info;
+
+
+/*
+  Static functions (forward declarations)
+*/
+
+#if __STD_C
+static void      chunk_free(arena *ar_ptr, mchunkptr p);
+static mchunkptr chunk_alloc(arena *ar_ptr, INTERNAL_SIZE_T size);
+static int       arena_trim(arena *ar_ptr, size_t pad);
+#else
+static void      chunk_free();
+static mchunkptr chunk_alloc();
+static int       arena_trim();
+#endif
+
+
+
+/* sizes, alignments */
+
+#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
+#define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
+#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
+#define MINSIZE                (sizeof(struct malloc_chunk))
+
+/* conversion from malloc headers to user pointers, and back */
+
+#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
+#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
+
+/* pad request bytes into a usable size */
+
+#define request2size(req) \
+ (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
+  (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
+   (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
+
+/* Check if m has acceptable alignment */
+
+#define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
+
+
+
+
+/*
+  Physical chunk operations
+*/
+
+
+/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
+
+#define PREV_INUSE 0x1
+
+/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
+
+#define IS_MMAPPED 0x2
+
+/* Bits to mask off when extracting size */
+
+#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
+
+
+/* Ptr to next physical malloc_chunk. */
+
+#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
+
+/* Ptr to previous physical malloc_chunk */
+
+#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
+
+
+/* Treat space at ptr + offset as a chunk */
+
+#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
+
+
+
+
+/*
+  Dealing with use bits
+*/
+
+/* extract p's inuse bit */
+
+#define inuse(p) \
+ ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
+
+/* extract inuse bit of previous chunk */
+
+#define prev_inuse(p)  ((p)->size & PREV_INUSE)
+
+/* check for mmap()'ed chunk */
+
+#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
+
+/* set/clear chunk as in use without otherwise disturbing */
+
+#define set_inuse(p) \
+ ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
+
+#define clear_inuse(p) \
+ ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
+
+/* check/set/clear inuse bits in known places */
+
+#define inuse_bit_at_offset(p, s)\
+ (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
+
+#define set_inuse_bit_at_offset(p, s)\
+ (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
+
+#define clear_inuse_bit_at_offset(p, s)\
+ (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
+
+
+
+
+/*
+  Dealing with size fields
+*/
+
+/* Get size, ignoring use bits */
+
+#define chunksize(p)          ((p)->size & ~(SIZE_BITS))
+
+/* Set size at head, without disturbing its use bit */
+
+#define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
+
+/* Set size/use ignoring previous bits in header */
+
+#define set_head(p, s)        ((p)->size = (s))
+
+/* Set size at footer (only when chunk is not in use) */
+
+#define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
+
+
+
+
+
+/* access macros */
+
+#define bin_at(a, i)   ((mbinptr)((char*)&(((a)->av)[2*(i) + 2]) - 2*SIZE_SZ))
+#define init_bin(a, i) ((a)->av[2*i+2] = (a)->av[2*i+3] = bin_at((a), i))
+#define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
+#define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
+
+/*
+   The first 2 bins are never indexed. The corresponding av cells are instead
+   used for bookkeeping. This is not to save space, but to simplify
+   indexing, maintain locality, and avoid some initialization tests.
+*/
+
+#define binblocks(a)      (bin_at(a,0)->size)/* bitvector of nonempty blocks */
+#define top(a)            (bin_at(a,0)->fd)  /* The topmost chunk */
+#define last_remainder(a) (bin_at(a,1))      /* remainder from last split */
+
+/*
+   Because top initially points to its own bin with initial
+   zero size, thus forcing extension on the first malloc request,
+   we avoid having any special code in malloc to check whether
+   it even exists yet. But we still need to in malloc_extend_top.
+*/
+
+#define initial_top(a)    ((mchunkptr)bin_at(a, 0))
+
+
+
+/* field-extraction macros */
+
+#define first(b) ((b)->fd)
+#define last(b)  ((b)->bk)
+
+/*
+  Indexing into bins
+*/
+
+#define bin_index(sz)                                                          \
+(((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
+ ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
+ ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
+ ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
+ ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
+ ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
+                                          126)
+/*
+  bins for chunks < 512 are all spaced 8 bytes apart, and hold
+  identically sized chunks. This is exploited in malloc.
+*/
+
+#define MAX_SMALLBIN         63
+#define MAX_SMALLBIN_SIZE   512
+#define SMALLBIN_WIDTH        8
+
+#define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
+
+/*
+   Requests are `small' if both the corresponding and the next bin are small
+*/
+
+#define is_small_request(nb) ((nb) < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
+
+
+
+/*
+    To help compensate for the large number of bins, a one-level index
+    structure is used for bin-by-bin searching.  `binblocks' is a
+    one-word bitvector recording whether groups of BINBLOCKWIDTH bins
+    have any (possibly) non-empty bins, so they can be skipped over
+    all at once during during traversals. The bits are NOT always
+    cleared as soon as all bins in a block are empty, but instead only
+    when all are noticed to be empty during traversal in malloc.
+*/
+
+#define BINBLOCKWIDTH     4   /* bins per block */
+
+/* bin<->block macros */
+
+#define idx2binblock(ix)      ((unsigned)1 << ((ix) / BINBLOCKWIDTH))
+#define mark_binblock(a, ii)  (binblocks(a) |= idx2binblock(ii))
+#define clear_binblock(a, ii) (binblocks(a) &= ~(idx2binblock(ii)))
+
+
+
+
+/* Static bookkeeping data */
+
+/* Helper macro to initialize bins */
+#define IAV(i) bin_at(&main_arena, i), bin_at(&main_arena, i)
+
+static arena main_arena = {
+    {
+ 0, 0,
+ IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
+ IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
+ IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
+ IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
+ IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
+ IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
+ IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
+ IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
+ IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
+ IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
+ IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
+ IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
+ IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
+ IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
+ IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
+ IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
+    },
+    NULL, /* next */
+    MUTEX_INITIALIZER /* mutex */
+};
+
+#undef IAV
+
+/* Thread specific data */
+
+static tsd_key_t arena_key;
+static mutex_t list_lock = MUTEX_INITIALIZER;
+
+#if THREAD_STATS
+static int stat_n_arenas = 0;
+static int stat_n_heaps = 0;
+static long stat_lock_direct = 0;
+static long stat_lock_loop = 0;
+#define THREAD_STAT(x) x
+#else
+#define THREAD_STAT(x) do ; while(0)
+#endif
+
+/* variables holding tunable values */
+
+static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
+static unsigned long top_pad          = DEFAULT_TOP_PAD;
+static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
+static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
+
+/* The first value returned from sbrk */
+static char* sbrk_base = (char*)(-1);
+
+/* The maximum memory obtained from system via sbrk */
+static unsigned long max_sbrked_mem = 0;
+
+/* The maximum via either sbrk or mmap */
+static unsigned long max_total_mem = 0;
+
+/* internal working copy of mallinfo */
+static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+
+/* The total memory obtained from system via sbrk */
+#define sbrked_mem  (current_mallinfo.arena)
+
+/* Tracking mmaps */
+
+static unsigned int n_mmaps = 0;
+static unsigned int max_n_mmaps = 0;
+static unsigned long mmapped_mem = 0;
+static unsigned long max_mmapped_mem = 0;
+
+
+
+
+
+/* Initialization routine. */
+#if defined(_LIBC)
+static void ptmalloc_init __MALLOC_P ((void)) __attribute__ ((constructor));
+
+static void
+ptmalloc_init __MALLOC_P((void))
+#else
+void
+ptmalloc_init __MALLOC_P((void))
+#endif
+{
+  static int first = 1;
+
+#if defined(_LIBC)
+  /* Initialize the pthread. */
+  if (__pthread_initialize != NULL)
+    __pthread_initialize ();
+#endif
+
+  if(first) {
+    first = 0;
+    mutex_init(&main_arena.mutex);
+    mutex_init(&list_lock);
+    tsd_key_create(&arena_key, NULL);
+    tsd_setspecific(arena_key, (Void_t *)&main_arena);
+  }
+}
+
+
+
+
+
+/* Routines dealing with mmap(). */
+
+#if HAVE_MMAP
+
+#ifndef MAP_ANONYMOUS
+
+static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
+
+#define MMAP(size, prot) ((dev_zero_fd < 0) ? \
+ (dev_zero_fd = open("/dev/zero", O_RDWR), \
+  mmap(0, (size), (prot), MAP_PRIVATE, dev_zero_fd, 0)) : \
+   mmap(0, (size), (prot), MAP_PRIVATE, dev_zero_fd, 0))
+
+#else
+
+#define MMAP(size, prot) \
+ (mmap(0, (size), (prot), MAP_PRIVATE|MAP_ANONYMOUS, -1, 0))
+
+#endif
+
+#if __STD_C
+static mchunkptr mmap_chunk(size_t size)
+#else
+static mchunkptr mmap_chunk(size) size_t size;
+#endif
+{
+  size_t page_mask = malloc_getpagesize - 1;
+  mchunkptr p;
+
+  if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
+
+  /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
+   * there is no following chunk whose prev_size field could be used.
+   */
+  size = (size + SIZE_SZ + page_mask) & ~page_mask;
+
+  p = (mchunkptr)MMAP(size, PROT_READ|PROT_WRITE);
+  if(p == (mchunkptr)-1) return 0;
+
+  n_mmaps++;
+  if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
+
+  /* We demand that eight bytes into a page must be 8-byte aligned. */
+  assert(aligned_OK(chunk2mem(p)));
+
+  /* The offset to the start of the mmapped region is stored
+   * in the prev_size field of the chunk; normally it is zero,
+   * but that can be changed in memalign().
+   */
+  p->prev_size = 0;
+  set_head(p, size|IS_MMAPPED);
+
+  mmapped_mem += size;
+  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
+    max_mmapped_mem = mmapped_mem;
+  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
+    max_total_mem = mmapped_mem + sbrked_mem;
+  return p;
+}
+
+#if __STD_C
+static void munmap_chunk(mchunkptr p)
+#else
+static void munmap_chunk(p) mchunkptr p;
+#endif
+{
+  INTERNAL_SIZE_T size = chunksize(p);
+  int ret;
+
+  assert (chunk_is_mmapped(p));
+  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
+  assert((n_mmaps > 0));
+  assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
+
+  n_mmaps--;
+  mmapped_mem -= (size + p->prev_size);
+
+  ret = munmap((char *)p - p->prev_size, size + p->prev_size);
+
+  /* munmap returns non-zero on failure */
+  assert(ret == 0);
+}
+
+#if HAVE_MREMAP
+
+#if __STD_C
+static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
+#else
+static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
+#endif
+{
+  size_t page_mask = malloc_getpagesize - 1;
+  INTERNAL_SIZE_T offset = p->prev_size;
+  INTERNAL_SIZE_T size = chunksize(p);
+  char *cp;
+
+  assert (chunk_is_mmapped(p));
+  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
+  assert((n_mmaps > 0));
+  assert(((size + offset) & (malloc_getpagesize-1)) == 0);
+
+  /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
+  new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
+
+  cp = (char *)mremap((char *)p - offset, size + offset, new_size,
+                      MREMAP_MAYMOVE);
+
+  if (cp == (char *)-1) return 0;
+
+  p = (mchunkptr)(cp + offset);
+
+  assert(aligned_OK(chunk2mem(p)));
+
+  assert((p->prev_size == offset));
+  set_head(p, (new_size - offset)|IS_MMAPPED);
+
+  mmapped_mem -= size + offset;
+  mmapped_mem += new_size;
+  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
+    max_mmapped_mem = mmapped_mem;
+  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
+    max_total_mem = mmapped_mem + sbrked_mem;
+  return p;
+}
+
+#endif /* HAVE_MREMAP */
+
+#endif /* HAVE_MMAP */
+
+
+
+/* Managing heaps and arenas (for concurrent threads) */
+
+#ifndef NO_THREADS
+
+/* Create a new heap.  size is automatically rounded up to a multiple
+   of the page size. */
+
+static heap_info *
+#if __STD_C
+new_heap(size_t size)
+#else
+new_heap(size) size_t size;
+#endif
+{
+  size_t page_mask = malloc_getpagesize - 1;
+  char *p1, *p2;
+  unsigned long ul;
+  heap_info *h;
+
+  if(size < HEAP_MIN_SIZE)
+    size = HEAP_MIN_SIZE;
+  size = (size + page_mask) & ~page_mask;
+  if(size > HEAP_MAX_SIZE)
+    return 0;
+  p1 = (char *)MMAP(HEAP_MAX_SIZE<<1, PROT_NONE);
+  if(p1 == (char *)-1)
+    return 0;
+  p2 = (char *)(((unsigned long)p1 + HEAP_MAX_SIZE) & ~(HEAP_MAX_SIZE-1));
+  ul = p2 - p1;
+  munmap(p1, ul);
+  munmap(p2 + HEAP_MAX_SIZE, HEAP_MAX_SIZE - ul);
+  if(mprotect(p2, size, PROT_READ|PROT_WRITE) != 0) {
+    munmap(p2, HEAP_MAX_SIZE);
+    return 0;
+  }
+  h = (heap_info *)p2;
+  h->size = size;
+  THREAD_STAT(stat_n_heaps++);
+  return h;
+}
+
+/* Grow or shrink a heap.  size is automatically rounded up to a
+   multiple of the page size. */
+
+static int
+#if __STD_C
+grow_heap(heap_info *h, long diff)
+#else
+grow_heap(h, diff) heap_info *h; long diff;
+#endif
+{
+  size_t page_mask = malloc_getpagesize - 1;
+  long new_size;
+
+  if(diff >= 0) {
+    diff = (diff + page_mask) & ~page_mask;
+    new_size = (long)h->size + diff;
+    if(new_size > HEAP_MAX_SIZE)
+      return -1;
+    if(mprotect((char *)h + h->size, diff, PROT_READ|PROT_WRITE) != 0)
+      return -2;
+  } else {
+    new_size = (long)h->size + diff;
+    if(new_size < 0)
+      return -1;
+    if(mprotect((char *)h + new_size, -diff, PROT_NONE) != 0)
+      return -2;
+  }
+  h->size = new_size;
+  return 0;
+}
+
+/* arena_get() acquires an arena and locks the corresponding mutex.
+   First, try the one last locked successfully by this thread.  (This
+   is the common case and handled with a macro for speed.)  Then, loop
+   over the singly linked list of arenas.  If no arena is readily
+   available, create a new one.  */
+
+#define arena_get(ptr, size) do { \
+  Void_t *vptr = NULL; \
+  ptr = (arena *)tsd_getspecific(arena_key, vptr); \
+  if(ptr && !mutex_trylock(&ptr->mutex)) { \
+    THREAD_STAT(stat_lock_direct++); \
+  } else { \
+    ptr = arena_get2(ptr, (size)); \
+  } \
+} while(0)
+
+static arena *
+#if __STD_C
+arena_get2(arena *a_tsd, size_t size)
+#else
+arena_get2(a_tsd, size) arena *a_tsd; size_t size;
+#endif
+{
+  arena *a;
+  heap_info *h;
+  char *ptr;
+  int i;
+  unsigned long misalign;
+
+  /* Check the list for unlocked arenas. */
+  if(a_tsd) {
+    for(a = a_tsd->next; a; a = a->next) {
+      if(!mutex_trylock(&a->mutex))
+        goto done;
+    }
+    for(a = &main_arena; a != a_tsd; a = a->next) {
+      if(!mutex_trylock(&a->mutex))
+        goto done;
+    }
+  } else {
+    for(a = &main_arena; a; a = a->next) {
+      if(!mutex_trylock(&a->mutex))
+        goto done;
+    }
+  }
+
+  /* Nothing immediately available, so generate a new arena. */
+  h = new_heap(size + (sizeof(*h) + sizeof(*a) + MALLOC_ALIGNMENT));
+  if(!h)
+    return 0;
+  a = h->ar_ptr = (arena *)(h+1);
+  for(i=0; i<NAV; i++)
+    init_bin(a, i);
+  mutex_init(&a->mutex);
+  i = mutex_lock(&a->mutex); /* remember result */
+
+  /* Set up the top chunk, with proper alignment. */
+  ptr = (char *)(a + 1);
+  misalign = (unsigned long)chunk2mem(ptr) & MALLOC_ALIGN_MASK;
+  if (misalign > 0)
+    ptr += MALLOC_ALIGNMENT - misalign;
+  top(a) = (mchunkptr)ptr;
+  set_head(top(a), (h->size - (ptr-(char*)h)) | PREV_INUSE);
+
+  /* Add the new arena to the list. */
+  (void)mutex_lock(&list_lock);
+  a->next = main_arena.next;
+  main_arena.next = a;
+  THREAD_STAT(stat_n_arenas++);
+  (void)mutex_unlock(&list_lock);
+
+  if(i) /* locking failed; keep arena for further attempts later */
+    return 0;
+
+done:
+  THREAD_STAT(stat_lock_loop++);
+  tsd_setspecific(arena_key, (Void_t *)a);
+  return a;
+}
+
+/* find the heap and corresponding arena for a given ptr */
+
+#define heap_for_ptr(ptr) \
+ ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1)))
+#define arena_for_ptr(ptr) \
+ (((mchunkptr)(ptr) < top(&main_arena) && (char *)(ptr) >= sbrk_base) ? \
+  &main_arena : heap_for_ptr(ptr)->ar_ptr)
+
+#else /* defined(NO_THREADS) */
+
+/* Without concurrent threads, there is only one arena. */
+
+#define arena_get(ptr, sz) (ptr = &main_arena)
+#define arena_for_ptr(ptr) (&main_arena)
+
+#endif /* !defined(NO_THREADS) */
+
+
+
+/*
+  Debugging support
+*/
+
+#if MALLOC_DEBUG
+
+
+/*
+  These routines make a number of assertions about the states
+  of data structures that should be true at all times. If any
+  are not true, it's very likely that a user program has somehow
+  trashed memory. (It's also possible that there is a coding error
+  in malloc. In which case, please report it!)
+*/
+
+#if __STD_C
+static void do_check_chunk(arena *ar_ptr, mchunkptr p)
+#else
+static void do_check_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
+#endif
+{
+  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
+
+  /* No checkable chunk is mmapped */
+  assert(!chunk_is_mmapped(p));
+
+#ifndef NO_THREADS
+  if(ar_ptr != &main_arena) {
+    heap_info *heap = heap_for_ptr(p);
+    assert(heap->ar_ptr == ar_ptr);
+    assert((char *)p + sz <= (char *)heap + heap->size);
+    return;
+  }
+#endif
+
+  /* Check for legal address ... */
+  assert((char*)p >= sbrk_base);
+  if (p != top(ar_ptr))
+    assert((char*)p + sz <= (char*)top(ar_ptr));
+  else
+    assert((char*)p + sz <= sbrk_base + sbrked_mem);
+
+}
+
+
+#if __STD_C
+static void do_check_free_chunk(arena *ar_ptr, mchunkptr p)
+#else
+static void do_check_free_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
+#endif
+{
+  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
+  mchunkptr next = chunk_at_offset(p, sz);
+
+  do_check_chunk(ar_ptr, p);
+
+  /* Check whether it claims to be free ... */
+  assert(!inuse(p));
+
+  /* Unless a special marker, must have OK fields */
+  if ((long)sz >= (long)MINSIZE)
+  {
+    assert((sz & MALLOC_ALIGN_MASK) == 0);
+    assert(aligned_OK(chunk2mem(p)));
+    /* ... matching footer field */
+    assert(next->prev_size == sz);
+    /* ... and is fully consolidated */
+    assert(prev_inuse(p));
+    assert (next == top(ar_ptr) || inuse(next));
+
+    /* ... and has minimally sane links */
+    assert(p->fd->bk == p);
+    assert(p->bk->fd == p);
+  }
+  else /* markers are always of size SIZE_SZ */
+    assert(sz == SIZE_SZ);
+}
+
+#if __STD_C
+static void do_check_inuse_chunk(arena *ar_ptr, mchunkptr p)
+#else
+static void do_check_inuse_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
+#endif
+{
+  mchunkptr next = next_chunk(p);
+  do_check_chunk(ar_ptr, p);
+
+  /* Check whether it claims to be in use ... */
+  assert(inuse(p));
+
+  /* ... and is surrounded by OK chunks.
+    Since more things can be checked with free chunks than inuse ones,
+    if an inuse chunk borders them and debug is on, it's worth doing them.
+  */
+  if (!prev_inuse(p))
+  {
+    mchunkptr prv = prev_chunk(p);
+    assert(next_chunk(prv) == p);
+    do_check_free_chunk(ar_ptr, prv);
+  }
+  if (next == top(ar_ptr))
+  {
+    assert(prev_inuse(next));
+    assert(chunksize(next) >= MINSIZE);
+  }
+  else if (!inuse(next))
+    do_check_free_chunk(ar_ptr, next);
+
+}
+
+#if __STD_C
+static void do_check_malloced_chunk(arena *ar_ptr,
+                                    mchunkptr p, INTERNAL_SIZE_T s)
+#else
+static void do_check_malloced_chunk(ar_ptr, p, s)
+arena *ar_ptr; mchunkptr p; INTERNAL_SIZE_T s;
+#endif
+{
+  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
+  long room = sz - s;
+
+  do_check_inuse_chunk(ar_ptr, p);
+
+  /* Legal size ... */
+  assert((long)sz >= (long)MINSIZE);
+  assert((sz & MALLOC_ALIGN_MASK) == 0);
+  assert(room >= 0);
+  assert(room < (long)MINSIZE);
+
+  /* ... and alignment */
+  assert(aligned_OK(chunk2mem(p)));
+
+
+  /* ... and was allocated at front of an available chunk */
+  assert(prev_inuse(p));
+
+}
+
+
+#define check_free_chunk(A,P) do_check_free_chunk(A,P)
+#define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
+#define check_chunk(A,P) do_check_chunk(A,P)
+#define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
+#else
+#define check_free_chunk(A,P)
+#define check_inuse_chunk(A,P)
+#define check_chunk(A,P)
+#define check_malloced_chunk(A,P,N)
+#endif
+
+
+
+/*
+  Macro-based internal utilities
+*/
+
+
+/*
+  Linking chunks in bin lists.
+  Call these only with variables, not arbitrary expressions, as arguments.
+*/
+
+/*
+  Place chunk p of size s in its bin, in size order,
+  putting it ahead of others of same size.
+*/
+
+
+#define frontlink(A, P, S, IDX, BK, FD)                                       \
+{                                                                             \
+  if (S < MAX_SMALLBIN_SIZE)                                                  \
+  {                                                                           \
+    IDX = smallbin_index(S);                                                  \
+    mark_binblock(A, IDX);                                                    \
+    BK = bin_at(A, IDX);                                                      \
+    FD = BK->fd;                                                              \
+    P->bk = BK;                                                               \
+    P->fd = FD;                                                               \
+    FD->bk = BK->fd = P;                                                      \
+  }                                                                           \
+  else                                                                        \
+  {                                                                           \
+    IDX = bin_index(S);                                                       \
+    BK = bin_at(A, IDX);                                                      \
+    FD = BK->fd;                                                              \
+    if (FD == BK) mark_binblock(A, IDX);                                      \
+    else                                                                      \
+    {                                                                         \
+      while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
+      BK = FD->bk;                                                            \
+    }                                                                         \
+    P->bk = BK;                                                               \
+    P->fd = FD;                                                               \
+    FD->bk = BK->fd = P;                                                      \
+  }                                                                           \
+}
+
+
+/* take a chunk off a list */
+
+#define unlink(P, BK, FD)                                                     \
+{                                                                             \
+  BK = P->bk;                                                                 \
+  FD = P->fd;                                                                 \
+  FD->bk = BK;                                                                \
+  BK->fd = FD;                                                                \
+}                                                                             \
+
+/* Place p as the last remainder */
+
+#define link_last_remainder(A, P)                                             \
+{                                                                             \
+  last_remainder(A)->fd = last_remainder(A)->bk = P;                          \
+  P->fd = P->bk = last_remainder(A);                                          \
+}
+
+/* Clear the last_remainder bin */
+
+#define clear_last_remainder(A) \
+  (last_remainder(A)->fd = last_remainder(A)->bk = last_remainder(A))
+
+
+
+
+
+/*
+  Extend the top-most chunk by obtaining memory from system.
+  Main interface to sbrk (but see also malloc_trim).
+*/
+
+#if __STD_C
+static void malloc_extend_top(arena *ar_ptr, INTERNAL_SIZE_T nb)
+#else
+static void malloc_extend_top(ar_ptr, nb) arena *ar_ptr; INTERNAL_SIZE_T nb;
+#endif
+{
+  unsigned long pagesz   = malloc_getpagesize;
+  mchunkptr old_top      = top(ar_ptr);        /* Record state of old top */
+  INTERNAL_SIZE_T old_top_size = chunksize(old_top);
+  INTERNAL_SIZE_T top_size;                    /* new size of top chunk */
+
+#ifndef NO_THREADS
+  if(ar_ptr == &main_arena) {
+#endif
+
+    char*     brk;                  /* return value from sbrk */
+    INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
+    INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
+    char*     new_brk;              /* return of 2nd sbrk call */
+    char*     old_end = (char*)(chunk_at_offset(old_top, old_top_size));
+
+    /* Pad request with top_pad plus minimal overhead */
+    INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
+
+    /* If not the first time through, round to preserve page boundary */
+    /* Otherwise, we need to correct to a page size below anyway. */
+    /* (We also correct below if an intervening foreign sbrk call.) */
+
+    if (sbrk_base != (char*)(-1))
+      sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
+
+    brk = (char*)(MORECORE (sbrk_size));
+
+    /* Fail if sbrk failed or if a foreign sbrk call killed our space */
+    if (brk == (char*)(MORECORE_FAILURE) ||
+        (brk < old_end && old_top != initial_top(&main_arena)))
+      return;
+
+    sbrked_mem += sbrk_size;
+
+    if (brk == old_end) { /* can just add bytes to current top */
+      top_size = sbrk_size + old_top_size;
+      set_head(old_top, top_size | PREV_INUSE);
+      old_top = 0; /* don't free below */
+    } else {
+      if (sbrk_base == (char*)(-1)) /* First time through. Record base */
+        sbrk_base = brk;
+      else
+        /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
+        sbrked_mem += brk - (char*)old_end;
+
+      /* Guarantee alignment of first new chunk made from this space */
+      front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
+      if (front_misalign > 0) {
+        correction = (MALLOC_ALIGNMENT) - front_misalign;
+        brk += correction;
+      } else
+        correction = 0;
+
+      /* Guarantee the next brk will be at a page boundary */
+      correction += pagesz - ((unsigned long)(brk + sbrk_size) & (pagesz - 1));
+
+      /* Allocate correction */
+      new_brk = (char*)(MORECORE (correction));
+      if (new_brk == (char*)(MORECORE_FAILURE)) return;
+
+      sbrked_mem += correction;
+
+      top(&main_arena) = (mchunkptr)brk;
+      top_size = new_brk - brk + correction;
+      set_head(top(&main_arena), top_size | PREV_INUSE);
+
+      if (old_top == initial_top(&main_arena))
+        old_top = 0; /* don't free below */
+    }
+
+    if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
+      max_sbrked_mem = sbrked_mem;
+    if ((unsigned long)(mmapped_mem + sbrked_mem) >
+        (unsigned long)max_total_mem)
+      max_total_mem = mmapped_mem + sbrked_mem;
+
+#ifndef NO_THREADS
+  } else { /* ar_ptr != &main_arena */
+
+    heap_info *heap;
+
+    if(old_top_size < MINSIZE) /* this should never happen */
+      return;
+
+    /* First try to extend the current heap. */
+    if(MINSIZE + nb <= old_top_size)
+      return;
+    heap = heap_for_ptr(old_top);
+    if(grow_heap(heap, MINSIZE + nb - old_top_size) == 0) {
+      top_size = heap->size - ((char *)old_top - (char *)heap);
+      set_head(old_top, top_size | PREV_INUSE);
+      return;
+    }
+
+    /* A new heap must be created. */
+    heap = new_heap(nb + top_pad + (MINSIZE + sizeof(*heap)));
+    if(!heap)
+      return;
+    heap->ar_ptr = ar_ptr;
+
+    /* Set up the new top, so we can safely use chunk_free() below. */
+    top(ar_ptr) = chunk_at_offset(heap, sizeof(*heap));
+    top_size = heap->size - sizeof(*heap);
+    set_head(top(ar_ptr), top_size | PREV_INUSE);
+  }
+#endif /* !defined(NO_THREADS) */
+
+  /* We always land on a page boundary */
+  assert(((unsigned long)((char*)top(ar_ptr) + top_size) & (pagesz-1)) == 0);
+
+  /* Setup fencepost and free the old top chunk. */
+  if(old_top) {
+    /* Keep size a multiple of MALLOC_ALIGNMENT. */
+    old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
+    /* If possible, release the rest. */
+    if (old_top_size >= MINSIZE) {
+      set_head(chunk_at_offset(old_top, old_top_size        ),
+               SIZE_SZ|PREV_INUSE);
+      set_head(chunk_at_offset(old_top, old_top_size+SIZE_SZ),
+               SIZE_SZ|PREV_INUSE);
+      set_head_size(old_top, old_top_size);
+      chunk_free(ar_ptr, old_top);
+    } else {
+      set_head(old_top, SIZE_SZ|PREV_INUSE);
+      set_head(chunk_at_offset(old_top, SIZE_SZ), SIZE_SZ|PREV_INUSE);
+    }
+  }
+}
+
+
+
+
+/* Main public routines */
+
+
+/*
+  Malloc Algorthim:
+
+    The requested size is first converted into a usable form, `nb'.
+    This currently means to add 4 bytes overhead plus possibly more to
+    obtain 8-byte alignment and/or to obtain a size of at least
+    MINSIZE (currently 16 bytes), the smallest allocatable size.
+    (All fits are considered `exact' if they are within MINSIZE bytes.)
+
+    From there, the first successful of the following steps is taken:
+
+      1. The bin corresponding to the request size is scanned, and if
+         a chunk of exactly the right size is found, it is taken.
+
+      2. The most recently remaindered chunk is used if it is big
+         enough.  This is a form of (roving) first fit, used only in
+         the absence of exact fits. Runs of consecutive requests use
+         the remainder of the chunk used for the previous such request
+         whenever possible. This limited use of a first-fit style
+         allocation strategy tends to give contiguous chunks
+         coextensive lifetimes, which improves locality and can reduce
+         fragmentation in the long run.
+
+      3. Other bins are scanned in increasing size order, using a
+         chunk big enough to fulfill the request, and splitting off
+         any remainder.  This search is strictly by best-fit; i.e.,
+         the smallest (with ties going to approximately the least
+         recently used) chunk that fits is selected.
+
+      4. If large enough, the chunk bordering the end of memory
+         (`top') is split off. (This use of `top' is in accord with
+         the best-fit search rule.  In effect, `top' is treated as
+         larger (and thus less well fitting) than any other available
+         chunk since it can be extended to be as large as necessary
+         (up to system limitations).
+
+      5. If the request size meets the mmap threshold and the
+         system supports mmap, and there are few enough currently
+         allocated mmapped regions, and a call to mmap succeeds,
+         the request is allocated via direct memory mapping.
+
+      6. Otherwise, the top of memory is extended by
+         obtaining more space from the system (normally using sbrk,
+         but definable to anything else via the MORECORE macro).
+         Memory is gathered from the system (in system page-sized
+         units) in a way that allows chunks obtained across different
+         sbrk calls to be consolidated, but does not require
+         contiguous memory. Thus, it should be safe to intersperse
+         mallocs with other sbrk calls.
+
+
+      All allocations are made from the the `lowest' part of any found
+      chunk. (The implementation invariant is that prev_inuse is
+      always true of any allocated chunk; i.e., that each allocated
+      chunk borders either a previously allocated and still in-use chunk,
+      or the base of its memory arena.)
+
+*/
+
+#if __STD_C
+Void_t* mALLOc(size_t bytes)
+#else
+Void_t* mALLOc(bytes) size_t bytes;
+#endif
+{
+  arena *ar_ptr;
+  INTERNAL_SIZE_T nb = request2size(bytes);  /* padded request size; */
+  mchunkptr victim;
+
+  arena_get(ar_ptr, nb + top_pad);
+  if(!ar_ptr)
+    return 0;
+  victim = chunk_alloc(ar_ptr, nb);
+  (void)mutex_unlock(&ar_ptr->mutex);
+  return victim ? chunk2mem(victim) : 0;
+}
+
+static mchunkptr
+#if __STD_C
+chunk_alloc(arena *ar_ptr, INTERNAL_SIZE_T nb)
+#else
+chunk_alloc(ar_ptr, nb) arena *ar_ptr; INTERNAL_SIZE_T nb;
+#endif
+{
+  mchunkptr victim;                  /* inspected/selected chunk */
+  INTERNAL_SIZE_T victim_size;       /* its size */
+  int       idx;                     /* index for bin traversal */
+  mbinptr   bin;                     /* associated bin */
+  mchunkptr remainder;               /* remainder from a split */
+  long      remainder_size;          /* its size */
+  int       remainder_index;         /* its bin index */
+  unsigned long block;               /* block traverser bit */
+  int       startidx;                /* first bin of a traversed block */
+  mchunkptr fwd;                     /* misc temp for linking */
+  mchunkptr bck;                     /* misc temp for linking */
+  mbinptr q;                         /* misc temp */
+
+
+  /* Check for exact match in a bin */
+
+  if (is_small_request(nb))  /* Faster version for small requests */
+  {
+    idx = smallbin_index(nb);
+
+    /* No traversal or size check necessary for small bins.  */
+
+    q = bin_at(ar_ptr, idx);
+    victim = last(q);
+
+    /* Also scan the next one, since it would have a remainder < MINSIZE */
+    if (victim == q)
+    {
+      q = next_bin(q);
+      victim = last(q);
+    }
+    if (victim != q)
+    {
+      victim_size = chunksize(victim);
+      unlink(victim, bck, fwd);
+      set_inuse_bit_at_offset(victim, victim_size);
+      check_malloced_chunk(ar_ptr, victim, nb);
+      return victim;
+    }
+
+    idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
+
+  }
+  else
+  {
+    idx = bin_index(nb);
+    bin = bin_at(ar_ptr, idx);
+
+    for (victim = last(bin); victim != bin; victim = victim->bk)
+    {
+      victim_size = chunksize(victim);
+      remainder_size = victim_size - nb;
+
+      if (remainder_size >= (long)MINSIZE) /* too big */
+      {
+        --idx; /* adjust to rescan below after checking last remainder */
+        break;
+      }
+
+      else if (remainder_size >= 0) /* exact fit */
+      {
+        unlink(victim, bck, fwd);
+        set_inuse_bit_at_offset(victim, victim_size);
+        check_malloced_chunk(ar_ptr, victim, nb);
+        return victim;
+      }
+    }
+
+    ++idx;
+
+  }
+
+  /* Try to use the last split-off remainder */
+
+  if ( (victim = last_remainder(ar_ptr)->fd) != last_remainder(ar_ptr))
+  {
+    victim_size = chunksize(victim);
+    remainder_size = victim_size - nb;
+
+    if (remainder_size >= (long)MINSIZE) /* re-split */
+    {
+      remainder = chunk_at_offset(victim, nb);
+      set_head(victim, nb | PREV_INUSE);
+      link_last_remainder(ar_ptr, remainder);
+      set_head(remainder, remainder_size | PREV_INUSE);
+      set_foot(remainder, remainder_size);
+      check_malloced_chunk(ar_ptr, victim, nb);
+      return victim;
+    }
+
+    clear_last_remainder(ar_ptr);
+
+    if (remainder_size >= 0)  /* exhaust */
+    {
+      set_inuse_bit_at_offset(victim, victim_size);
+      check_malloced_chunk(ar_ptr, victim, nb);
+      return victim;
+    }
+
+    /* Else place in bin */
+
+    frontlink(ar_ptr, victim, victim_size, remainder_index, bck, fwd);
+  }
+
+  /*
+     If there are any possibly nonempty big-enough blocks,
+     search for best fitting chunk by scanning bins in blockwidth units.
+  */
+
+  if ( (block = idx2binblock(idx)) <= binblocks(ar_ptr))
+  {
+
+    /* Get to the first marked block */
+
+    if ( (block & binblocks(ar_ptr)) == 0)
+    {
+      /* force to an even block boundary */
+      idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
+      block <<= 1;
+      while ((block & binblocks(ar_ptr)) == 0)
+      {
+        idx += BINBLOCKWIDTH;
+        block <<= 1;
+      }
+    }
+
+    /* For each possibly nonempty block ... */
+    for (;;)
+    {
+      startidx = idx;          /* (track incomplete blocks) */
+      q = bin = bin_at(ar_ptr, idx);
+
+      /* For each bin in this block ... */
+      do
+      {
+        /* Find and use first big enough chunk ... */
+
+        for (victim = last(bin); victim != bin; victim = victim->bk)
+        {
+          victim_size = chunksize(victim);
+          remainder_size = victim_size - nb;
+
+          if (remainder_size >= (long)MINSIZE) /* split */
+          {
+            remainder = chunk_at_offset(victim, nb);
+            set_head(victim, nb | PREV_INUSE);
+            unlink(victim, bck, fwd);
+            link_last_remainder(ar_ptr, remainder);
+            set_head(remainder, remainder_size | PREV_INUSE);
+            set_foot(remainder, remainder_size);
+            check_malloced_chunk(ar_ptr, victim, nb);
+            return victim;
+          }
+
+          else if (remainder_size >= 0)  /* take */
+          {
+            set_inuse_bit_at_offset(victim, victim_size);
+            unlink(victim, bck, fwd);
+            check_malloced_chunk(ar_ptr, victim, nb);
+            return victim;
+          }
+
+        }
+
+       bin = next_bin(bin);
+
+      } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
+
+      /* Clear out the block bit. */
+
+      do   /* Possibly backtrack to try to clear a partial block */
+      {
+        if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
+        {
+          binblocks(ar_ptr) &= ~block;
+          break;
+        }
+        --startidx;
+        q = prev_bin(q);
+      } while (first(q) == q);
+
+      /* Get to the next possibly nonempty block */
+
+      if ( (block <<= 1) <= binblocks(ar_ptr) && (block != 0) )
+      {
+        while ((block & binblocks(ar_ptr)) == 0)
+        {
+          idx += BINBLOCKWIDTH;
+          block <<= 1;
+        }
+      }
+      else
+        break;
+    }
+  }
+
+
+  /* Try to use top chunk */
+
+  /* Require that there be a remainder, ensuring top always exists  */
+  if ( (remainder_size = chunksize(top(ar_ptr)) - nb) < (long)MINSIZE)
+  {
+
+#if HAVE_MMAP
+    /* If big and would otherwise need to extend, try to use mmap instead */
+    if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
+        (victim = mmap_chunk(nb)) != 0)
+      return victim;
+#endif
+
+    /* Try to extend */
+    malloc_extend_top(ar_ptr, nb);
+    if ((remainder_size = chunksize(top(ar_ptr)) - nb) < (long)MINSIZE)
+      return 0; /* propagate failure */
+  }
+
+  victim = top(ar_ptr);
+  set_head(victim, nb | PREV_INUSE);
+  top(ar_ptr) = chunk_at_offset(victim, nb);
+  set_head(top(ar_ptr), remainder_size | PREV_INUSE);
+  check_malloced_chunk(ar_ptr, victim, nb);
+  return victim;
+
+}
+
+
+
+
+/*
+
+  free() algorithm :
+
+    cases:
+
+       1. free(0) has no effect.
+
+       2. If the chunk was allocated via mmap, it is released via munmap().
+
+       3. If a returned chunk borders the current high end of memory,
+          it is consolidated into the top, and if the total unused
+          topmost memory exceeds the trim threshold, malloc_trim is
+          called.
+
+       4. Other chunks are consolidated as they arrive, and
+          placed in corresponding bins. (This includes the case of
+          consolidating with the current `last_remainder').
+
+*/
+
+
+#if __STD_C
+void fREe(Void_t* mem)
+#else
+void fREe(mem) Void_t* mem;
+#endif
+{
+  arena *ar_ptr;
+  mchunkptr p;                          /* chunk corresponding to mem */
+
+  if (mem == 0)                              /* free(0) has no effect */
+    return;
+
+  p = mem2chunk(mem);
+
+#if HAVE_MMAP
+  if (chunk_is_mmapped(p))                       /* release mmapped memory. */
+  {
+    munmap_chunk(p);
+    return;
+  }
+#endif
+
+  ar_ptr = arena_for_ptr(p);
+  (void)mutex_lock(&ar_ptr->mutex);
+  chunk_free(ar_ptr, p);
+  (void)mutex_unlock(&ar_ptr->mutex);
+}
+
+static void
+#if __STD_C
+chunk_free(arena *ar_ptr, mchunkptr p)
+#else
+chunk_free(ar_ptr, p) arena *ar_ptr; mchunkptr p;
+#endif
+{
+  INTERNAL_SIZE_T hd = p->size; /* its head field */
+  INTERNAL_SIZE_T sz;  /* its size */
+  int       idx;       /* its bin index */
+  mchunkptr next;      /* next contiguous chunk */
+  INTERNAL_SIZE_T nextsz; /* its size */
+  INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
+  mchunkptr bck;       /* misc temp for linking */
+  mchunkptr fwd;       /* misc temp for linking */
+  int       islr;      /* track whether merging with last_remainder */
+
+  check_inuse_chunk(ar_ptr, p);
+
+  sz = hd & ~PREV_INUSE;
+  next = chunk_at_offset(p, sz);
+  nextsz = chunksize(next);
+
+  if (next == top(ar_ptr))                         /* merge with top */
+  {
+    sz += nextsz;
+
+    if (!(hd & PREV_INUSE))                    /* consolidate backward */
+    {
+      prevsz = p->prev_size;
+      p = chunk_at_offset(p, -prevsz);
+      sz += prevsz;
+      unlink(p, bck, fwd);
+    }
+
+    set_head(p, sz | PREV_INUSE);
+    top(ar_ptr) = p;
+    if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
+      arena_trim(ar_ptr, top_pad);
+    return;
+  }
+
+  set_head(next, nextsz);                    /* clear inuse bit */
+
+  islr = 0;
+
+  if (!(hd & PREV_INUSE))                    /* consolidate backward */
+  {
+    prevsz = p->prev_size;
+    p = chunk_at_offset(p, -prevsz);
+    sz += prevsz;
+
+    if (p->fd == last_remainder(ar_ptr))     /* keep as last_remainder */
+      islr = 1;
+    else
+      unlink(p, bck, fwd);
+  }
+
+  if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
+  {
+    sz += nextsz;
+
+    if (!islr && next->fd == last_remainder(ar_ptr))
+                                              /* re-insert last_remainder */
+    {
+      islr = 1;
+      link_last_remainder(ar_ptr, p);
+    }
+    else
+      unlink(next, bck, fwd);
+  }
+
+  set_head(p, sz | PREV_INUSE);
+  set_foot(p, sz);
+  if (!islr)
+    frontlink(ar_ptr, p, sz, idx, bck, fwd);
+}
+
+
+
+
+
+/*
+
+  Realloc algorithm:
+
+    Chunks that were obtained via mmap cannot be extended or shrunk
+    unless HAVE_MREMAP is defined, in which case mremap is used.
+    Otherwise, if their reallocation is for additional space, they are
+    copied.  If for less, they are just left alone.
+
+    Otherwise, if the reallocation is for additional space, and the
+    chunk can be extended, it is, else a malloc-copy-free sequence is
+    taken.  There are several different ways that a chunk could be
+    extended. All are tried:
+
+       * Extending forward into following adjacent free chunk.
+       * Shifting backwards, joining preceding adjacent space
+       * Both shifting backwards and extending forward.
+       * Extending into newly sbrked space
+
+    Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
+    size argument of zero (re)allocates a minimum-sized chunk.
+
+    If the reallocation is for less space, and the new request is for
+    a `small' (<512 bytes) size, then the newly unused space is lopped
+    off and freed.
+
+    The old unix realloc convention of allowing the last-free'd chunk
+    to be used as an argument to realloc is no longer supported.
+    I don't know of any programs still relying on this feature,
+    and allowing it would also allow too many other incorrect
+    usages of realloc to be sensible.
+
+
+*/
+
+
+#if __STD_C
+Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
+#else
+Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
+#endif
+{
+  arena *ar_ptr;
+  INTERNAL_SIZE_T    nb;      /* padded request size */
+
+  mchunkptr oldp;             /* chunk corresponding to oldmem */
+  INTERNAL_SIZE_T    oldsize; /* its size */
+
+  mchunkptr newp;             /* chunk to return */
+  INTERNAL_SIZE_T    newsize; /* its size */
+  Void_t*   newmem;           /* corresponding user mem */
+
+  mchunkptr next;             /* next contiguous chunk after oldp */
+  INTERNAL_SIZE_T  nextsize;  /* its size */
+
+  mchunkptr prev;             /* previous contiguous chunk before oldp */
+  INTERNAL_SIZE_T  prevsize;  /* its size */
+
+  mchunkptr remainder;        /* holds split off extra space from newp */
+  INTERNAL_SIZE_T  remainder_size;   /* its size */
+
+  mchunkptr bck;              /* misc temp for linking */
+  mchunkptr fwd;              /* misc temp for linking */
+
+#ifdef REALLOC_ZERO_BYTES_FREES
+  if (bytes == 0) { fREe(oldmem); return 0; }
+#endif
+
+
+  /* realloc of null is supposed to be same as malloc */
+  if (oldmem == 0) return mALLOc(bytes);
+
+  newp    = oldp    = mem2chunk(oldmem);
+  newsize = oldsize = chunksize(oldp);
+
+
+  nb = request2size(bytes);
+
+#if HAVE_MMAP
+  if (chunk_is_mmapped(oldp))
+  {
+#if HAVE_MREMAP
+    newp = mremap_chunk(oldp, nb);
+    if(newp) return chunk2mem(newp);
+#endif
+    /* Note the extra SIZE_SZ overhead. */
+    if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
+    /* Must alloc, copy, free. */
+    newmem = mALLOc(bytes);
+    if (newmem == 0) return 0; /* propagate failure */
+    MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
+    munmap_chunk(oldp);
+    return newmem;
+  }
+#endif
+
+  ar_ptr = arena_for_ptr(oldp);
+  (void)mutex_lock(&ar_ptr->mutex);
+  /* As in malloc(), remember this arena for the next allocation. */
+  tsd_setspecific(arena_key, (Void_t *)ar_ptr);
+
+  check_inuse_chunk(ar_ptr, oldp);
+
+  if ((long)(oldsize) < (long)(nb))
+  {
+
+    /* Try expanding forward */
+
+    next = chunk_at_offset(oldp, oldsize);
+    if (next == top(ar_ptr) || !inuse(next))
+    {
+      nextsize = chunksize(next);
+
+      /* Forward into top only if a remainder */
+      if (next == top(ar_ptr))
+      {
+        if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
+        {
+          newsize += nextsize;
+          top(ar_ptr) = chunk_at_offset(oldp, nb);
+          set_head(top(ar_ptr), (newsize - nb) | PREV_INUSE);
+          set_head_size(oldp, nb);
+          (void)mutex_unlock(&ar_ptr->mutex);
+          return chunk2mem(oldp);
+        }
+      }
+
+      /* Forward into next chunk */
+      else if (((long)(nextsize + newsize) >= (long)(nb)))
+      {
+        unlink(next, bck, fwd);
+        newsize  += nextsize;
+        goto split;
+      }
+    }
+    else
+    {
+      next = 0;
+      nextsize = 0;
+    }
+
+    /* Try shifting backwards. */
+
+    if (!prev_inuse(oldp))
+    {
+      prev = prev_chunk(oldp);
+      prevsize = chunksize(prev);
+
+      /* try forward + backward first to save a later consolidation */
+
+      if (next != 0)
+      {
+        /* into top */
+        if (next == top(ar_ptr))
+        {
+          if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
+          {
+            unlink(prev, bck, fwd);
+            newp = prev;
+            newsize += prevsize + nextsize;
+            newmem = chunk2mem(newp);
+            MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
+            top(ar_ptr) = chunk_at_offset(newp, nb);
+            set_head(top(ar_ptr), (newsize - nb) | PREV_INUSE);
+            set_head_size(newp, nb);
+            (void)mutex_unlock(&ar_ptr->mutex);
+            return newmem;
+          }
+        }
+
+        /* into next chunk */
+        else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
+        {
+          unlink(next, bck, fwd);
+          unlink(prev, bck, fwd);
+          newp = prev;
+          newsize += nextsize + prevsize;
+          newmem = chunk2mem(newp);
+          MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
+          goto split;
+        }
+      }
+
+      /* backward only */
+      if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
+      {
+        unlink(prev, bck, fwd);
+        newp = prev;
+        newsize += prevsize;
+        newmem = chunk2mem(newp);
+        MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
+        goto split;
+      }
+    }
+
+    /* Must allocate */
+
+    newp = chunk_alloc (ar_ptr, nb);
+
+    if (newp == 0)  /* propagate failure */
+      return 0;
+
+    /* Avoid copy if newp is next chunk after oldp. */
+    /* (This can only happen when new chunk is sbrk'ed.) */
+
+    if ( newp == next_chunk(oldp))
+    {
+      newsize += chunksize(newp);
+      newp = oldp;
+      goto split;
+    }
+
+    /* Otherwise copy, free, and exit */
+    newmem = chunk2mem(newp);
+    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
+    chunk_free(ar_ptr, oldp);
+    (void)mutex_unlock(&ar_ptr->mutex);
+    return newmem;
+  }
+
+
+ split:  /* split off extra room in old or expanded chunk */
+
+  if (newsize - nb >= MINSIZE) /* split off remainder */
+  {
+    remainder = chunk_at_offset(newp, nb);
+    remainder_size = newsize - nb;
+    set_head_size(newp, nb);
+    set_head(remainder, remainder_size | PREV_INUSE);
+    set_inuse_bit_at_offset(remainder, remainder_size);
+    chunk_free(ar_ptr, remainder);
+  }
+  else
+  {
+    set_head_size(newp, newsize);
+    set_inuse_bit_at_offset(newp, newsize);
+  }
+
+  check_inuse_chunk(ar_ptr, newp);
+  (void)mutex_unlock(&ar_ptr->mutex);
+  return chunk2mem(newp);
+}
+
+
+
+
+/*
+
+  memalign algorithm:
+
+    memalign requests more than enough space from malloc, finds a spot
+    within that chunk that meets the alignment request, and then
+    possibly frees the leading and trailing space.
+
+    The alignment argument must be a power of two. This property is not
+    checked by memalign, so misuse may result in random runtime errors.
+
+    8-byte alignment is guaranteed by normal malloc calls, so don't
+    bother calling memalign with an argument of 8 or less.
+
+    Overreliance on memalign is a sure way to fragment space.
+
+*/
+
+
+#if __STD_C
+Void_t* mEMALIGn(size_t alignment, size_t bytes)
+#else
+Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
+#endif
+{
+  arena *ar_ptr;
+  INTERNAL_SIZE_T    nb;      /* padded  request size */
+  char*     m;                /* memory returned by malloc call */
+  mchunkptr p;                /* corresponding chunk */
+  char*     brk;              /* alignment point within p */
+  mchunkptr newp;             /* chunk to return */
+  INTERNAL_SIZE_T  newsize;   /* its size */
+  INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
+  mchunkptr remainder;        /* spare room at end to split off */
+  long      remainder_size;   /* its size */
+
+  /* If need less alignment than we give anyway, just relay to malloc */
+
+  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
+
+  /* Otherwise, ensure that it is at least a minimum chunk size */
+
+  if (alignment <  MINSIZE) alignment = MINSIZE;
+
+  /* Call malloc with worst case padding to hit alignment. */
+
+  nb = request2size(bytes);
+  arena_get(ar_ptr, nb + alignment + MINSIZE);
+  if(!ar_ptr)
+    return 0;
+  p = chunk_alloc(ar_ptr, nb + alignment + MINSIZE);
+
+  if (p == 0) {
+    (void)mutex_unlock(&ar_ptr->mutex);
+    return 0; /* propagate failure */
+  }
+
+  m = chunk2mem(p);
+
+  if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
+  {
+#if HAVE_MMAP
+    if(chunk_is_mmapped(p)) {
+      (void)mutex_unlock(&ar_ptr->mutex);
+      return chunk2mem(p); /* nothing more to do */
+    }
+#endif
+  }
+  else /* misaligned */
+  {
+    /*
+      Find an aligned spot inside chunk.
+      Since we need to give back leading space in a chunk of at
+      least MINSIZE, if the first calculation places us at
+      a spot with less than MINSIZE leader, we can move to the
+      next aligned spot -- we've allocated enough total room so that
+      this is always possible.
+    */
+
+    brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -alignment);
+    if ((long)(brk - (char*)(p)) < (long) MINSIZE) brk = brk + alignment;
+
+    newp = (mchunkptr)brk;
+    leadsize = brk - (char*)(p);
+    newsize = chunksize(p) - leadsize;
+
+#if HAVE_MMAP
+    if(chunk_is_mmapped(p))
+    {
+      newp->prev_size = p->prev_size + leadsize;
+      set_head(newp, newsize|IS_MMAPPED);
+      (void)mutex_unlock(&ar_ptr->mutex);
+      return chunk2mem(newp);
+    }
+#endif
+
+    /* give back leader, use the rest */
+
+    set_head(newp, newsize | PREV_INUSE);
+    set_inuse_bit_at_offset(newp, newsize);
+    set_head_size(p, leadsize);
+    chunk_free(ar_ptr, p);
+    p = newp;
+
+    assert (newsize>=nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
+  }
+
+  /* Also give back spare room at the end */
+
+  remainder_size = chunksize(p) - nb;
+
+  if (remainder_size >= (long)MINSIZE)
+  {
+    remainder = chunk_at_offset(p, nb);
+    set_head(remainder, remainder_size | PREV_INUSE);
+    set_head_size(p, nb);
+    chunk_free(ar_ptr, remainder);
+  }
+
+  check_inuse_chunk(ar_ptr, p);
+  (void)mutex_unlock(&ar_ptr->mutex);
+  return chunk2mem(p);
+
+}
+
+
+
+
+/*
+    valloc just invokes memalign with alignment argument equal
+    to the page size of the system (or as near to this as can
+    be figured out from all the includes/defines above.)
+*/
+
+#if __STD_C
+Void_t* vALLOc(size_t bytes)
+#else
+Void_t* vALLOc(bytes) size_t bytes;
+#endif
+{
+  return mEMALIGn (malloc_getpagesize, bytes);
+}
+
+/*
+  pvalloc just invokes valloc for the nearest pagesize
+  that will accommodate request
+*/
+
+
+#if __STD_C
+Void_t* pvALLOc(size_t bytes)
+#else
+Void_t* pvALLOc(bytes) size_t bytes;
+#endif
+{
+  size_t pagesize = malloc_getpagesize;
+  return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
+}
+
+/*
+
+  calloc calls malloc, then zeroes out the allocated chunk.
+
+*/
+
+#if __STD_C
+Void_t* cALLOc(size_t n, size_t elem_size)
+#else
+Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
+#endif
+{
+  arena *ar_ptr;
+  mchunkptr p, oldtop;
+  INTERNAL_SIZE_T csz, oldtopsize;
+  Void_t* mem;
+
+  INTERNAL_SIZE_T sz = request2size(n * elem_size);
+
+  arena_get(ar_ptr, sz);
+  if(!ar_ptr)
+    return 0;
+
+  /* check if expand_top called, in which case don't need to clear */
+#if MORECORE_CLEARS
+  oldtop = top(ar_ptr);
+  oldtopsize = chunksize(top(ar_ptr));
+#endif
+  p = chunk_alloc (ar_ptr, sz);
+
+  /* Only clearing follows, so we can unlock early. */
+  (void)mutex_unlock(&ar_ptr->mutex);
+
+  if (p == 0)
+    return 0;
+  else
+  {
+    mem = chunk2mem(p);
+
+    /* Two optional cases in which clearing not necessary */
+
+#if HAVE_MMAP
+    if (chunk_is_mmapped(p)) return mem;
+#endif
+
+    csz = chunksize(p);
+
+#if MORECORE_CLEARS
+    if (p == oldtop && csz > oldtopsize)
+    {
+      /* clear only the bytes from non-freshly-sbrked memory */
+      csz = oldtopsize;
+    }
+#endif
+
+    MALLOC_ZERO(mem, csz - SIZE_SZ);
+    return mem;
+  }
+}
+
+/*
+
+  cfree just calls free. It is needed/defined on some systems
+  that pair it with calloc, presumably for odd historical reasons.
+
+*/
+
+#if !defined(_LIBC)
+#if __STD_C
+void cfree(Void_t *mem)
+#else
+void cfree(mem) Void_t *mem;
+#endif
+{
+  free(mem);
+}
+#endif
+
+
+
+/*
+
+    Malloc_trim gives memory back to the system (via negative
+    arguments to sbrk) if there is unused memory at the `high' end of
+    the malloc pool. You can call this after freeing large blocks of
+    memory to potentially reduce the system-level memory requirements
+    of a program. However, it cannot guarantee to reduce memory. Under
+    some allocation patterns, some large free blocks of memory will be
+    locked between two used chunks, so they cannot be given back to
+    the system.
+
+    The `pad' argument to malloc_trim represents the amount of free
+    trailing space to leave untrimmed. If this argument is zero,
+    only the minimum amount of memory to maintain internal data
+    structures will be left (one page or less). Non-zero arguments
+    can be supplied to maintain enough trailing space to service
+    future expected allocations without having to re-obtain memory
+    from the system.
+
+    Malloc_trim returns 1 if it actually released any memory, else 0.
+
+*/
+
+#if __STD_C
+int malloc_trim(size_t pad)
+#else
+int malloc_trim(pad) size_t pad;
+#endif
+{
+  int res;
+
+  (void)mutex_lock(&main_arena.mutex);
+  res = arena_trim(&main_arena, pad);
+  (void)mutex_unlock(&main_arena.mutex);
+  return res;
+}
+
+static int
+#if __STD_C
+arena_trim(arena *ar_ptr, size_t pad)
+#else
+arena_trim(ar_ptr, pad) arena *ar_ptr; size_t pad;
+#endif
+{
+  mchunkptr top_chunk;   /* The current top chunk */
+  long  top_size;        /* Amount of top-most memory */
+  long  extra;           /* Amount to release */
+  char* current_brk;     /* address returned by pre-check sbrk call */
+  char* new_brk;         /* address returned by negative sbrk call */
+
+  unsigned long pagesz = malloc_getpagesize;
+
+  top_chunk = top(ar_ptr);
+  top_size = chunksize(top_chunk);
+  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
+
+  if (extra < (long)pagesz) /* Not enough memory to release */
+    return 0;
+
+#ifndef NO_THREADS
+  if(ar_ptr == &main_arena) {
+#endif
+
+    /* Test to make sure no one else called sbrk */
+    current_brk = (char*)(MORECORE (0));
+    if (current_brk != (char*)(top_chunk) + top_size)
+      return 0;     /* Apparently we don't own memory; must fail */
+
+    new_brk = (char*)(MORECORE (-extra));
+
+    if (new_brk == (char*)(MORECORE_FAILURE)) { /* sbrk failed? */
+      /* Try to figure out what we have */
+      current_brk = (char*)(MORECORE (0));
+      top_size = current_brk - (char*)top_chunk;
+      if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
+      {
+        sbrked_mem = current_brk - sbrk_base;
+        set_head(top_chunk, top_size | PREV_INUSE);
+      }
+      check_chunk(ar_ptr, top_chunk);
+      return 0;
+    }
+    sbrked_mem -= extra;
+
+#ifndef NO_THREADS
+  } else {
+    if(grow_heap(heap_for_ptr(top_chunk), -extra) != 0)
+      return 0;
+  }
+#endif
+
+  /* Success. Adjust top accordingly. */
+  set_head(top_chunk, (top_size - extra) | PREV_INUSE);
+  check_chunk(ar_ptr, top_chunk);
+  return 1;
+}
+
+
+
+/*
+  malloc_usable_size:
+
+    This routine tells you how many bytes you can actually use in an
+    allocated chunk, which may be more than you requested (although
+    often not). You can use this many bytes without worrying about
+    overwriting other allocated objects. Not a particularly great
+    programming practice, but still sometimes useful.
+
+*/
+
+#if __STD_C
+size_t malloc_usable_size(Void_t* mem)
+#else
+size_t malloc_usable_size(mem) Void_t* mem;
+#endif
+{
+  mchunkptr p;
+
+  if (mem == 0)
+    return 0;
+  else
+  {
+    p = mem2chunk(mem);
+    if(!chunk_is_mmapped(p))
+    {
+      if (!inuse(p)) return 0;
+      check_inuse_chunk(arena_for_ptr(mem), p);
+      return chunksize(p) - SIZE_SZ;
+    }
+    return chunksize(p) - 2*SIZE_SZ;
+  }
+}
+
+
+
+
+/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
+
+static void malloc_update_mallinfo __MALLOC_P ((void))
+{
+  arena *ar_ptr = &main_arena;
+  int i, navail;
+  mbinptr b;
+  mchunkptr p;
+#if MALLOC_DEBUG
+  mchunkptr q;
+#endif
+  INTERNAL_SIZE_T avail;
+
+  (void)mutex_lock(&ar_ptr->mutex);
+  avail = chunksize(top(ar_ptr));
+  navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
+
+  for (i = 1; i < NAV; ++i)
+  {
+    b = bin_at(ar_ptr, i);
+    for (p = last(b); p != b; p = p->bk)
+    {
+#if MALLOC_DEBUG
+      check_free_chunk(ar_ptr, p);
+      for (q = next_chunk(p);
+           q < top(ar_ptr) && inuse(q) && (long)chunksize(q) >= (long)MINSIZE;
+           q = next_chunk(q))
+        check_inuse_chunk(ar_ptr, q);
+#endif
+      avail += chunksize(p);
+      navail++;
+    }
+  }
+
+  current_mallinfo.ordblks = navail;
+  current_mallinfo.uordblks = sbrked_mem - avail;
+  current_mallinfo.fordblks = avail;
+  current_mallinfo.hblks = n_mmaps;
+  current_mallinfo.hblkhd = mmapped_mem;
+  current_mallinfo.keepcost = chunksize(top(ar_ptr));
+
+  (void)mutex_unlock(&ar_ptr->mutex);
+}
+
+
+
+/*
+
+  malloc_stats:
+
+    Prints on stderr the amount of space obtain from the system (both
+    via sbrk and mmap), the maximum amount (which may be more than
+    current if malloc_trim and/or munmap got called), the maximum
+    number of simultaneous mmap regions used, and the current number
+    of bytes allocated via malloc (or realloc, etc) but not yet
+    freed. (Note that this is the number of bytes allocated, not the
+    number requested. It will be larger than the number requested
+    because of alignment and bookkeeping overhead.)
+
+*/
+
+void malloc_stats()
+{
+  malloc_update_mallinfo();
+  fprintf(stderr, "max system bytes = %10u\n",
+          (unsigned int)(max_total_mem));
+  fprintf(stderr, "system bytes     = %10u\n",
+          (unsigned int)(sbrked_mem + mmapped_mem));
+  fprintf(stderr, "in use bytes     = %10u\n",
+          (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
+#if HAVE_MMAP
+  fprintf(stderr, "max mmap regions = %10u\n",
+          (unsigned int)max_n_mmaps);
+#endif
+#if THREAD_STATS
+  fprintf(stderr, "arenas created   = %10d\n", stat_n_arenas);
+  fprintf(stderr, "heaps created    = %10d\n", stat_n_heaps);
+  fprintf(stderr, "locked directly  = %10ld\n", stat_lock_direct);
+  fprintf(stderr, "locked in loop   = %10ld\n", stat_lock_loop);
+#endif
+}
+
+/*
+  mallinfo returns a copy of updated current mallinfo.
+*/
+
+struct mallinfo mALLINFo()
+{
+  malloc_update_mallinfo();
+  return current_mallinfo;
+}
+
+
+
+
+/*
+  mallopt:
+
+    mallopt is the general SVID/XPG interface to tunable parameters.
+    The format is to provide a (parameter-number, parameter-value) pair.
+    mallopt then sets the corresponding parameter to the argument
+    value if it can (i.e., so long as the value is meaningful),
+    and returns 1 if successful else 0.
+
+    See descriptions of tunable parameters above.
+
+*/
+
+#if __STD_C
+int mALLOPt(int param_number, int value)
+#else
+int mALLOPt(param_number, value) int param_number; int value;
+#endif
+{
+  switch(param_number)
+  {
+    case M_TRIM_THRESHOLD:
+      trim_threshold = value; return 1;
+    case M_TOP_PAD:
+      top_pad = value; return 1;
+    case M_MMAP_THRESHOLD:
+#ifndef NO_THREADS
+      /* Forbid setting the threshold too high. */
+      if((unsigned long)value > HEAP_MAX_SIZE/2) return 0;
+#endif
+      mmap_threshold = value; return 1;
+    case M_MMAP_MAX:
+#if HAVE_MMAP
+      n_mmaps_max = value; return 1;
+#else
+      if (value != 0) return 0; else  n_mmaps_max = value; return 1;
+#endif
+
+    default:
+      return 0;
+  }
+}
+
+#if 0 && defined(_LIBC)
+weak_alias (__libc_calloc, calloc)
+weak_alias (__libc_free, cfree)
+weak_alias (__libc_free, free)
+weak_alias (__libc_malloc, malloc)
+weak_alias (__libc_memalign, memalign)
+weak_alias (__libc_realloc, realloc)
+weak_alias (__libc_valloc, valloc)
+weak_alias (__libc_pvalloc, pvalloc)
+weak_alias (__libc_mallinfo, mallinfo)
+weak_alias (__libc_mallopt, mallopt)
+#endif
+
+/*
+
+History:
+
+    V2.6.4-pt Wed Dec  4 1996 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
+      * Very minor updates from the released 2.6.4 version.
+      * Trimmed include file down to exported data structures.
+      * Changes from H.J. Lu for glibc-2.0.
+
+    V2.6.3i-pt Sep 16 1996  Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
+      * Many changes for multiple threads
+      * Introduced arenas and heaps
+
+    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
+      * Added pvalloc, as recommended by H.J. Liu
+      * Added 64bit pointer support mainly from Wolfram Gloger
+      * Added anonymously donated WIN32 sbrk emulation
+      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
+      * malloc_extend_top: fix mask error that caused wastage after
+        foreign sbrks
+      * Add linux mremap support code from HJ Liu
+
+    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
+      * Integrated most documentation with the code.
+      * Add support for mmap, with help from
+        Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+      * Use last_remainder in more cases.
+      * Pack bins using idea from  colin@nyx10.cs.du.edu
+      * Use ordered bins instead of best-fit threshhold
+      * Eliminate block-local decls to simplify tracing and debugging.
+      * Support another case of realloc via move into top
+      * Fix error occuring when initial sbrk_base not word-aligned.
+      * Rely on page size for units instead of SBRK_UNIT to
+        avoid surprises about sbrk alignment conventions.
+      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
+        (raymond@es.ele.tue.nl) for the suggestion.
+      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
+      * More precautions for cases where other routines call sbrk,
+        courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+      * Added macros etc., allowing use in linux libc from
+        H.J. Lu (hjl@gnu.ai.mit.edu)
+      * Inverted this history list
+
+    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
+      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
+      * Removed all preallocation code since under current scheme
+        the work required to undo bad preallocations exceeds
+        the work saved in good cases for most test programs.
+      * No longer use return list or unconsolidated bins since
+        no scheme using them consistently outperforms those that don't
+        given above changes.
+      * Use best fit for very large chunks to prevent some worst-cases.
+      * Added some support for debugging
+
+    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
+      * Removed footers when chunks are in use. Thanks to
+        Paul Wilson (wilson@cs.texas.edu) for the suggestion.
+
+    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
+      * Added malloc_trim, with help from Wolfram Gloger
+        (wmglo@Dent.MED.Uni-Muenchen.DE).
+
+    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
+
+    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
+      * realloc: try to expand in both directions
+      * malloc: swap order of clean-bin strategy;
+      * realloc: only conditionally expand backwards
+      * Try not to scavenge used bins
+      * Use bin counts as a guide to preallocation
+      * Occasionally bin return list chunks in first scan
+      * Add a few optimizations from colin@nyx10.cs.du.edu
+
+    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
+      * faster bin computation & slightly different binning
+      * merged all consolidations to one part of malloc proper
+         (eliminating old malloc_find_space & malloc_clean_bin)
+      * Scan 2 returns chunks (not just 1)
+      * Propagate failure in realloc if malloc returns 0
+      * Add stuff to allow compilation on non-ANSI compilers
+          from kpv@research.att.com
+
+    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
+      * removed potential for odd address access in prev_chunk
+      * removed dependency on getpagesize.h
+      * misc cosmetics and a bit more internal documentation
+      * anticosmetics: mangled names in macros to evade debugger strangeness
+      * tested on sparc, hp-700, dec-mips, rs6000
+          with gcc & native cc (hp, dec only) allowing
+          Detlefs & Zorn comparison study (in SIGPLAN Notices.)
+
+    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
+      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
+         structure of old version,  but most details differ.)
+
+*/
diff --git a/malloc/malloc.h b/malloc/malloc.h
new file mode 100644
index 0000000000..57f6e3313d
--- /dev/null
+++ b/malloc/malloc.h
@@ -0,0 +1,169 @@
+/* Prototypes and definition for malloc implementation.
+   Copyright (C) 1996 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#ifndef _MALLOC_H
+#define _MALLOC_H	1
+
+/*
+  `ptmalloc', a malloc implementation for multiple threads without
+  lock contention, by Wolfram Gloger <wmglo@dent.med.uni-muenchen.de>.
+  See the files `ptmalloc.c' or `COPYRIGHT' for copying conditions.
+
+  VERSION 2.6.4-pt Wed Dec  4 00:35:54 MET 1996
+
+  This work is mainly derived from malloc-2.6.4 by Doug Lea
+  <dl@cs.oswego.edu>, which is available from:
+
+                 ftp://g.oswego.edu/pub/misc/malloc.c
+
+  This trimmed-down header file only provides function prototypes and
+  the exported data structures.  For more detailed function
+  descriptions and compile-time options, see the source file
+  `ptmalloc.c'.
+*/
+
+#if defined(__STDC__) || defined (__cplusplus)
+#include <stddef.h>
+#define __malloc_ptr_t  void *
+#else
+#undef  size_t
+#define size_t          unsigned int
+#undef  ptrdiff_t
+#define ptrdiff_t       int
+#define __malloc_ptr_t  char *
+#endif
+
+#ifdef _LIBC
+/* Used by libc internals. */
+#define __malloc_size_t		size_t
+#define __malloc_ptrdiff_t	ptrdiff_t
+#endif
+
+#if defined (__STDC__) || defined (__cplusplus) || defined (__GNUC__)
+#define __MALLOC_P(args)        args
+#else
+#define __MALLOC_P(args)        ()
+#endif
+
+#ifndef NULL
+#ifdef __cplusplus
+#define NULL    0
+#else
+#define NULL    ((__malloc_ptr_t) 0)
+#endif
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Initialize global configuration.  Not needed with GNU libc. */
+#ifndef __GLIBC__
+extern void ptmalloc_init __MALLOC_P ((void));
+#endif
+
+/* Allocate SIZE bytes of memory.  */
+extern __malloc_ptr_t malloc __MALLOC_P ((size_t __size));
+
+/* Allocate NMEMB elements of SIZE bytes each, all initialized to 0.  */
+extern __malloc_ptr_t calloc __MALLOC_P ((size_t __nmemb, size_t __size));
+
+/* Re-allocate the previously allocated block in __ptr, making the new
+   block SIZE bytes long.  */
+extern __malloc_ptr_t realloc __MALLOC_P ((__malloc_ptr_t __ptr, size_t __size));
+
+/* Free a block allocated by `malloc', `realloc' or `calloc'.  */
+extern void free __MALLOC_P ((__malloc_ptr_t __ptr));
+
+/* Free a block allocated by `calloc'. */
+extern void cfree __MALLOC_P ((__malloc_ptr_t __ptr));
+
+/* Allocate SIZE bytes allocated to ALIGNMENT bytes.  */
+extern __malloc_ptr_t memalign __MALLOC_P ((size_t __alignment, size_t __size));
+
+/* Allocate SIZE bytes on a page boundary.  */
+extern __malloc_ptr_t valloc __MALLOC_P ((size_t __size));
+
+/* Equivalent to valloc(minimum-page-that-holds(n)), that is, round up
+   __size to nearest pagesize. */
+extern __malloc_ptr_t  pvalloc __MALLOC_P ((size_t __size));
+
+/* Underlying allocation function; successive calls should return
+   contiguous pieces of memory.  */
+extern __malloc_ptr_t (*__morecore) __MALLOC_P ((ptrdiff_t __size));
+
+/* Default value of `__morecore'.  */
+extern __malloc_ptr_t __default_morecore __MALLOC_P ((ptrdiff_t __size));
+
+/* SVID2/XPG mallinfo structure */
+struct mallinfo {
+  int arena;    /* total space allocated from system */
+  int ordblks;  /* number of non-inuse chunks */
+  int smblks;   /* unused -- always zero */
+  int hblks;    /* number of mmapped regions */
+  int hblkhd;   /* total space in mmapped regions */
+  int usmblks;  /* unused -- always zero */
+  int fsmblks;  /* unused -- always zero */
+  int uordblks; /* total allocated space */
+  int fordblks; /* total non-inuse space */
+  int keepcost; /* top-most, releasable (via malloc_trim) space */
+};
+
+/* Returns a copy of the updated current mallinfo. */
+extern struct mallinfo mallinfo __MALLOC_P ((void));
+
+/* SVID2/XPG mallopt options */
+#ifndef M_MXFAST
+#define M_MXFAST  1    /* UNUSED in this malloc */
+#endif
+#ifndef M_NLBLKS
+#define M_NLBLKS  2    /* UNUSED in this malloc */
+#endif
+#ifndef M_GRAIN
+#define M_GRAIN   3    /* UNUSED in this malloc */
+#endif
+#ifndef M_KEEP
+#define M_KEEP    4    /* UNUSED in this malloc */
+#endif
+
+/* mallopt options that actually do something */
+#define M_TRIM_THRESHOLD    -1
+#define M_TOP_PAD           -2
+#define M_MMAP_THRESHOLD    -3
+#define M_MMAP_MAX          -4
+
+/* General SVID/XPG interface to tunable parameters. */
+extern int mallopt __MALLOC_P ((int __param, int __val));
+
+/* Release all but __pad bytes of freed top-most memory back to the
+   system. Return 1 if successful, else 0. */
+extern int malloc_trim __MALLOC_P ((size_t __pad));
+
+/* Report the number of usable allocated bytes associated with allocated
+   chunk __ptr. */
+extern size_t malloc_usable_size __MALLOC_P ((__malloc_ptr_t __ptr));
+
+/* Prints brief summary statistics on stderr. */
+extern void malloc_stats __MALLOC_P ((void));
+
+#ifdef __cplusplus
+}; /* end of extern "C" */
+#endif
+
+#endif /* !defined(_PTMALLOC_H_) */
diff --git a/malloc/mallocbug.c b/malloc/mallocbug.c
new file mode 100644
index 0000000000..84a6387954
--- /dev/null
+++ b/malloc/mallocbug.c
@@ -0,0 +1,67 @@
+/* Reproduce a GNU malloc bug.  */
+#include <malloc.h>
+#include <stdio.h>
+#include <string.h>
+
+#define size_t unsigned int
+
+int
+main (int argc, char *argv[])
+{
+  char *dummy0;
+  char *dummy1;
+  char *fill_info_table1;
+  char *over_top;
+  size_t over_top_size = 0x3000;
+  char *over_top_dup;
+  size_t over_top_dup_size = 0x7000;
+  char *x;
+  size_t i;
+
+  /* Here's what memory is supposed to look like (hex):
+        size  contents
+        3000  original_info_table, later fill_info_table1
+      3fa000  dummy0
+      3fa000  dummy1
+        6000  info_table_2
+	3000  over_top
+
+	*/
+  /* mem: original_info_table */
+  dummy0 = malloc (0x3fa000);
+  /* mem: original_info_table, dummy0 */
+  dummy1 = malloc (0x3fa000);
+  /* mem: free, dummy0, dummy1, info_table_2 */
+  fill_info_table1 = malloc (0x3000);
+  /* mem: fill_info_table1, dummy0, dummy1, info_table_2 */
+
+  x = malloc (0x1000);
+  free (x);
+  /* mem: fill_info_table1, dummy0, dummy1, info_table_2, freexx */
+
+  /* This is what loses; info_table_2 and freexx get combined unbeknownst
+     to mmalloc, and mmalloc puts over_top in a section of memory which
+     is on the free list as part of another block (where info_table_2 had
+     been).  */
+  over_top = malloc (over_top_size);
+  over_top_dup = malloc (over_top_dup_size);
+  memset (over_top, 0, over_top_size);
+  memset (over_top_dup, 1, over_top_dup_size);
+
+  for (i = 0; i < over_top_size; ++i)
+    if (over_top[i] != 0)
+      {
+	printf ("FAIL: malloc expands info table\n");
+	return 0;
+      }
+
+  for (i = 0; i < over_top_dup_size; ++i)
+    if (over_top_dup[i] != 1)
+      {
+	printf ("FAIL: malloc expands info table\n");
+	return 0;
+      }
+
+  printf ("PASS: malloc expands info table\n");
+  return 0;
+}
diff --git a/malloc/obstack.c b/malloc/obstack.c
new file mode 100644
index 0000000000..cc4147836e
--- /dev/null
+++ b/malloc/obstack.c
@@ -0,0 +1,551 @@
+/* obstack.c - subroutines used implicitly by object stack macros
+   Copyright (C) 1988,89,90,91,92,93,94,96 Free Software Foundation, Inc.
+
+   This file is part of the GNU C Library.  Its master source is NOT part of
+   the C library, however.  The master source lives in /gd/gnu/lib.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include "obstack.h"
+
+/* NOTE BEFORE MODIFYING THIS FILE: This version number must be
+   incremented whenever callers compiled using an old obstack.h can no
+   longer properly call the functions in this obstack.c.  */
+#define OBSTACK_INTERFACE_VERSION 2
+
+/* Comment out all this code if we are using the GNU C Library, and are not
+   actually compiling the library itself, and the installed library
+   supports the same library interface we do.  This code is part of the GNU
+   C Library, but also included in many other GNU distributions.  Compiling
+   and linking in this code is a waste when using the GNU C library
+   (especially if it is a shared library).  Rather than having every GNU
+   program understand `configure --with-gnu-libc' and omit the object
+   files, it is simpler to just do this in the source for each such file.  */
+
+#include <stdio.h>		/* Random thing to get __GNU_LIBRARY__.  */
+#if !defined (_LIBC) && defined (__GNU_LIBRARY__) && __GNU_LIBRARY__ > 1
+#include <gnu-versions.h>
+#if _GNU_OBSTACK_INTERFACE_VERSION == OBSTACK_INTERFACE_VERSION
+#define ELIDE_CODE
+#endif
+#endif
+
+
+#ifndef ELIDE_CODE
+
+
+#if defined (__STDC__) && __STDC__
+#define POINTER void *
+#else
+#define POINTER char *
+#endif
+
+/* Determine default alignment.  */
+struct fooalign {char x; double d;};
+#define DEFAULT_ALIGNMENT  \
+  ((PTR_INT_TYPE) ((char *) &((struct fooalign *) 0)->d - (char *) 0))
+/* If malloc were really smart, it would round addresses to DEFAULT_ALIGNMENT.
+   But in fact it might be less smart and round addresses to as much as
+   DEFAULT_ROUNDING.  So we prepare for it to do that.  */
+union fooround {long x; double d;};
+#define DEFAULT_ROUNDING (sizeof (union fooround))
+
+/* When we copy a long block of data, this is the unit to do it with.
+   On some machines, copying successive ints does not work;
+   in such a case, redefine COPYING_UNIT to `long' (if that works)
+   or `char' as a last resort.  */
+#ifndef COPYING_UNIT
+#define COPYING_UNIT int
+#endif
+
+
+/* The functions allocating more room by calling `obstack_chunk_alloc'
+   jump to the handler pointed to by `obstack_alloc_failed_handler'.
+   This variable by default points to the internal function
+   `print_and_abort'.  */
+#if defined (__STDC__) && __STDC__
+static void print_and_abort (void);
+void (*obstack_alloc_failed_handler) (void) = print_and_abort;
+#else
+static void print_and_abort ();
+void (*obstack_alloc_failed_handler) () = print_and_abort;
+#endif
+
+/* Exit value used when `print_and_abort' is used.  */
+#if defined (__STDC__) && __STDC__
+#include <stdlib.h>
+#endif
+#ifndef EXIT_FAILURE
+#define EXIT_FAILURE 1
+#endif
+int obstack_exit_failure = EXIT_FAILURE;
+
+/* The non-GNU-C macros copy the obstack into this global variable
+   to avoid multiple evaluation.  */
+
+struct obstack *_obstack;
+
+/* Define a macro that either calls functions with the traditional malloc/free
+   calling interface, or calls functions with the mmalloc/mfree interface
+   (that adds an extra first argument), based on the state of use_extra_arg.
+   For free, do not use ?:, since some compilers, like the MIPS compilers,
+   do not allow (expr) ? void : void.  */
+
+#define CALL_CHUNKFUN(h, size) \
+  (((h) -> use_extra_arg) \
+   ? (*(h)->chunkfun) ((h)->extra_arg, (size)) \
+   : (*(struct _obstack_chunk *(*) ()) (h)->chunkfun) ((size)))
+
+#define CALL_FREEFUN(h, old_chunk) \
+  do { \
+    if ((h) -> use_extra_arg) \
+      (*(h)->freefun) ((h)->extra_arg, (old_chunk)); \
+    else \
+      (*(void (*) ()) (h)->freefun) ((old_chunk)); \
+  } while (0)
+
+
+/* Initialize an obstack H for use.  Specify chunk size SIZE (0 means default).
+   Objects start on multiples of ALIGNMENT (0 means use default).
+   CHUNKFUN is the function to use to allocate chunks,
+   and FREEFUN the function to free them.
+
+   Return nonzero if successful, zero if out of memory.
+   To recover from an out of memory error,
+   free up some memory, then call this again.  */
+
+int
+_obstack_begin (h, size, alignment, chunkfun, freefun)
+     struct obstack *h;
+     int size;
+     int alignment;
+     POINTER (*chunkfun) ();
+     void (*freefun) ();
+{
+  register struct _obstack_chunk *chunk; /* points to new chunk */
+
+  if (alignment == 0)
+    alignment = DEFAULT_ALIGNMENT;
+  if (size == 0)
+    /* Default size is what GNU malloc can fit in a 4096-byte block.  */
+    {
+      /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc.
+	 Use the values for range checking, because if range checking is off,
+	 the extra bytes won't be missed terribly, but if range checking is on
+	 and we used a larger request, a whole extra 4096 bytes would be
+	 allocated.
+
+	 These number are irrelevant to the new GNU malloc.  I suspect it is
+	 less sensitive to the size of the request.  */
+      int extra = ((((12 + DEFAULT_ROUNDING - 1) & ~(DEFAULT_ROUNDING - 1))
+		    + 4 + DEFAULT_ROUNDING - 1)
+		   & ~(DEFAULT_ROUNDING - 1));
+      size = 4096 - extra;
+    }
+
+  h->chunkfun = (struct _obstack_chunk * (*)()) chunkfun;
+  h->freefun = freefun;
+  h->chunk_size = size;
+  h->alignment_mask = alignment - 1;
+  h->use_extra_arg = 0;
+
+  chunk = h->chunk = CALL_CHUNKFUN (h, h -> chunk_size);
+  if (!chunk)
+    (*obstack_alloc_failed_handler) ();
+  h->next_free = h->object_base = chunk->contents;
+  h->chunk_limit = chunk->limit
+    = (char *) chunk + h->chunk_size;
+  chunk->prev = 0;
+  /* The initial chunk now contains no empty object.  */
+  h->maybe_empty_object = 0;
+  return 1;
+}
+
+int
+_obstack_begin_1 (h, size, alignment, chunkfun, freefun, arg)
+     struct obstack *h;
+     int size;
+     int alignment;
+     POINTER (*chunkfun) ();
+     void (*freefun) ();
+     POINTER arg;
+{
+  register struct _obstack_chunk *chunk; /* points to new chunk */
+
+  if (alignment == 0)
+    alignment = DEFAULT_ALIGNMENT;
+  if (size == 0)
+    /* Default size is what GNU malloc can fit in a 4096-byte block.  */
+    {
+      /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc.
+	 Use the values for range checking, because if range checking is off,
+	 the extra bytes won't be missed terribly, but if range checking is on
+	 and we used a larger request, a whole extra 4096 bytes would be
+	 allocated.
+
+	 These number are irrelevant to the new GNU malloc.  I suspect it is
+	 less sensitive to the size of the request.  */
+      int extra = ((((12 + DEFAULT_ROUNDING - 1) & ~(DEFAULT_ROUNDING - 1))
+		    + 4 + DEFAULT_ROUNDING - 1)
+		   & ~(DEFAULT_ROUNDING - 1));
+      size = 4096 - extra;
+    }
+
+  h->chunkfun = (struct _obstack_chunk * (*)()) chunkfun;
+  h->freefun = freefun;
+  h->chunk_size = size;
+  h->alignment_mask = alignment - 1;
+  h->extra_arg = arg;
+  h->use_extra_arg = 1;
+
+  chunk = h->chunk = CALL_CHUNKFUN (h, h -> chunk_size);
+  if (!chunk)
+    (*obstack_alloc_failed_handler) ();
+  h->next_free = h->object_base = chunk->contents;
+  h->chunk_limit = chunk->limit
+    = (char *) chunk + h->chunk_size;
+  chunk->prev = 0;
+  /* The initial chunk now contains no empty object.  */
+  h->maybe_empty_object = 0;
+  return 1;
+}
+
+/* Allocate a new current chunk for the obstack *H
+   on the assumption that LENGTH bytes need to be added
+   to the current object, or a new object of length LENGTH allocated.
+   Copies any partial object from the end of the old chunk
+   to the beginning of the new one.  */
+
+void
+_obstack_newchunk (h, length)
+     struct obstack *h;
+     int length;
+{
+  register struct _obstack_chunk *old_chunk = h->chunk;
+  register struct _obstack_chunk *new_chunk;
+  register long	new_size;
+  register int obj_size = h->next_free - h->object_base;
+  register int i;
+  int already;
+
+  /* Compute size for new chunk.  */
+  new_size = (obj_size + length) + (obj_size >> 3) + 100;
+  if (new_size < h->chunk_size)
+    new_size = h->chunk_size;
+
+  /* Allocate and initialize the new chunk.  */
+  new_chunk = CALL_CHUNKFUN (h, new_size);
+  if (!new_chunk)
+    (*obstack_alloc_failed_handler) ();
+  h->chunk = new_chunk;
+  new_chunk->prev = old_chunk;
+  new_chunk->limit = h->chunk_limit = (char *) new_chunk + new_size;
+
+  /* Move the existing object to the new chunk.
+     Word at a time is fast and is safe if the object
+     is sufficiently aligned.  */
+  if (h->alignment_mask + 1 >= DEFAULT_ALIGNMENT)
+    {
+      for (i = obj_size / sizeof (COPYING_UNIT) - 1;
+	   i >= 0; i--)
+	((COPYING_UNIT *)new_chunk->contents)[i]
+	  = ((COPYING_UNIT *)h->object_base)[i];
+      /* We used to copy the odd few remaining bytes as one extra COPYING_UNIT,
+	 but that can cross a page boundary on a machine
+	 which does not do strict alignment for COPYING_UNITS.  */
+      already = obj_size / sizeof (COPYING_UNIT) * sizeof (COPYING_UNIT);
+    }
+  else
+    already = 0;
+  /* Copy remaining bytes one by one.  */
+  for (i = already; i < obj_size; i++)
+    new_chunk->contents[i] = h->object_base[i];
+
+  /* If the object just copied was the only data in OLD_CHUNK,
+     free that chunk and remove it from the chain.
+     But not if that chunk might contain an empty object.  */
+  if (h->object_base == old_chunk->contents && ! h->maybe_empty_object)
+    {
+      new_chunk->prev = old_chunk->prev;
+      CALL_FREEFUN (h, old_chunk);
+    }
+
+  h->object_base = new_chunk->contents;
+  h->next_free = h->object_base + obj_size;
+  /* The new chunk certainly contains no empty object yet.  */
+  h->maybe_empty_object = 0;
+}
+
+/* Return nonzero if object OBJ has been allocated from obstack H.
+   This is here for debugging.
+   If you use it in a program, you are probably losing.  */
+
+#if defined (__STDC__) && __STDC__
+/* Suppress -Wmissing-prototypes warning.  We don't want to declare this in
+   obstack.h because it is just for debugging.  */
+int _obstack_allocated_p (struct obstack *h, POINTER obj);
+#endif
+
+int
+_obstack_allocated_p (h, obj)
+     struct obstack *h;
+     POINTER obj;
+{
+  register struct _obstack_chunk *lp;	/* below addr of any objects in this chunk */
+  register struct _obstack_chunk *plp;	/* point to previous chunk if any */
+
+  lp = (h)->chunk;
+  /* We use >= rather than > since the object cannot be exactly at
+     the beginning of the chunk but might be an empty object exactly
+     at the end of an adjacent chunk.  */
+  while (lp != 0 && ((POINTER) lp >= obj || (POINTER) (lp)->limit < obj))
+    {
+      plp = lp->prev;
+      lp = plp;
+    }
+  return lp != 0;
+}
+
+/* Free objects in obstack H, including OBJ and everything allocate
+   more recently than OBJ.  If OBJ is zero, free everything in H.  */
+
+#undef obstack_free
+
+/* This function has two names with identical definitions.
+   This is the first one, called from non-ANSI code.  */
+
+void
+_obstack_free (h, obj)
+     struct obstack *h;
+     POINTER obj;
+{
+  register struct _obstack_chunk *lp;	/* below addr of any objects in this chunk */
+  register struct _obstack_chunk *plp;	/* point to previous chunk if any */
+
+  lp = h->chunk;
+  /* We use >= because there cannot be an object at the beginning of a chunk.
+     But there can be an empty object at that address
+     at the end of another chunk.  */
+  while (lp != 0 && ((POINTER) lp >= obj || (POINTER) (lp)->limit < obj))
+    {
+      plp = lp->prev;
+      CALL_FREEFUN (h, lp);
+      lp = plp;
+      /* If we switch chunks, we can't tell whether the new current
+	 chunk contains an empty object, so assume that it may.  */
+      h->maybe_empty_object = 1;
+    }
+  if (lp)
+    {
+      h->object_base = h->next_free = (char *) (obj);
+      h->chunk_limit = lp->limit;
+      h->chunk = lp;
+    }
+  else if (obj != 0)
+    /* obj is not in any of the chunks! */
+    abort ();
+}
+
+/* This function is used from ANSI code.  */
+
+void
+obstack_free (h, obj)
+     struct obstack *h;
+     POINTER obj;
+{
+  register struct _obstack_chunk *lp;	/* below addr of any objects in this chunk */
+  register struct _obstack_chunk *plp;	/* point to previous chunk if any */
+
+  lp = h->chunk;
+  /* We use >= because there cannot be an object at the beginning of a chunk.
+     But there can be an empty object at that address
+     at the end of another chunk.  */
+  while (lp != 0 && ((POINTER) lp >= obj || (POINTER) (lp)->limit < obj))
+    {
+      plp = lp->prev;
+      CALL_FREEFUN (h, lp);
+      lp = plp;
+      /* If we switch chunks, we can't tell whether the new current
+	 chunk contains an empty object, so assume that it may.  */
+      h->maybe_empty_object = 1;
+    }
+  if (lp)
+    {
+      h->object_base = h->next_free = (char *) (obj);
+      h->chunk_limit = lp->limit;
+      h->chunk = lp;
+    }
+  else if (obj != 0)
+    /* obj is not in any of the chunks! */
+    abort ();
+}
+
+int
+_obstack_memory_used (h)
+     struct obstack *h;
+{
+  register struct _obstack_chunk* lp;
+  register int nbytes = 0;
+
+  for (lp = h->chunk; lp != 0; lp = lp->prev)
+    {
+      nbytes += lp->limit - (char *) lp;
+    }
+  return nbytes;
+}
+
+/* Define the error handler.  */
+#ifndef _
+# ifdef HAVE_LIBINTL_H
+#  include <libintl.h>
+#  ifndef _
+#   define _(Str) gettext (Str)
+#  endif
+# else
+#  define _(Str) (Str)
+# endif
+#endif
+
+static void
+print_and_abort ()
+{
+  fputs (_("memory exhausted\n"), stderr);
+  exit (obstack_exit_failure);
+}
+
+#if 0
+/* These are now turned off because the applications do not use it
+   and it uses bcopy via obstack_grow, which causes trouble on sysV.  */
+
+/* Now define the functional versions of the obstack macros.
+   Define them to simply use the corresponding macros to do the job.  */
+
+#if defined (__STDC__) && __STDC__
+/* These function definitions do not work with non-ANSI preprocessors;
+   they won't pass through the macro names in parentheses.  */
+
+/* The function names appear in parentheses in order to prevent
+   the macro-definitions of the names from being expanded there.  */
+
+POINTER (obstack_base) (obstack)
+     struct obstack *obstack;
+{
+  return obstack_base (obstack);
+}
+
+POINTER (obstack_next_free) (obstack)
+     struct obstack *obstack;
+{
+  return obstack_next_free (obstack);
+}
+
+int (obstack_object_size) (obstack)
+     struct obstack *obstack;
+{
+  return obstack_object_size (obstack);
+}
+
+int (obstack_room) (obstack)
+     struct obstack *obstack;
+{
+  return obstack_room (obstack);
+}
+
+int (obstack_make_room) (obstack, length)
+     struct obstack *obstack;
+     int length;
+{
+  return obstack_make_room (obstack, length);
+}
+
+void (obstack_grow) (obstack, pointer, length)
+     struct obstack *obstack;
+     POINTER pointer;
+     int length;
+{
+  obstack_grow (obstack, pointer, length);
+}
+
+void (obstack_grow0) (obstack, pointer, length)
+     struct obstack *obstack;
+     POINTER pointer;
+     int length;
+{
+  obstack_grow0 (obstack, pointer, length);
+}
+
+void (obstack_1grow) (obstack, character)
+     struct obstack *obstack;
+     int character;
+{
+  obstack_1grow (obstack, character);
+}
+
+void (obstack_blank) (obstack, length)
+     struct obstack *obstack;
+     int length;
+{
+  obstack_blank (obstack, length);
+}
+
+void (obstack_1grow_fast) (obstack, character)
+     struct obstack *obstack;
+     int character;
+{
+  obstack_1grow_fast (obstack, character);
+}
+
+void (obstack_blank_fast) (obstack, length)
+     struct obstack *obstack;
+     int length;
+{
+  obstack_blank_fast (obstack, length);
+}
+
+POINTER (obstack_finish) (obstack)
+     struct obstack *obstack;
+{
+  return obstack_finish (obstack);
+}
+
+POINTER (obstack_alloc) (obstack, length)
+     struct obstack *obstack;
+     int length;
+{
+  return obstack_alloc (obstack, length);
+}
+
+POINTER (obstack_copy) (obstack, pointer, length)
+     struct obstack *obstack;
+     POINTER pointer;
+     int length;
+{
+  return obstack_copy (obstack, pointer, length);
+}
+
+POINTER (obstack_copy0) (obstack, pointer, length)
+     struct obstack *obstack;
+     POINTER pointer;
+     int length;
+{
+  return obstack_copy0 (obstack, pointer, length);
+}
+
+#endif /* __STDC__ */
+
+#endif /* 0 */
+
+#endif	/* !ELIDE_CODE */
diff --git a/malloc/obstack.h b/malloc/obstack.h
new file mode 100644
index 0000000000..152fbbc655
--- /dev/null
+++ b/malloc/obstack.h
@@ -0,0 +1,575 @@
+/* obstack.h - object stack macros
+   Copyright (C) 1988,89,90,91,92,93,94,96 Free Software Foundation, Inc.
+
+   This file is part of the GNU C Library.  Its master source is NOT part of
+   the C library, however.  The master source lives in /gd/gnu/lib.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* Summary:
+
+All the apparent functions defined here are macros. The idea
+is that you would use these pre-tested macros to solve a
+very specific set of problems, and they would run fast.
+Caution: no side-effects in arguments please!! They may be
+evaluated MANY times!!
+
+These macros operate a stack of objects.  Each object starts life
+small, and may grow to maturity.  (Consider building a word syllable
+by syllable.)  An object can move while it is growing.  Once it has
+been "finished" it never changes address again.  So the "top of the
+stack" is typically an immature growing object, while the rest of the
+stack is of mature, fixed size and fixed address objects.
+
+These routines grab large chunks of memory, using a function you
+supply, called `obstack_chunk_alloc'.  On occasion, they free chunks,
+by calling `obstack_chunk_free'.  You must define them and declare
+them before using any obstack macros.
+
+Each independent stack is represented by a `struct obstack'.
+Each of the obstack macros expects a pointer to such a structure
+as the first argument.
+
+One motivation for this package is the problem of growing char strings
+in symbol tables.  Unless you are "fascist pig with a read-only mind"
+--Gosper's immortal quote from HAKMEM item 154, out of context--you
+would not like to put any arbitrary upper limit on the length of your
+symbols.
+
+In practice this often means you will build many short symbols and a
+few long symbols.  At the time you are reading a symbol you don't know
+how long it is.  One traditional method is to read a symbol into a
+buffer, realloc()ating the buffer every time you try to read a symbol
+that is longer than the buffer.  This is beaut, but you still will
+want to copy the symbol from the buffer to a more permanent
+symbol-table entry say about half the time.
+
+With obstacks, you can work differently.  Use one obstack for all symbol
+names.  As you read a symbol, grow the name in the obstack gradually.
+When the name is complete, finalize it.  Then, if the symbol exists already,
+free the newly read name.
+
+The way we do this is to take a large chunk, allocating memory from
+low addresses.  When you want to build a symbol in the chunk you just
+add chars above the current "high water mark" in the chunk.  When you
+have finished adding chars, because you got to the end of the symbol,
+you know how long the chars are, and you can create a new object.
+Mostly the chars will not burst over the highest address of the chunk,
+because you would typically expect a chunk to be (say) 100 times as
+long as an average object.
+
+In case that isn't clear, when we have enough chars to make up
+the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
+so we just point to it where it lies.  No moving of chars is
+needed and this is the second win: potentially long strings need
+never be explicitly shuffled. Once an object is formed, it does not
+change its address during its lifetime.
+
+When the chars burst over a chunk boundary, we allocate a larger
+chunk, and then copy the partly formed object from the end of the old
+chunk to the beginning of the new larger chunk.  We then carry on
+accreting characters to the end of the object as we normally would.
+
+A special macro is provided to add a single char at a time to a
+growing object.  This allows the use of register variables, which
+break the ordinary 'growth' macro.
+
+Summary:
+	We allocate large chunks.
+	We carve out one object at a time from the current chunk.
+	Once carved, an object never moves.
+	We are free to append data of any size to the currently
+	  growing object.
+	Exactly one object is growing in an obstack at any one time.
+	You can run one obstack per control block.
+	You may have as many control blocks as you dare.
+	Because of the way we do it, you can `unwind' an obstack
+	  back to a previous state. (You may remove objects much
+	  as you would with a stack.)
+*/
+
+
+/* Don't do the contents of this file more than once.  */
+
+#ifndef __OBSTACK_H__
+#define __OBSTACK_H__
+
+/* We use subtraction of (char *) 0 instead of casting to int
+   because on word-addressable machines a simple cast to int
+   may ignore the byte-within-word field of the pointer.  */
+
+#ifndef __PTR_TO_INT
+#define __PTR_TO_INT(P) ((P) - (char *) 0)
+#endif
+
+#ifndef __INT_TO_PTR
+#define __INT_TO_PTR(P) ((P) + (char *) 0)
+#endif
+
+/* We need the type of the resulting object.  In ANSI C it is ptrdiff_t
+   but in traditional C it is usually long.  If we are in ANSI C and
+   don't already have ptrdiff_t get it.  */
+
+#if defined (__STDC__) && __STDC__ && ! defined (offsetof)
+#if defined (__GNUC__) && defined (IN_GCC)
+/* On Next machine, the system's stddef.h screws up if included
+   after we have defined just ptrdiff_t, so include all of stddef.h.
+   Otherwise, define just ptrdiff_t, which is all we need.  */
+#ifndef __NeXT__
+#define __need_ptrdiff_t
+#endif
+#endif
+
+#include <stddef.h>
+#endif
+
+#if defined (__STDC__) && __STDC__
+#define PTR_INT_TYPE ptrdiff_t
+#else
+#define PTR_INT_TYPE long
+#endif
+
+#if defined (_LIBC) || defined (HAVE_STRING_H)
+#include <string.h>
+#else
+#ifndef memcpy
+#define memcpy(To, From, N) bcopy (From, To, N)
+#endif
+#endif
+
+struct _obstack_chunk		/* Lives at front of each chunk. */
+{
+  char  *limit;			/* 1 past end of this chunk */
+  struct _obstack_chunk *prev;	/* address of prior chunk or NULL */
+  char	contents[4];		/* objects begin here */
+};
+
+struct obstack		/* control current object in current chunk */
+{
+  long	chunk_size;		/* preferred size to allocate chunks in */
+  struct _obstack_chunk *chunk;	/* address of current struct obstack_chunk */
+  char	*object_base;		/* address of object we are building */
+  char	*next_free;		/* where to add next char to current object */
+  char	*chunk_limit;		/* address of char after current chunk */
+  PTR_INT_TYPE temp;		/* Temporary for some macros.  */
+  int   alignment_mask;		/* Mask of alignment for each object. */
+#if defined (__STDC__) && __STDC__
+  /* These prototypes vary based on `use_extra_arg', and we use
+     casts to the prototypeless function type in all assignments,
+     but having prototypes here quiets -Wstrict-prototypes.  */
+  struct _obstack_chunk *(*chunkfun) (void *, long);
+  void (*freefun) (void *, struct _obstack_chunk *);
+  void *extra_arg;		/* first arg for chunk alloc/dealloc funcs */
+#else
+  struct _obstack_chunk *(*chunkfun) (); /* User's fcn to allocate a chunk.  */
+  void (*freefun) ();		/* User's function to free a chunk.  */
+  char *extra_arg;		/* first arg for chunk alloc/dealloc funcs */
+#endif
+  unsigned use_extra_arg:1;	/* chunk alloc/dealloc funcs take extra arg */
+  unsigned maybe_empty_object:1;/* There is a possibility that the current
+				   chunk contains a zero-length object.  This
+				   prevents freeing the chunk if we allocate
+				   a bigger chunk to replace it. */
+};
+
+/* Declare the external functions we use; they are in obstack.c.  */
+
+#if defined (__STDC__) && __STDC__
+extern void _obstack_newchunk (struct obstack *, int);
+extern void _obstack_free (struct obstack *, void *);
+extern int _obstack_begin (struct obstack *, int, int,
+			    void *(*) (long), void (*) (void *));
+extern int _obstack_begin_1 (struct obstack *, int, int,
+			     void *(*) (void *, long),
+			     void (*) (void *, void *), void *);
+extern int _obstack_memory_used (struct obstack *);
+#else
+extern void _obstack_newchunk ();
+extern void _obstack_free ();
+extern int _obstack_begin ();
+extern int _obstack_begin_1 ();
+extern int _obstack_memory_used ();
+#endif
+
+#if defined (__STDC__) && __STDC__
+
+/* Do the function-declarations after the structs
+   but before defining the macros.  */
+
+void obstack_init (struct obstack *obstack);
+
+void * obstack_alloc (struct obstack *obstack, int size);
+
+void * obstack_copy (struct obstack *obstack, void *address, int size);
+void * obstack_copy0 (struct obstack *obstack, void *address, int size);
+
+void obstack_free (struct obstack *obstack, void *block);
+
+void obstack_blank (struct obstack *obstack, int size);
+
+void obstack_grow (struct obstack *obstack, void *data, int size);
+void obstack_grow0 (struct obstack *obstack, void *data, int size);
+
+void obstack_1grow (struct obstack *obstack, int data_char);
+void obstack_ptr_grow (struct obstack *obstack, void *data);
+void obstack_int_grow (struct obstack *obstack, int data);
+
+void * obstack_finish (struct obstack *obstack);
+
+int obstack_object_size (struct obstack *obstack);
+
+int obstack_room (struct obstack *obstack);
+void obstack_make_room (struct obstack *obstack, int size);
+void obstack_1grow_fast (struct obstack *obstack, int data_char);
+void obstack_ptr_grow_fast (struct obstack *obstack, void *data);
+void obstack_int_grow_fast (struct obstack *obstack, int data);
+void obstack_blank_fast (struct obstack *obstack, int size);
+
+void * obstack_base (struct obstack *obstack);
+void * obstack_next_free (struct obstack *obstack);
+int obstack_alignment_mask (struct obstack *obstack);
+int obstack_chunk_size (struct obstack *obstack);
+int obstack_memory_used (struct obstack *obstack);
+
+#endif /* __STDC__ */
+
+/* Non-ANSI C cannot really support alternative functions for these macros,
+   so we do not declare them.  */
+
+/* Error handler called when `obstack_chunk_alloc' failed to allocate
+   more memory.  This can be set to a user defined function.  The
+   default action is to print a message and abort.  */
+#if defined (__STDC__) && __STDC__
+extern void (*obstack_alloc_failed_handler) (void);
+#else
+extern void (*obstack_alloc_failed_handler) ();
+#endif
+
+/* Exit value used when `print_and_abort' is used.  */
+extern int obstack_exit_failure;
+
+/* Pointer to beginning of object being allocated or to be allocated next.
+   Note that this might not be the final address of the object
+   because a new chunk might be needed to hold the final size.  */
+
+#define obstack_base(h) ((h)->object_base)
+
+/* Size for allocating ordinary chunks.  */
+
+#define obstack_chunk_size(h) ((h)->chunk_size)
+
+/* Pointer to next byte not yet allocated in current chunk.  */
+
+#define obstack_next_free(h)	((h)->next_free)
+
+/* Mask specifying low bits that should be clear in address of an object.  */
+
+#define obstack_alignment_mask(h) ((h)->alignment_mask)
+
+/* To prevent prototype warnings provide complete argument list in
+   standard C version.  */
+#if defined (__STDC__) && __STDC__
+
+#define obstack_init(h) \
+  _obstack_begin ((h), 0, 0, \
+		  (void *(*) (long)) obstack_chunk_alloc, (void (*) (void *)) obstack_chunk_free)
+
+#define obstack_begin(h, size) \
+  _obstack_begin ((h), (size), 0, \
+		  (void *(*) (long)) obstack_chunk_alloc, (void (*) (void *)) obstack_chunk_free)
+
+#define obstack_specify_allocation(h, size, alignment, chunkfun, freefun) \
+  _obstack_begin ((h), (size), (alignment), \
+		    (void *(*) (long)) (chunkfun), (void (*) (void *)) (freefun))
+
+#define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
+  _obstack_begin_1 ((h), (size), (alignment), \
+		    (void *(*) (long)) (chunkfun), (void (*) (void *)) (freefun), (arg))
+
+#define obstack_chunkfun(h, newchunkfun) \
+  ((h) -> chunkfun = (struct _obstack_chunk *(*)(long)) (newchunkfun))
+
+#define obstack_freefun(h, newfreefun) \
+  ((h) -> freefun = (void (*)(void *)) (newfreefun))
+
+#else
+
+#define obstack_init(h) \
+  _obstack_begin ((h), 0, 0, \
+		  (void *(*) ()) obstack_chunk_alloc, (void (*) ()) obstack_chunk_free)
+
+#define obstack_begin(h, size) \
+  _obstack_begin ((h), (size), 0, \
+		  (void *(*) ()) obstack_chunk_alloc, (void (*) ()) obstack_chunk_free)
+
+#define obstack_specify_allocation(h, size, alignment, chunkfun, freefun) \
+  _obstack_begin ((h), (size), (alignment), \
+		    (void *(*) ()) (chunkfun), (void (*) ()) (freefun))
+
+#define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
+  _obstack_begin_1 ((h), (size), (alignment), \
+		    (void *(*) ()) (chunkfun), (void (*) ()) (freefun), (arg))
+
+#define obstack_chunkfun(h, newchunkfun) \
+  ((h) -> chunkfun = (struct _obstack_chunk *(*)()) (newchunkfun))
+
+#define obstack_freefun(h, newfreefun) \
+  ((h) -> freefun = (void (*)()) (newfreefun))
+
+#endif
+
+#define obstack_1grow_fast(h,achar) (*((h)->next_free)++ = achar)
+
+#define obstack_blank_fast(h,n) ((h)->next_free += (n))
+
+#define obstack_memory_used(h) _obstack_memory_used (h)
+
+#if defined (__GNUC__) && defined (__STDC__) && __STDC__
+/* NextStep 2.0 cc is really gcc 1.93 but it defines __GNUC__ = 2 and
+   does not implement __extension__.  But that compiler doesn't define
+   __GNUC_MINOR__.  */
+#if __GNUC__ < 2 || (__NeXT__ && !__GNUC_MINOR__)
+#define __extension__
+#endif
+
+/* For GNU C, if not -traditional,
+   we can define these macros to compute all args only once
+   without using a global variable.
+   Also, we can avoid using the `temp' slot, to make faster code.  */
+
+#define obstack_object_size(OBSTACK)					\
+  __extension__								\
+  ({ struct obstack *__o = (OBSTACK);					\
+     (unsigned) (__o->next_free - __o->object_base); })
+
+#define obstack_room(OBSTACK)						\
+  __extension__								\
+  ({ struct obstack *__o = (OBSTACK);					\
+     (unsigned) (__o->chunk_limit - __o->next_free); })
+
+#define obstack_make_room(OBSTACK,length)				\
+__extension__								\
+({ struct obstack *__o = (OBSTACK);					\
+   int __len = (length);						\
+   if (__o->chunk_limit - __o->next_free < __len)			\
+     _obstack_newchunk (__o, __len);					\
+   (void) 0; })
+
+#define obstack_grow(OBSTACK,where,length)				\
+__extension__								\
+({ struct obstack *__o = (OBSTACK);					\
+   int __len = (length);						\
+   if (__o->next_free + __len > __o->chunk_limit)			\
+     _obstack_newchunk (__o, __len);					\
+   memcpy (__o->next_free, (char *) (where), __len);			\
+   __o->next_free += __len;						\
+   (void) 0; })
+
+#define obstack_grow0(OBSTACK,where,length)				\
+__extension__								\
+({ struct obstack *__o = (OBSTACK);					\
+   int __len = (length);						\
+   if (__o->next_free + __len + 1 > __o->chunk_limit)			\
+     _obstack_newchunk (__o, __len + 1);				\
+   memcpy (__o->next_free, (char *) (where), __len);			\
+   __o->next_free += __len;						\
+   *(__o->next_free)++ = 0;						\
+   (void) 0; })
+
+#define obstack_1grow(OBSTACK,datum)					\
+__extension__								\
+({ struct obstack *__o = (OBSTACK);					\
+   if (__o->next_free + 1 > __o->chunk_limit)				\
+     _obstack_newchunk (__o, 1);					\
+   *(__o->next_free)++ = (datum);					\
+   (void) 0; })
+
+/* These assume that the obstack alignment is good enough for pointers or ints,
+   and that the data added so far to the current object
+   shares that much alignment.  */
+
+#define obstack_ptr_grow(OBSTACK,datum)					\
+__extension__								\
+({ struct obstack *__o = (OBSTACK);					\
+   if (__o->next_free + sizeof (void *) > __o->chunk_limit)		\
+     _obstack_newchunk (__o, sizeof (void *));				\
+   *((void **)__o->next_free)++ = ((void *)datum);			\
+   (void) 0; })
+
+#define obstack_int_grow(OBSTACK,datum)					\
+__extension__								\
+({ struct obstack *__o = (OBSTACK);					\
+   if (__o->next_free + sizeof (int) > __o->chunk_limit)		\
+     _obstack_newchunk (__o, sizeof (int));				\
+   *((int *)__o->next_free)++ = ((int)datum);				\
+   (void) 0; })
+
+#define obstack_ptr_grow_fast(h,aptr) (*((void **) (h)->next_free)++ = (void *)aptr)
+#define obstack_int_grow_fast(h,aint) (*((int *) (h)->next_free)++ = (int) aint)
+
+#define obstack_blank(OBSTACK,length)					\
+__extension__								\
+({ struct obstack *__o = (OBSTACK);					\
+   int __len = (length);						\
+   if (__o->chunk_limit - __o->next_free < __len)			\
+     _obstack_newchunk (__o, __len);					\
+   __o->next_free += __len;						\
+   (void) 0; })
+
+#define obstack_alloc(OBSTACK,length)					\
+__extension__								\
+({ struct obstack *__h = (OBSTACK);					\
+   obstack_blank (__h, (length));					\
+   obstack_finish (__h); })
+
+#define obstack_copy(OBSTACK,where,length)				\
+__extension__								\
+({ struct obstack *__h = (OBSTACK);					\
+   obstack_grow (__h, (where), (length));				\
+   obstack_finish (__h); })
+
+#define obstack_copy0(OBSTACK,where,length)				\
+__extension__								\
+({ struct obstack *__h = (OBSTACK);					\
+   obstack_grow0 (__h, (where), (length));				\
+   obstack_finish (__h); })
+
+/* The local variable is named __o1 to avoid a name conflict
+   when obstack_blank is called.  */
+#define obstack_finish(OBSTACK)  					\
+__extension__								\
+({ struct obstack *__o1 = (OBSTACK);					\
+   void *value;								\
+   value = (void *) __o1->object_base;					\
+   if (__o1->next_free == value)					\
+     __o1->maybe_empty_object = 1;					\
+   __o1->next_free							\
+     = __INT_TO_PTR ((__PTR_TO_INT (__o1->next_free)+__o1->alignment_mask)\
+		     & ~ (__o1->alignment_mask));			\
+   if (__o1->next_free - (char *)__o1->chunk				\
+       > __o1->chunk_limit - (char *)__o1->chunk)			\
+     __o1->next_free = __o1->chunk_limit;				\
+   __o1->object_base = __o1->next_free;					\
+   value; })
+
+#define obstack_free(OBSTACK, OBJ)					\
+__extension__								\
+({ struct obstack *__o = (OBSTACK);					\
+   void *__obj = (OBJ);							\
+   if (__obj > (void *)__o->chunk && __obj < (void *)__o->chunk_limit)  \
+     __o->next_free = __o->object_base = __obj;				\
+   else (obstack_free) (__o, __obj); })
+
+#else /* not __GNUC__ or not __STDC__ */
+
+#define obstack_object_size(h) \
+ (unsigned) ((h)->next_free - (h)->object_base)
+
+#define obstack_room(h)		\
+ (unsigned) ((h)->chunk_limit - (h)->next_free)
+
+/* Note that the call to _obstack_newchunk is enclosed in (..., 0)
+   so that we can avoid having void expressions
+   in the arms of the conditional expression.
+   Casting the third operand to void was tried before,
+   but some compilers won't accept it.  */
+
+#define obstack_make_room(h,length)					\
+( (h)->temp = (length),							\
+  (((h)->next_free + (h)->temp > (h)->chunk_limit)			\
+   ? (_obstack_newchunk ((h), (h)->temp), 0) : 0))
+
+#define obstack_grow(h,where,length)					\
+( (h)->temp = (length),							\
+  (((h)->next_free + (h)->temp > (h)->chunk_limit)			\
+   ? (_obstack_newchunk ((h), (h)->temp), 0) : 0),			\
+  memcpy ((h)->next_free, (char *) (where), (h)->temp),			\
+  (h)->next_free += (h)->temp)
+
+#define obstack_grow0(h,where,length)					\
+( (h)->temp = (length),							\
+  (((h)->next_free + (h)->temp + 1 > (h)->chunk_limit)			\
+   ? (_obstack_newchunk ((h), (h)->temp + 1), 0) : 0),			\
+  memcpy ((h)->next_free, (char *) (where), (h)->temp),			\
+  (h)->next_free += (h)->temp,						\
+  *((h)->next_free)++ = 0)
+
+#define obstack_1grow(h,datum)						\
+( (((h)->next_free + 1 > (h)->chunk_limit)				\
+   ? (_obstack_newchunk ((h), 1), 0) : 0),				\
+  (*((h)->next_free)++ = (datum)))
+
+#define obstack_ptr_grow(h,datum)					\
+( (((h)->next_free + sizeof (char *) > (h)->chunk_limit)		\
+   ? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0),		\
+  (*((char **) (((h)->next_free+=sizeof(char *))-sizeof(char *))) = ((char *) datum)))
+
+#define obstack_int_grow(h,datum)					\
+( (((h)->next_free + sizeof (int) > (h)->chunk_limit)			\
+   ? (_obstack_newchunk ((h), sizeof (int)), 0) : 0),			\
+  (*((int *) (((h)->next_free+=sizeof(int))-sizeof(int))) = ((int) datum)))
+
+#define obstack_ptr_grow_fast(h,aptr) (*((char **) (h)->next_free)++ = (char *) aptr)
+#define obstack_int_grow_fast(h,aint) (*((int *) (h)->next_free)++ = (int) aint)
+
+#define obstack_blank(h,length)						\
+( (h)->temp = (length),							\
+  (((h)->chunk_limit - (h)->next_free < (h)->temp)			\
+   ? (_obstack_newchunk ((h), (h)->temp), 0) : 0),			\
+  ((h)->next_free += (h)->temp))
+
+#define obstack_alloc(h,length)						\
+ (obstack_blank ((h), (length)), obstack_finish ((h)))
+
+#define obstack_copy(h,where,length)					\
+ (obstack_grow ((h), (where), (length)), obstack_finish ((h)))
+
+#define obstack_copy0(h,where,length)					\
+ (obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
+
+#define obstack_finish(h)  						\
+( ((h)->next_free == (h)->object_base					\
+   ? (((h)->maybe_empty_object = 1), 0)					\
+   : 0),								\
+  (h)->temp = __PTR_TO_INT ((h)->object_base),				\
+  (h)->next_free							\
+    = __INT_TO_PTR ((__PTR_TO_INT ((h)->next_free)+(h)->alignment_mask)	\
+		    & ~ ((h)->alignment_mask)),				\
+  (((h)->next_free - (char *) (h)->chunk				\
+    > (h)->chunk_limit - (char *) (h)->chunk)				\
+   ? ((h)->next_free = (h)->chunk_limit) : 0),				\
+  (h)->object_base = (h)->next_free,					\
+  __INT_TO_PTR ((h)->temp))
+
+#if defined (__STDC__) && __STDC__
+#define obstack_free(h,obj)						\
+( (h)->temp = (char *) (obj) - (char *) (h)->chunk,			\
+  (((h)->temp > 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\
+   ? (int) ((h)->next_free = (h)->object_base				\
+	    = (h)->temp + (char *) (h)->chunk)				\
+   : (((obstack_free) ((h), (h)->temp + (char *) (h)->chunk), 0), 0)))
+#else
+#define obstack_free(h,obj)						\
+( (h)->temp = (char *) (obj) - (char *) (h)->chunk,			\
+  (((h)->temp > 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\
+   ? (int) ((h)->next_free = (h)->object_base				\
+	    = (h)->temp + (char *) (h)->chunk)				\
+   : (_obstack_free ((h), (h)->temp + (char *) (h)->chunk), 0)))
+#endif
+
+#endif /* not __GNUC__ or not __STDC__ */
+
+#endif /* not __OBSTACK_H__ */
diff --git a/malloc/thread-m.h b/malloc/thread-m.h
new file mode 100644
index 0000000000..371e49178d
--- /dev/null
+++ b/malloc/thread-m.h
@@ -0,0 +1,176 @@
+/* Basic platform-independent macro definitions for mutexes and
+   thread-specific data.
+   Copyright (C) 1996 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Wolfram Gloger <wmglo@dent.med.uni-muenchen.de>, 1996.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* One out of _LIBC, USE_PTHREADS, USE_THR * or USE_SPROC should be
+   defined, otherwise the token NO_THREADS * and dummy implementations
+   of the macros will be defined.  */
+
+#ifndef _THREAD_M_H
+#define _THREAD_M_H
+
+#if defined(_LIBC) /* The GNU C library, a special case of Posix threads */
+
+#include <libc-lock.h>
+
+#ifdef PTHREAD_MUTEX_INITIALIZER
+
+typedef pthread_t thread_id;
+
+/* mutex */
+typedef pthread_mutex_t	mutex_t;
+
+/* thread specific data */
+typedef pthread_key_t tsd_key_t;
+
+#define MUTEX_INITIALIZER	PTHREAD_MUTEX_INITIALIZER
+
+#define tsd_key_create(key, destr)	\
+  if (__pthread_key_create != NULL) { \
+   __pthread_key_create(key, destr); } else { *(key) = (tsd_key_t) 0; }
+#define tsd_setspecific(key, data)	\
+  if (__pthread_setspecific != NULL) { \
+   __pthread_setspecific(key, data); } else { (key) = (tsd_key_t) data; }
+#define tsd_getspecific(key, vptr)	\
+  (vptr = (__pthread_getspecific != NULL ? \
+   __pthread_getspecific(key) : (tsd_key_t *) (key)))
+
+#define mutex_init(m)		\
+   (__pthread_mutex_init != NULL ? __pthread_mutex_init (m, NULL) : 0)
+#define mutex_lock(m)		\
+   (__pthread_mutex_lock != NULL ? __pthread_mutex_lock (m) : 0)
+#define mutex_trylock(m)	\
+   (__pthread_mutex_trylock != NULL ? __pthread_mutex_trylock (m) : 0)
+#define mutex_unlock(m)		\
+   (__pthread_mutex_unlock != NULL ? __pthread_mutex_unlock (m) : 0)
+
+#elif defined(MUTEX_INITIALIZER)
+
+typedef thread_t thread_id;
+
+/* mutex */
+typedef mutex_t	mutex_t;
+
+/* thread specific data */
+typedef pthread_key_t tsd_key_t;
+
+#define mutex_init(m)		__mutex_init (m)
+#define mutex_lock(m)		__mutex_lock (m)
+#define mutex_trylock(m)	__mutex_trylock (m)
+#define mutex_unlock(m)		__mutex_unlock (m)
+
+#else
+
+#define NO_THREADS
+
+#endif /* MUTEX_INITIALIZER && PTHREAD_MUTEX_INITIALIZER */
+
+#elif defined(USE_PTHREADS) /* Posix threads */
+
+#include <pthread.h>
+
+typedef pthread_t thread_id;
+
+/* mutex */
+typedef pthread_mutex_t mutex_t;
+
+#define MUTEX_INITIALIZER          PTHREAD_MUTEX_INITIALIZER
+#define mutex_init(m)              pthread_mutex_init(m, NULL)
+#define mutex_lock(m)              pthread_mutex_lock(m)
+#define mutex_trylock(m)           pthread_mutex_trylock(m)
+#define mutex_unlock(m)            pthread_mutex_unlock(m)
+
+/* thread specific data */
+typedef pthread_key_t tsd_key_t;
+
+#define tsd_key_create(key, destr) pthread_key_create(key, destr)
+#define tsd_setspecific(key, data) pthread_setspecific(key, data)
+#define tsd_getspecific(key, vptr) (vptr = pthread_getspecific(key))
+
+#elif USE_THR /* Solaris threads */
+
+#include <thread.h>
+
+typedef thread_t thread_id;
+
+#define MUTEX_INITIALIZER          { 0 }
+#define mutex_init(m)              mutex_init(m, USYNC_THREAD, NULL)
+
+/*
+ * Hack for thread-specific data on Solaris.  We can't use thr_setspecific
+ * because that function calls malloc() itself.
+ */
+typedef void *tsd_key_t[256];
+#define tsd_key_create(key, destr) do { \
+  int i; \
+  for(i=0; i<256; i++) (*key)[i] = 0; \
+} while(0)
+#define tsd_setspecific(key, data) (key[(unsigned)thr_self() % 256] = (data))
+#define tsd_getspecific(key, vptr) (vptr = key[(unsigned)thr_self() % 256])
+
+#elif USE_SPROC /* SGI sproc() threads */
+
+#include <sys/wait.h>
+#include <sys/types.h>
+#include <sys/prctl.h>
+#include <abi_mutex.h>
+
+typedef int thread_id;
+
+typedef abilock_t mutex_t;
+
+#define MUTEX_INITIALIZER          { 0 }
+#define mutex_init(m)              init_lock(m)
+#define mutex_lock(m)              (spin_lock(m), 0)
+#define mutex_trylock(m)           acquire_lock(m)
+#define mutex_unlock(m)            release_lock(m)
+
+typedef int tsd_key_t;
+int tsd_key_next;
+#define tsd_key_create(key, destr) ((*key) = tsd_key_next++)
+#define tsd_setspecific(key, data) (((void **)(&PRDA->usr_prda))[key] = data)
+#define tsd_getspecific(key, vptr) (vptr = ((void **)(&PRDA->usr_prda))[key])
+
+#else /* no _LIBC or USE_... are defined */
+
+#define NO_THREADS
+
+#endif /* defined(_LIBC) */
+
+#ifdef NO_THREADS /* No threads, provide dummy macros */
+
+typedef int thread_id;
+
+typedef int mutex_t;
+
+#define MUTEX_INITIALIZER          0
+#define mutex_init(m)              (*(m) = 0)
+#define mutex_lock(m)              (0)
+#define mutex_trylock(m)           (0)
+#define mutex_unlock(m)            (0)
+
+typedef void *tsd_key_t;
+#define tsd_key_create(key, destr) (*(key) = NULL)
+#define tsd_setspecific(key, data) ((key) = data)
+#define tsd_getspecific(key, vptr) (vptr = (key))
+
+#endif /* defined(NO_THREADS) */
+
+#endif /* !defined(_THREAD_M_H) */