about summary refs log tree commit diff
path: root/db2/btree/bt_split.c
diff options
context:
space:
mode:
Diffstat (limited to 'db2/btree/bt_split.c')
-rw-r--r--db2/btree/bt_split.c952
1 files changed, 952 insertions, 0 deletions
diff --git a/db2/btree/bt_split.c b/db2/btree/bt_split.c
new file mode 100644
index 0000000000..89cfcb5a2e
--- /dev/null
+++ b/db2/btree/bt_split.c
@@ -0,0 +1,952 @@
+/*-
+ * See the file LICENSE for redistribution information.
+ *
+ * Copyright (c) 1996, 1997
+ *	Sleepycat Software.  All rights reserved.
+ */
+/*
+ * Copyright (c) 1990, 1993, 1994, 1995, 1996
+ *	Keith Bostic.  All rights reserved.
+ */
+/*
+ * Copyright (c) 1990, 1993, 1994, 1995
+ *	The Regents of the University of California.  All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ *    must display the following acknowledgement:
+ *	This product includes software developed by the University of
+ *	California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ *    may be used to endorse or promote products derived from this software
+ *    without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include "config.h"
+
+#ifndef lint
+static const char sccsid[] = "@(#)bt_split.c	10.12 (Sleepycat) 8/24/97";
+#endif /* not lint */
+
+#ifndef NO_SYSTEM_INCLUDES
+#include <sys/types.h>
+
+#include <errno.h>
+#include <limits.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#endif
+
+#include "db_int.h"
+#include "db_page.h"
+#include "btree.h"
+
+static int __bam_page __P((DB *, EPG *, EPG *));
+static int __bam_pinsert __P((DB *, EPG *, PAGE *, PAGE *));
+static int __bam_psplit __P((DB *, EPG *, PAGE *, PAGE *, int));
+static int __bam_root __P((DB *, EPG *));
+
+/*
+ * __bam_split --
+ *	Split a page.
+ *
+ * PUBLIC: int __bam_split __P((DB *, void *));
+ */
+int
+__bam_split(dbp, arg)
+	DB *dbp;
+	void *arg;
+{
+	BTREE *t;
+	enum { UP, DOWN } dir;
+	int exact, level, ret;
+
+	t = dbp->internal;
+
+	/*
+	 * The locking protocol we use to avoid deadlock to acquire locks by
+	 * walking down the tree, but we do it as lazily as possible, locking
+	 * the root only as a last resort.  We expect all stack pages to have
+	 * been discarded before we're called; we discard all short-term locks.
+	 *
+	 * When __bam_split is first called, we know that a leaf page was too
+	 * full for an insert.  We don't know what leaf page it was, but we
+	 * have the key/recno that caused the problem.  We call XX_search to
+	 * reacquire the leaf page, but this time get both the leaf page and
+	 * its parent, locked.  We then split the leaf page and see if the new
+	 * internal key will fit into the parent page.  If it will, we're done.
+	 *
+	 * If it won't, we discard our current locks and repeat the process,
+	 * only this time acquiring the parent page and its parent, locked.
+	 * This process repeats until we succeed in the split, splitting the
+	 * root page as the final resort.  The entire process then repeats,
+	 * as necessary, until we split a leaf page.
+	 *
+	 * XXX
+	 * A traditional method of speeding this up is to maintain a stack of
+	 * the pages traversed in the original search.  You can detect if the
+	 * stack is correct by storing the page's LSN when it was searched and
+	 * comparing that LSN with the current one when it's locked during the
+	 * split.  This would be an easy change for this code, but I have no
+	 * numbers that indicate it's worthwhile.
+	 */
+	for (dir = UP, level = LEAFLEVEL;; dir == UP ? ++level : --level) {
+		/*
+		 * Acquire a page and its parent, locked.
+		 */
+		if ((ret = (dbp->type == DB_BTREE ?
+		    __bam_search(dbp, arg, S_WRPAIR, level, NULL, &exact) :
+		    __bam_rsearch(dbp,
+		        (db_recno_t *)arg, S_WRPAIR, level, &exact))) != 0)
+			return (ret);
+
+		/* Split the page. */
+		ret = t->bt_csp[0].page->pgno == PGNO_ROOT ?
+		    __bam_root(dbp, &t->bt_csp[0]) :
+		    __bam_page(dbp, &t->bt_csp[-1], &t->bt_csp[0]);
+
+		switch (ret) {
+		case 0:
+			/* Once we've split the leaf page, we're done. */
+			if (level == LEAFLEVEL)
+				return (0);
+
+			/* Switch directions. */
+			if (dir == UP)
+				dir = DOWN;
+			break;
+		case DB_NEEDSPLIT:
+			/*
+			 * It's possible to fail to split repeatedly, as other
+			 * threads may be modifying the tree, or the page usage
+			 * is sufficiently bad that we don't get enough space
+			 * the first time.
+			 */
+			if (dir == DOWN)
+				dir = UP;
+			break;
+		default:
+			return (ret);
+		}
+	}
+	/* NOTREACHED */
+}
+
+/*
+ * __bam_root --
+ *	Split the root page of a btree.
+ */
+static int
+__bam_root(dbp, cp)
+	DB *dbp;
+	EPG *cp;
+{
+	BTREE *t;
+	PAGE *lp, *rp;
+	int ret;
+
+	t = dbp->internal;
+
+	/* Yeah, right. */
+	if (cp->page->level >= MAXBTREELEVEL)
+		return (ENOSPC);
+
+	/* Create new left and right pages for the split. */
+	lp = rp = NULL;
+	if ((ret = __bam_new(dbp, TYPE(cp->page), &lp)) != 0 ||
+	    (ret = __bam_new(dbp, TYPE(cp->page), &rp)) != 0)
+		goto err;
+	P_INIT(lp, dbp->pgsize, lp->pgno,
+	    PGNO_INVALID, ISINTERNAL(cp->page) ? PGNO_INVALID : rp->pgno,
+	    cp->page->level, TYPE(cp->page));
+	P_INIT(rp, dbp->pgsize, rp->pgno,
+	    ISINTERNAL(cp->page) ?  PGNO_INVALID : lp->pgno, PGNO_INVALID,
+	    cp->page->level, TYPE(cp->page));
+
+	/* Split the page. */
+	if ((ret = __bam_psplit(dbp, cp, lp, rp, 1)) != 0)
+		goto err;
+
+	/* Log the change. */
+	if (DB_LOGGING(dbp)) {
+		DBT __a;
+		DB_LSN __lsn;
+		memset(&__a, 0, sizeof(__a));
+		__a.data = cp->page;
+		__a.size = dbp->pgsize;
+		ZERO_LSN(__lsn);
+		if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbp->txn,
+		    &LSN(cp->page), 0, dbp->log_fileid, PGNO(lp), &LSN(lp),
+		    PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp), 0, &__lsn,
+		    &__a)) != 0)
+			goto err;
+		LSN(lp) = LSN(rp) = LSN(cp->page);
+	}
+
+	/* Clean up the new root page. */
+	if ((ret = (dbp->type == DB_RECNO ?
+	    __ram_root(dbp, cp->page, lp, rp) :
+	    __bam_broot(dbp, cp->page, lp, rp))) != 0)
+		goto err;
+
+	/* Success -- write the real pages back to the store. */
+	(void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
+	(void)__BT_TLPUT(dbp, cp->lock);
+	(void)memp_fput(dbp->mpf, lp, DB_MPOOL_DIRTY);
+	(void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);
+
+	++t->lstat.bt_split;
+	++t->lstat.bt_rootsplit;
+	return (0);
+
+err:	if (lp != NULL)
+		(void)__bam_free(dbp, lp);
+	if (rp != NULL)
+		(void)__bam_free(dbp, rp);
+	(void)memp_fput(dbp->mpf, cp->page, 0);
+	(void)__BT_TLPUT(dbp, cp->lock);
+	return (ret);
+}
+
+/*
+ * __bam_page --
+ *	Split the non-root page of a btree.
+ */
+static int
+__bam_page(dbp, pp, cp)
+	DB *dbp;
+	EPG *pp, *cp;
+{
+	BTREE *t;
+	DB_LOCK tplock;
+	PAGE *lp, *rp, *tp;
+	int ret;
+
+	t = dbp->internal;
+	lp = rp = tp = NULL;
+	ret = -1;
+
+	/* Create new right page for the split. */
+	if ((ret = __bam_new(dbp, TYPE(cp->page), &rp)) != 0)
+		return (ret);
+	P_INIT(rp, dbp->pgsize, rp->pgno,
+	    ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->pgno,
+	    ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->next_pgno,
+	    cp->page->level, TYPE(cp->page));
+
+	/* Create new left page for the split. */
+	if ((lp = (PAGE *)malloc(dbp->pgsize)) == NULL) {
+		ret = ENOMEM;
+		goto err;
+	}
+#ifdef DEBUG
+	memset(lp, 0xff, dbp->pgsize);
+#endif
+	P_INIT(lp, dbp->pgsize, cp->page->pgno,
+	    ISINTERNAL(cp->page) ?  PGNO_INVALID : cp->page->prev_pgno,
+	    ISINTERNAL(cp->page) ?  PGNO_INVALID : rp->pgno,
+	    cp->page->level, TYPE(cp->page));
+	ZERO_LSN(lp->lsn);
+
+	/*
+	 * Split right.
+	 *
+	 * Only the indices are sorted on the page, i.e., the key/data pairs
+	 * aren't, so it's simpler to copy the data from the split page onto
+	 * two new pages instead of copying half the data to the right page
+	 * and compacting the left page in place.  Since the left page can't
+	 * change, we swap the original and the allocated left page after the
+	 * split.
+	 */
+	if ((ret = __bam_psplit(dbp, cp, lp, rp, 0)) != 0)
+		goto err;
+
+	/*
+	 * Fix up the previous pointer of any leaf page following the split
+	 * page.
+	 *
+	 * !!!
+	 * There are interesting deadlock situations here as we write-lock a
+	 * page that's not in our direct ancestry.  Consider a cursor walking
+	 * through the leaf pages, that has the previous page read-locked and
+	 * is waiting on a lock for the page we just split.  It will deadlock
+	 * here.  If this is a problem, we can fail in the split; it's not a
+	 * problem as the split will succeed after the cursor passes through
+	 * the page we're splitting.
+	 */
+	if (TYPE(cp->page) == P_LBTREE && rp->next_pgno != PGNO_INVALID) {
+		if ((ret = __bam_lget(dbp,
+		    0, rp->next_pgno, DB_LOCK_WRITE, &tplock)) != 0)
+			goto err;
+		if ((ret = __bam_pget(dbp, &tp, &rp->next_pgno, 0)) != 0)
+			goto err;
+	}
+
+	/* Insert the new pages into the parent page. */
+	if ((ret = __bam_pinsert(dbp, pp, lp, rp)) != 0)
+		goto err;
+
+	/* Log the change. */
+	if (DB_LOGGING(dbp)) {
+		DBT __a;
+		DB_LSN __lsn;
+		memset(&__a, 0, sizeof(__a));
+		__a.data = cp->page;
+		__a.size = dbp->pgsize;
+		if (tp == NULL)
+			ZERO_LSN(__lsn);
+		if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbp->txn,
+		    &cp->page->lsn, 0, dbp->log_fileid, PGNO(cp->page),
+		    &LSN(cp->page), PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp),
+		    tp == NULL ? 0 : PGNO(tp),
+		    tp == NULL ? &__lsn : &LSN(tp), &__a)) != 0)
+			goto err;
+
+		LSN(lp) = LSN(rp) = LSN(cp->page);
+		if (tp != NULL)
+			LSN(tp) = LSN(cp->page);
+	}
+
+	/* Copy the allocated page into place. */
+	memcpy(cp->page, lp, LOFFSET(lp));
+	memcpy((u_int8_t *)cp->page + HOFFSET(lp),
+	    (u_int8_t *)lp + HOFFSET(lp), dbp->pgsize - HOFFSET(lp));
+	FREE(lp, dbp->pgsize);
+	lp = NULL;
+
+	/* Finish the next-page link. */
+	if (tp != NULL)
+		tp->prev_pgno = rp->pgno;
+
+	/* Success -- write the real pages back to the store. */
+	(void)memp_fput(dbp->mpf, pp->page, DB_MPOOL_DIRTY);
+	(void)__BT_TLPUT(dbp, pp->lock);
+	(void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
+	(void)__BT_TLPUT(dbp, cp->lock);
+	(void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);
+	if (tp != NULL) {
+		(void)memp_fput(dbp->mpf, tp, DB_MPOOL_DIRTY);
+		(void)__BT_TLPUT(dbp, tplock);
+	}
+	return (0);
+
+err:	if (lp != NULL)
+		FREE(lp, dbp->pgsize);
+	if (rp != NULL)
+		(void)__bam_free(dbp, rp);
+	if (tp != NULL) {
+		(void)memp_fput(dbp->mpf, tp, 0);
+		(void)__BT_TLPUT(dbp, tplock);
+	}
+	(void)memp_fput(dbp->mpf, pp->page, 0);
+	(void)__BT_TLPUT(dbp, pp->lock);
+	(void)memp_fput(dbp->mpf, cp->page, 0);
+	(void)__BT_TLPUT(dbp, cp->lock);
+	return (ret);
+}
+
+/*
+ * __bam_broot --
+ *	Fix up the btree root page after it has been split.
+ *
+ * PUBLIC: int __bam_broot __P((DB *, PAGE *, PAGE *, PAGE *));
+ */
+int
+__bam_broot(dbp, rootp, lp, rp)
+	DB *dbp;
+	PAGE *rootp, *lp, *rp;
+{
+	BINTERNAL bi, *child_bi;
+	BKEYDATA *child_bk;
+	DBT hdr, data;
+	int ret;
+
+	/*
+	 * If the root page was a leaf page, change it into an internal page.
+	 * We copy the key we split on (but not the key's data, in the case of
+	 * a leaf page) to the new root page.
+	 */
+	P_INIT(rootp, dbp->pgsize,
+	    PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IBTREE);
+
+	/*
+	 * The btree comparison code guarantees that the left-most key on any
+	 * level of the tree is never used, so it doesn't need to be filled in.
+	 */
+	bi.len = 0;
+	bi.deleted = 0;
+	bi.type = B_KEYDATA;
+	bi.pgno = lp->pgno;
+	if (F_ISSET(dbp, DB_BT_RECNUM)) {
+		bi.nrecs = __bam_total(lp);
+		RE_NREC_SET(rootp, bi.nrecs);
+	}
+	memset(&hdr, 0, sizeof(hdr));
+	hdr.data = &bi;
+	hdr.size = SSZA(BINTERNAL, data);
+	memset(&data, 0, sizeof(data));
+	data.data = (char *) "";
+	data.size = 0;
+	if ((ret =
+	    __db_pitem(dbp, rootp, 0, BINTERNAL_SIZE(0), &hdr, &data)) != 0)
+		return (ret);
+
+	switch (TYPE(rp)) {
+	case P_IBTREE:
+		/* Copy the first key of the child page onto the root page. */
+		child_bi = GET_BINTERNAL(rp, 0);
+
+		bi.len = child_bi->len;
+		bi.deleted = 0;
+		bi.type = child_bi->type;
+		bi.pgno = rp->pgno;
+		if (F_ISSET(dbp, DB_BT_RECNUM)) {
+			bi.nrecs = __bam_total(rp);
+			RE_NREC_ADJ(rootp, bi.nrecs);
+		}
+		hdr.data = &bi;
+		hdr.size = SSZA(BINTERNAL, data);
+		data.data = child_bi->data;
+		data.size = child_bi->len;
+		if ((ret = __db_pitem(dbp, rootp, 1,
+		    BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
+			return (ret);
+
+		/* Increment the overflow ref count. */
+		if (child_bi->type == B_OVERFLOW && (ret =
+		    __db_ioff(dbp, ((BOVERFLOW *)(child_bi->data))->pgno)) != 0)
+			return (ret);
+		break;
+	case P_LBTREE:
+		/* Copy the first key of the child page onto the root page. */
+		child_bk = GET_BKEYDATA(rp, 0);
+		switch (child_bk->type) {
+		case B_KEYDATA:
+			bi.len = child_bk->len;
+			bi.deleted = 0;
+			bi.type = child_bk->type;
+			bi.pgno = rp->pgno;
+			if (F_ISSET(dbp, DB_BT_RECNUM)) {
+				bi.nrecs = __bam_total(rp);
+				RE_NREC_ADJ(rootp, bi.nrecs);
+			}
+			hdr.data = &bi;
+			hdr.size = SSZA(BINTERNAL, data);
+			data.data = child_bk->data;
+			data.size = child_bk->len;
+			if ((ret = __db_pitem(dbp, rootp, 1,
+			    BINTERNAL_SIZE(child_bk->len), &hdr, &data)) != 0)
+				return (ret);
+			break;
+		case B_DUPLICATE:
+		case B_OVERFLOW:
+			bi.len = BOVERFLOW_SIZE;
+			bi.deleted = 0;
+			bi.type = child_bk->type;
+			bi.pgno = rp->pgno;
+			if (F_ISSET(dbp, DB_BT_RECNUM)) {
+				bi.nrecs = __bam_total(rp);
+				RE_NREC_ADJ(rootp, bi.nrecs);
+			}
+			hdr.data = &bi;
+			hdr.size = SSZA(BINTERNAL, data);
+			data.data = child_bk;
+			data.size = BOVERFLOW_SIZE;
+			if ((ret = __db_pitem(dbp, rootp, 1,
+			    BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
+				return (ret);
+
+			/* Increment the overflow ref count. */
+			if (child_bk->type == B_OVERFLOW && (ret =
+			    __db_ioff(dbp, ((BOVERFLOW *)child_bk)->pgno)) != 0)
+				return (ret);
+			break;
+		default:
+			return (__db_pgfmt(dbp, rp->pgno));
+		}
+		break;
+	default:
+		return (__db_pgfmt(dbp, rp->pgno));
+	}
+	return (0);
+}
+
+/*
+ * __ram_root --
+ *	Fix up the recno root page after it has been split.
+ *
+ * PUBLIC: int __ram_root __P((DB *, PAGE *, PAGE *, PAGE *));
+ */
+int
+__ram_root(dbp, rootp, lp, rp)
+	DB *dbp;
+	PAGE *rootp, *lp, *rp;
+{
+	DBT hdr;
+	RINTERNAL ri;
+	int ret;
+
+	/* Initialize the page. */
+	P_INIT(rootp, dbp->pgsize,
+	    PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IRECNO);
+
+	/* Initialize the header. */
+	memset(&hdr, 0, sizeof(hdr));
+	hdr.data = &ri;
+	hdr.size = RINTERNAL_SIZE;
+
+	/* Insert the left and right keys, set the header information. */
+	ri.pgno = lp->pgno;
+	ri.nrecs = __bam_total(lp);
+	if ((ret = __db_pitem(dbp, rootp, 0, RINTERNAL_SIZE, &hdr, NULL)) != 0)
+		return (ret);
+	RE_NREC_SET(rootp, ri.nrecs);
+	ri.pgno = rp->pgno;
+	ri.nrecs = __bam_total(rp);
+	if ((ret = __db_pitem(dbp, rootp, 1, RINTERNAL_SIZE, &hdr, NULL)) != 0)
+		return (ret);
+	RE_NREC_ADJ(rootp, ri.nrecs);
+	return (0);
+}
+
+/*
+ * __bam_pinsert --
+ *	Insert a new key into a parent page, completing the split.
+ */
+static int
+__bam_pinsert(dbp, parent, lchild, rchild)
+	DB *dbp;
+	EPG *parent;
+	PAGE *lchild, *rchild;
+{
+	BINTERNAL bi, *child_bi;
+	BKEYDATA *child_bk, *tmp_bk;
+	BTREE *t;
+	DBT a, b, hdr, data;
+	PAGE *ppage;
+	RINTERNAL ri;
+	db_indx_t off;
+	db_recno_t nrecs;
+	u_int32_t n, nbytes, nksize;
+	int ret;
+
+	t = dbp->internal;
+	ppage = parent->page;
+
+	/* If handling record numbers, count records split to the right page. */
+	nrecs = dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM) ?
+	    __bam_total(rchild) : 0;
+
+	/*
+	 * Now we insert the new page's first key into the parent page, which
+	 * completes the split.  The parent points to a PAGE and a page index
+	 * offset, where the new key goes ONE AFTER the index, because we split
+	 * to the right.
+	 *
+	 * XXX
+	 * Some btree algorithms replace the key for the old page as well as
+	 * the new page.  We don't, as there's no reason to believe that the
+	 * first key on the old page is any better than the key we have, and,
+	 * in the case of a key being placed at index 0 causing the split, the
+	 * key is unavailable.
+	 */
+	off = parent->indx + O_INDX;
+
+	/*
+	 * Calculate the space needed on the parent page.
+	 *
+	 * Prefix trees: space hack used when inserting into BINTERNAL pages.
+	 * Retain only what's needed to distinguish between the new entry and
+	 * the LAST entry on the page to its left.  If the keys compare equal,
+	 * retain the entire key.  We ignore overflow keys, and the entire key
+	 * must be retained for the next-to-leftmost key on the leftmost page
+	 * of each level, or the search will fail.  Applicable ONLY to internal
+	 * pages that have leaf pages as children.  Further reduction of the
+	 * key between pairs of internal pages loses too much information.
+	 */
+	switch (TYPE(rchild)) {
+	case P_IBTREE:
+		child_bi = GET_BINTERNAL(rchild, 0);
+		nbytes = BINTERNAL_PSIZE(child_bi->len);
+
+		if (P_FREESPACE(ppage) < nbytes)
+			return (DB_NEEDSPLIT);
+
+		/* Add a new record for the right page. */
+		bi.len = child_bi->len;
+		bi.deleted = 0;
+		bi.type = child_bi->type;
+		bi.pgno = rchild->pgno;
+		bi.nrecs = nrecs;
+		memset(&hdr, 0, sizeof(hdr));
+		hdr.data = &bi;
+		hdr.size = SSZA(BINTERNAL, data);
+		memset(&data, 0, sizeof(data));
+		data.data = child_bi->data;
+		data.size = child_bi->len;
+		if ((ret = __db_pitem(dbp, ppage, off,
+		    BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
+			return (ret);
+
+		/* Increment the overflow ref count. */
+		if (child_bi->type == B_OVERFLOW && (ret =
+		    __db_ioff(dbp, ((BOVERFLOW *)(child_bi->data))->pgno)) != 0)
+			return (ret);
+		break;
+	case P_LBTREE:
+		child_bk = GET_BKEYDATA(rchild, 0);
+		switch (child_bk->type) {
+		case B_KEYDATA:
+			nbytes = BINTERNAL_PSIZE(child_bk->len);
+			nksize = child_bk->len;
+			if (t->bt_prefix == NULL)
+				goto noprefix;
+			if (ppage->prev_pgno == PGNO_INVALID && off <= 1)
+				goto noprefix;
+			tmp_bk = GET_BKEYDATA(lchild, NUM_ENT(lchild) - P_INDX);
+			if (tmp_bk->type != B_KEYDATA)
+				goto noprefix;
+			memset(&a, 0, sizeof(a));
+			a.size = tmp_bk->len;
+			a.data = tmp_bk->data;
+			memset(&b, 0, sizeof(b));
+			b.size = child_bk->len;
+			b.data = child_bk->data;
+			nksize = t->bt_prefix(&a, &b);
+			if ((n = BINTERNAL_PSIZE(nksize)) < nbytes) {
+				t->lstat.bt_pfxsaved += nbytes - n;
+				nbytes = n;
+			} else
+noprefix:			nksize = child_bk->len;
+
+			if (P_FREESPACE(ppage) < nbytes)
+				return (DB_NEEDSPLIT);
+
+			bi.len = nksize;
+			bi.deleted = 0;
+			bi.type = child_bk->type;
+			bi.pgno = rchild->pgno;
+			bi.nrecs = nrecs;
+			memset(&hdr, 0, sizeof(hdr));
+			hdr.data = &bi;
+			hdr.size = SSZA(BINTERNAL, data);
+			memset(&data, 0, sizeof(data));
+			data.data = child_bk->data;
+			data.size = nksize;
+			if ((ret = __db_pitem(dbp, ppage, off,
+			    BINTERNAL_SIZE(nksize), &hdr, &data)) != 0)
+				return (ret);
+			break;
+		case B_DUPLICATE:
+		case B_OVERFLOW:
+			nbytes = BINTERNAL_PSIZE(BOVERFLOW_SIZE);
+
+			if (P_FREESPACE(ppage) < nbytes)
+				return (DB_NEEDSPLIT);
+
+			bi.len = BOVERFLOW_SIZE;
+			bi.deleted = 0;
+			bi.type = child_bk->type;
+			bi.pgno = rchild->pgno;
+			bi.nrecs = nrecs;
+			memset(&hdr, 0, sizeof(hdr));
+			hdr.data = &bi;
+			hdr.size = SSZA(BINTERNAL, data);
+			memset(&data, 0, sizeof(data));
+			data.data = child_bk;
+			data.size = BOVERFLOW_SIZE;
+			if ((ret = __db_pitem(dbp, ppage, off,
+			    BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
+				return (ret);
+
+			/* Increment the overflow ref count. */
+			if (child_bk->type == B_OVERFLOW && (ret =
+			    __db_ioff(dbp, ((BOVERFLOW *)child_bk)->pgno)) != 0)
+				return (ret);
+			break;
+		default:
+			return (__db_pgfmt(dbp, rchild->pgno));
+		}
+		break;
+	case P_IRECNO:
+	case P_LRECNO:
+		nbytes = RINTERNAL_PSIZE;
+
+		if (P_FREESPACE(ppage) < nbytes)
+			return (DB_NEEDSPLIT);
+
+		/* Add a new record for the right page. */
+		memset(&hdr, 0, sizeof(hdr));
+		hdr.data = &ri;
+		hdr.size = RINTERNAL_SIZE;
+		ri.pgno = rchild->pgno;
+		ri.nrecs = nrecs;
+		if ((ret = __db_pitem(dbp,
+		    ppage, off, RINTERNAL_SIZE, &hdr, NULL)) != 0)
+			return (ret);
+		break;
+	default:
+		return (__db_pgfmt(dbp, rchild->pgno));
+	}
+
+	/* Adjust the parent page's left page record count. */
+	if (dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM)) {
+		/* Log the change. */
+		if (DB_LOGGING(dbp) &&
+		    (ret = __bam_cadjust_log(dbp->dbenv->lg_info,
+		    dbp->txn, &LSN(ppage), 0, dbp->log_fileid,
+		    PGNO(ppage), &LSN(ppage), (u_int32_t)parent->indx,
+		    -(int32_t)nrecs, (int32_t)0)) != 0)
+			return (ret);
+
+		/* Update the left page count. */
+		if (dbp->type == DB_RECNO)
+			GET_RINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
+		else
+			GET_BINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
+	}
+
+	return (0);
+}
+
+/*
+ * __bam_psplit --
+ *	Do the real work of splitting the page.
+ */
+static int
+__bam_psplit(dbp, cp, lp, rp, cleft)
+	DB *dbp;
+	EPG *cp;
+	PAGE *lp, *rp;
+	int cleft;
+{
+	BTREE *t;
+	PAGE *pp;
+	db_indx_t half, nbytes, off, splitp, top;
+	int adjust, cnt, isbigkey, ret;
+
+	t = dbp->internal;
+	pp = cp->page;
+	adjust = TYPE(pp) == P_LBTREE ? P_INDX : O_INDX;
+
+	/*
+	 * If we're splitting the first (last) page on a level because we're
+	 * inserting (appending) a key to it, it's likely that the data is
+	 * sorted.  Moving a single item to the new page is less work and can
+	 * push the fill factor higher than normal.  If we're wrong it's not
+	 * a big deal, we'll just do the split the right way next time.
+	 */
+	off = 0;
+	if (NEXT_PGNO(pp) == PGNO_INVALID &&
+	    ((ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page) - 1) ||
+	    (!ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page))))
+		off = NUM_ENT(cp->page) - adjust;
+	else if (PREV_PGNO(pp) == PGNO_INVALID && cp->indx == 0)
+		off = adjust;
+
+	++t->lstat.bt_split;
+	if (off != 0) {
+		++t->lstat.bt_fastsplit;
+		goto sort;
+	}
+
+	/*
+	 * Split the data to the left and right pages.  Try not to split on
+	 * an overflow key.  (Overflow keys on internal pages will slow down
+	 * searches.)  Refuse to split in the middle of a set of duplicates.
+	 *
+	 * First, find the optimum place to split.
+	 *
+	 * It's possible to try and split past the last record on the page if
+	 * there's a very large record at the end of the page.  Make sure this
+	 * doesn't happen by bounding the check at the next-to-last entry on
+	 * the page.
+	 *
+	 * Note, we try and split half the data present on the page.  This is
+	 * because another process may have already split the page and left
+	 * it half empty.  We don't try and skip the split -- we don't know
+	 * how much space we're going to need on the page, and we may need up
+	 * to half the page for a big item, so there's no easy test to decide
+	 * if we need to split or not.  Besides, if two threads are inserting
+	 * data into the same place in the database, we're probably going to
+	 * need more space soon anyway.
+	 */
+	top = NUM_ENT(pp) - adjust;
+	half = (dbp->pgsize - HOFFSET(pp)) / 2;
+	for (nbytes = 0, off = 0; off < top && nbytes < half; ++off)
+		switch (TYPE(pp)) {
+		case P_IBTREE:
+			if (GET_BINTERNAL(pp, off)->type == B_KEYDATA)
+				nbytes +=
+				   BINTERNAL_SIZE(GET_BINTERNAL(pp, off)->len);
+			else
+				nbytes += BINTERNAL_SIZE(BOVERFLOW_SIZE);
+			break;
+		case P_LBTREE:
+			if (GET_BKEYDATA(pp, off)->type == B_KEYDATA)
+				nbytes +=
+				    BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
+			else
+				nbytes += BOVERFLOW_SIZE;
+
+			++off;
+			if (GET_BKEYDATA(pp, off)->type == B_KEYDATA)
+				nbytes +=
+				    BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
+			else
+				nbytes += BOVERFLOW_SIZE;
+			break;
+		case P_IRECNO:
+			nbytes += RINTERNAL_SIZE;
+			break;
+		case P_LRECNO:
+			nbytes += BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
+			break;
+		default:
+			return (__db_pgfmt(dbp, pp->pgno));
+		}
+sort:	splitp = off;
+
+	/*
+	 * Splitp is either at or just past the optimum split point.  If
+	 * it's a big key, try and find something close by that's not.
+	 */
+	if (TYPE(pp) == P_IBTREE)
+		isbigkey = GET_BINTERNAL(pp, off)->type != B_KEYDATA;
+	else if (TYPE(pp) == P_LBTREE)
+		isbigkey = GET_BKEYDATA(pp, off)->type != B_KEYDATA;
+	else
+		isbigkey = 0;
+	if (isbigkey)
+		for (cnt = 1; cnt <= 3; ++cnt) {
+			off = splitp + cnt * adjust;
+			if (off < (db_indx_t)NUM_ENT(pp) &&
+			    ((TYPE(pp) == P_IBTREE &&
+			    GET_BINTERNAL(pp, off)->type == B_KEYDATA) ||
+			    GET_BKEYDATA(pp, off)->type == B_KEYDATA)) {
+				splitp = off;
+				break;
+			}
+			if (splitp <= (db_indx_t)(cnt * adjust))
+				continue;
+			off = splitp - cnt * adjust;
+			if (TYPE(pp) == P_IBTREE ?
+			    GET_BINTERNAL(pp, off)->type == B_KEYDATA :
+			    GET_BKEYDATA(pp, off)->type == B_KEYDATA) {
+				splitp = off;
+				break;
+			}
+		}
+
+	/*
+	 * We can't split in the middle a set of duplicates.  We know that
+	 * no duplicate set can take up more than about 25% of the page,
+	 * because that's the point where we push it off onto a duplicate
+	 * page set.  So, this loop can't be unbounded.
+	 */
+	if (F_ISSET(dbp, DB_AM_DUP) && TYPE(pp) == P_LBTREE &&
+	    pp->inp[splitp] == pp->inp[splitp - adjust])
+		for (cnt = 1;; ++cnt) {
+			off = splitp + cnt * adjust;
+			if (off < NUM_ENT(pp) &&
+			    pp->inp[splitp] != pp->inp[off]) {
+				splitp = off;
+				break;
+			}
+			if (splitp <= (db_indx_t)(cnt * adjust))
+				continue;
+			off = splitp - cnt * adjust;
+			if (pp->inp[splitp] != pp->inp[off]) {
+				splitp = off + adjust;
+				break;
+			}
+		}
+
+
+	/* We're going to split at splitp. */
+	if ((ret = __bam_copy(dbp, pp, lp, 0, splitp)) != 0)
+		return (ret);
+	if ((ret = __bam_copy(dbp, pp, rp, splitp, NUM_ENT(pp))) != 0)
+		return (ret);
+
+	/* Adjust the cursors. */
+	__bam_ca_split(dbp, pp->pgno, lp->pgno, rp->pgno, splitp, cleft);
+	return (0);
+}
+
+/*
+ * __bam_copy --
+ *	Copy a set of records from one page to another.
+ *
+ * PUBLIC: int __bam_copy __P((DB *, PAGE *, PAGE *, u_int32_t, u_int32_t));
+ */
+int
+__bam_copy(dbp, pp, cp, nxt, stop)
+	DB *dbp;
+	PAGE *pp, *cp;
+	u_int32_t nxt, stop;
+{
+	db_indx_t dup, nbytes, off;
+
+	/*
+	 * Copy the rest of the data to the right page.  Nxt is the next
+	 * offset placed on the target page.
+	 */
+	for (dup = off = 0; nxt < stop; ++nxt, ++NUM_ENT(cp), ++off) {
+		switch (TYPE(pp)) {
+		case P_IBTREE:
+			if (GET_BINTERNAL(pp, nxt)->type == B_KEYDATA)
+				nbytes =
+				    BINTERNAL_SIZE(GET_BINTERNAL(pp, nxt)->len);
+			else
+				nbytes = BINTERNAL_SIZE(BOVERFLOW_SIZE);
+			break;
+		case P_LBTREE:
+			/*
+			 * If we're on a key and it's a duplicate, just copy
+			 * the offset.
+			 */
+			if (off != 0 && (nxt % P_INDX) == 0 &&
+			    pp->inp[nxt] == pp->inp[nxt - P_INDX]) {
+				cp->inp[off] = cp->inp[off - P_INDX];
+				continue;
+			}
+			/* FALLTHROUGH */
+		case P_LRECNO:
+			if (GET_BKEYDATA(pp, nxt)->type == B_KEYDATA)
+				nbytes =
+				    BKEYDATA_SIZE(GET_BKEYDATA(pp, nxt)->len);
+			else
+				nbytes = BOVERFLOW_SIZE;
+			break;
+		case P_IRECNO:
+			nbytes = RINTERNAL_SIZE;
+			break;
+		default:
+			return (__db_pgfmt(dbp, pp->pgno));
+		}
+		cp->inp[off] = HOFFSET(cp) -= nbytes;
+		memcpy(P_ENTRY(cp, off), P_ENTRY(pp, nxt), nbytes);
+	}
+	return (0);
+}