diff options
Diffstat (limited to 'benchtests')
-rwxr-xr-x | benchtests/scripts/plot_strings.py | 395 |
1 files changed, 395 insertions, 0 deletions
diff --git a/benchtests/scripts/plot_strings.py b/benchtests/scripts/plot_strings.py new file mode 100755 index 0000000000..b346d9be69 --- /dev/null +++ b/benchtests/scripts/plot_strings.py @@ -0,0 +1,395 @@ +#!/usr/bin/python3 +# Plot GNU C Library string microbenchmark output. +# Copyright (C) 2019 Free Software Foundation, Inc. +# This file is part of the GNU C Library. +# +# The GNU C Library is free software; you can redistribute it and/or +# modify it under the terms of the GNU Lesser General Public +# License as published by the Free Software Foundation; either +# version 2.1 of the License, or (at your option) any later version. +# +# The GNU C Library is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public +# License along with the GNU C Library; if not, see +# <https://www.gnu.org/licenses/>. +"""Plot string microbenchmark results. + +Given a benchmark results file in JSON format and a benchmark schema file, +plot the benchmark timings in one of the available representations. + +Separate figure is generated and saved to a file for each 'results' array +found in the benchmark results file. Output filenames and plot titles +are derived from the metadata found in the benchmark results file. +""" +import argparse +from collections import defaultdict +import json +import matplotlib as mpl +import numpy as np +import os + +try: + import jsonschema as validator +except ImportError: + print("Could not find jsonschema module.") + raise + +# Use pre-selected markers for plotting lines to improve readability +markers = [".", "x", "^", "+", "*", "v", "1", ">", "s"] + +# Benchmark variants for which the x-axis scale should be logarithmic +log_variants = {"powers of 2"} + + +def gmean(numbers): + """Compute geometric mean. + + Args: + numbers: 2-D list of numbers + Return: + numpy array with geometric means of numbers along each column + """ + a = np.array(numbers, dtype=np.complex) + means = a.prod(0) ** (1.0 / len(a)) + return np.real(means) + + +def relativeDifference(x, x_reference): + """Compute per-element relative difference between each row of + a matrix and an array of reference values. + + Args: + x: numpy matrix of shape (n, m) + x_reference: numpy array of size m + Return: + relative difference between rows of x and x_reference (in %) + """ + abs_diff = np.subtract(x, x_reference) + return np.divide(np.multiply(abs_diff, 100.0), x_reference) + + +def plotTime(timings, routine, bench_variant, title, outpath): + """Plot absolute timing values. + + Args: + timings: timings to plot + routine: benchmarked string routine name + bench_variant: top-level benchmark variant name + title: figure title (generated so far) + outpath: output file path (generated so far) + Return: + y: y-axis values to plot + title_final: final figure title + outpath_final: file output file path + """ + y = timings + plt.figure() + + if not args.values: + plt.axes().yaxis.set_major_formatter(plt.NullFormatter()) + + plt.ylabel("timing") + title_final = "%s %s benchmark timings\n%s" % \ + (routine, bench_variant, title) + outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \ + (routine, args.plot, bench_variant, outpath)) + + return y, title_final, outpath_final + + +def plotRelative(timings, all_timings, routine, ifuncs, bench_variant, + title, outpath): + """Plot timing values relative to a chosen ifunc + + Args: + timings: timings to plot + all_timings: all collected timings + routine: benchmarked string routine name + ifuncs: names of ifuncs tested + bench_variant: top-level benchmark variant name + title: figure title (generated so far) + outpath: output file path (generated so far) + Return: + y: y-axis values to plot + title_final: final figure title + outpath_final: file output file path + """ + # Choose the baseline ifunc + if args.baseline: + baseline = args.baseline.replace("__", "") + else: + baseline = ifuncs[0] + + baseline_index = ifuncs.index(baseline) + + # Compare timings against the baseline + y = relativeDifference(timings, all_timings[baseline_index]) + + plt.figure() + plt.axhspan(-args.threshold, args.threshold, color="lightgray", alpha=0.3) + plt.axhline(0, color="k", linestyle="--", linewidth=0.4) + plt.ylabel("relative timing (in %)") + title_final = "Timing comparison against %s\nfor %s benchmark, %s" % \ + (baseline, bench_variant, title) + outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \ + (baseline, args.plot, bench_variant, outpath)) + + return y, title_final, outpath_final + + +def plotMax(timings, routine, bench_variant, title, outpath): + """Plot results as percentage of the maximum ifunc performance. + + The optimal ifunc is computed on a per-parameter-value basis. + Performance is computed as 1/timing. + + Args: + timings: timings to plot + routine: benchmarked string routine name + bench_variant: top-level benchmark variant name + title: figure title (generated so far) + outpath: output file path (generated so far) + Return: + y: y-axis values to plot + title_final: final figure title + outpath_final: file output file path + """ + perf = np.reciprocal(timings) + max_perf = np.max(perf, axis=0) + y = np.add(100.0, relativeDifference(perf, max_perf)) + + plt.figure() + plt.axhline(100.0, color="k", linestyle="--", linewidth=0.4) + plt.ylabel("1/timing relative to max (in %)") + title_final = "Performance comparison against max for %s\n%s " \ + "benchmark, %s" % (routine, bench_variant, title) + outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \ + (routine, args.plot, bench_variant, outpath)) + + return y, title_final, outpath_final + + +def plotThroughput(timings, params, routine, bench_variant, title, outpath): + """Plot throughput. + + Throughput is computed as the varied parameter value over timing. + + Args: + timings: timings to plot + params: varied parameter values + routine: benchmarked string routine name + bench_variant: top-level benchmark variant name + title: figure title (generated so far) + outpath: output file path (generated so far) + Return: + y: y-axis values to plot + title_final: final figure title + outpath_final: file output file path + """ + y = np.divide(params, timings) + plt.figure() + + if not args.values: + plt.axes().yaxis.set_major_formatter(plt.NullFormatter()) + + plt.ylabel("%s / timing" % args.key) + title_final = "%s %s benchmark throughput results\n%s" % \ + (routine, bench_variant, title) + outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \ + (routine, args.plot, bench_variant, outpath)) + return y, title_final, outpath_final + + +def finishPlot(x, y, title, outpath, x_scale, plotted_ifuncs): + """Finish generating current Figure. + + Args: + x: x-axis values + y: y-axis values + title: figure title + outpath: output file path + x_scale: x-axis scale + plotted_ifuncs: names of ifuncs to plot + """ + plt.xlabel(args.key) + plt.xscale(x_scale) + plt.title(title) + + plt.grid(color="k", linestyle=args.grid, linewidth=0.5, alpha=0.5) + + for i in range(len(plotted_ifuncs)): + plt.plot(x, y[i], marker=markers[i % len(markers)], + label=plotted_ifuncs[i]) + + plt.legend(loc="best", fontsize="small") + plt.savefig("%s_%s.%s" % (outpath, x_scale, args.extension), + format=args.extension, dpi=args.resolution) + + if args.display: + plt.show() + + plt.close() + + +def plotRecursive(json_iter, routine, ifuncs, bench_variant, title, outpath, + x_scale): + """Plot benchmark timings. + + Args: + json_iter: reference to json object + routine: benchmarked string routine name + ifuncs: names of ifuncs tested + bench_variant: top-level benchmark variant name + title: figure's title (generated so far) + outpath: output file path (generated so far) + x_scale: x-axis scale + """ + + # RECURSIVE CASE: 'variants' array found + if "variants" in json_iter: + # Continue recursive search for 'results' array. Record the + # benchmark variant (configuration) in order to customize + # the title, filename and X-axis scale for the generated figure. + for variant in json_iter["variants"]: + new_title = "%s%s, " % (title, variant["name"]) + new_outpath = "%s_%s" % (outpath, variant["name"].replace(" ", "_")) + new_x_scale = "log" if variant["name"] in log_variants else x_scale + + plotRecursive(variant, routine, ifuncs, bench_variant, new_title, + new_outpath, new_x_scale) + return + + # BASE CASE: 'results' array found + domain = [] + timings = defaultdict(list) + + # Collect timings + for result in json_iter["results"]: + domain.append(result[args.key]) + timings[result[args.key]].append(result["timings"]) + + domain = np.unique(np.array(domain)) + averages = [] + + # Compute geometric mean if there are multple timings for each + # parameter value. + for parameter in domain: + averages.append(gmean(timings[parameter])) + + averages = np.array(averages).transpose() + + # Choose ifuncs to plot + if isinstance(args.ifuncs, str): + plotted_ifuncs = ifuncs + else: + plotted_ifuncs = [x.replace("__", "") for x in args.ifuncs] + + plotted_indices = [ifuncs.index(x) for x in plotted_ifuncs] + plotted_vals = averages[plotted_indices,:] + + # Plotting logic specific to each plot type + if args.plot == "time": + codomain, title, outpath = plotTime(plotted_vals, routine, + bench_variant, title, outpath) + elif args.plot == "rel": + codomain, title, outpath = plotRelative(plotted_vals, averages, routine, + ifuncs, bench_variant, title, outpath) + elif args.plot == "max": + codomain, title, outpath = plotMax(plotted_vals, routine, + bench_variant, title, outpath) + elif args.plot == "thru": + codomain, title, outpath = plotThroughput(plotted_vals, domain, routine, + bench_variant, title, outpath) + + # Plotting logic shared between plot types + finishPlot(domain, codomain, title, outpath, x_scale, plotted_ifuncs) + + +def main(args): + """Program Entry Point. + + Args: + args: command line arguments (excluding program name) + """ + + # Select non-GUI matplotlib backend if interactive display is disabled + if not args.display: + mpl.use("Agg") + + global plt + import matplotlib.pyplot as plt + + schema = None + + with open(args.schema, "r") as f: + schema = json.load(f) + + for filename in args.bench: + bench = None + + with open(filename, "r") as f: + bench = json.load(f) + + validator.validate(bench, schema) + + for function in bench["functions"]: + bench_variant = bench["functions"][function]["bench-variant"] + ifuncs = bench["functions"][function]["ifuncs"] + ifuncs = [x.replace("__", "") for x in ifuncs] + + plotRecursive(bench["functions"][function], function, ifuncs, + bench_variant, "", "", args.logarithmic) + + +""" main() """ +if __name__ == "__main__": + + parser = argparse.ArgumentParser(description= + "Plot string microbenchmark results", + formatter_class=argparse.ArgumentDefaultsHelpFormatter) + + # Required parameter + parser.add_argument("bench", nargs="+", + help="benchmark results file(s) in json format") + + # Optional parameters + parser.add_argument("-b", "--baseline", type=str, + help="baseline ifunc for 'rel' plot") + parser.add_argument("-d", "--display", action="store_true", + help="display figures") + parser.add_argument("-e", "--extension", type=str, default="png", + choices=["png", "pdf", "svg"], + help="output file(s) extension") + parser.add_argument("-g", "--grid", action="store_const", default="", + const="-", help="show grid lines") + parser.add_argument("-i", "--ifuncs", nargs="+", default="all", + help="ifuncs to plot") + parser.add_argument("-k", "--key", type=str, default="length", + help="key to access the varied parameter") + parser.add_argument("-l", "--logarithmic", action="store_const", + default="linear", const="log", + help="use logarithmic x-axis scale") + parser.add_argument("-o", "--outdir", type=str, default=os.getcwd(), + help="output directory") + parser.add_argument("-p", "--plot", type=str, default="time", + choices=["time", "rel", "max", "thru"], + help="plot absolute timings, relative timings, " \ + "performance relative to max, or throughput") + parser.add_argument("-r", "--resolution", type=int, default=100, + help="dpi resolution for the generated figures") + parser.add_argument("-s", "--schema", type=str, + default=os.path.join(os.path.dirname( + os.path.realpath(__file__)), + "benchout_strings.schema.json"), + help="schema file to validate the results file.") + parser.add_argument("-t", "--threshold", type=int, default=5, + help="threshold to mark in 'rel' graph (in %%)") + parser.add_argument("-v", "--values", action="store_true", + help="show actual values") + + args = parser.parse_args() + main(args) |