about summary refs log tree commit diff
path: root/REORG.TODO/sysdeps/ieee754/ldbl-128/e_jnl.c
diff options
context:
space:
mode:
Diffstat (limited to 'REORG.TODO/sysdeps/ieee754/ldbl-128/e_jnl.c')
-rw-r--r--REORG.TODO/sysdeps/ieee754/ldbl-128/e_jnl.c419
1 files changed, 419 insertions, 0 deletions
diff --git a/REORG.TODO/sysdeps/ieee754/ldbl-128/e_jnl.c b/REORG.TODO/sysdeps/ieee754/ldbl-128/e_jnl.c
new file mode 100644
index 0000000000..470631e600
--- /dev/null
+++ b/REORG.TODO/sysdeps/ieee754/ldbl-128/e_jnl.c
@@ -0,0 +1,419 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* Modifications for 128-bit long double are
+   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
+   and are incorporated herein by permission of the author.  The author
+   reserves the right to distribute this material elsewhere under different
+   copying permissions.  These modifications are distributed here under
+   the following terms:
+
+    This library is free software; you can redistribute it and/or
+    modify it under the terms of the GNU Lesser General Public
+    License as published by the Free Software Foundation; either
+    version 2.1 of the License, or (at your option) any later version.
+
+    This library is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+    Lesser General Public License for more details.
+
+    You should have received a copy of the GNU Lesser General Public
+    License along with this library; if not, see
+    <http://www.gnu.org/licenses/>.  */
+
+/*
+ * __ieee754_jn(n, x), __ieee754_yn(n, x)
+ * floating point Bessel's function of the 1st and 2nd kind
+ * of order n
+ *
+ * Special cases:
+ *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+ *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+ * Note 2. About jn(n,x), yn(n,x)
+ *	For n=0, j0(x) is called,
+ *	for n=1, j1(x) is called,
+ *	for n<x, forward recursion us used starting
+ *	from values of j0(x) and j1(x).
+ *	for n>x, a continued fraction approximation to
+ *	j(n,x)/j(n-1,x) is evaluated and then backward
+ *	recursion is used starting from a supposed value
+ *	for j(n,x). The resulting value of j(0,x) is
+ *	compared with the actual value to correct the
+ *	supposed value of j(n,x).
+ *
+ *	yn(n,x) is similar in all respects, except
+ *	that forward recursion is used for all
+ *	values of n>1.
+ *
+ */
+
+#include <errno.h>
+#include <float.h>
+#include <math.h>
+#include <math_private.h>
+
+static const _Float128
+  invsqrtpi = L(5.6418958354775628694807945156077258584405E-1),
+  two = 2,
+  one = 1,
+  zero = 0;
+
+
+_Float128
+__ieee754_jnl (int n, _Float128 x)
+{
+  u_int32_t se;
+  int32_t i, ix, sgn;
+  _Float128 a, b, temp, di, ret;
+  _Float128 z, w;
+  ieee854_long_double_shape_type u;
+
+
+  /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+   * Thus, J(-n,x) = J(n,-x)
+   */
+
+  u.value = x;
+  se = u.parts32.w0;
+  ix = se & 0x7fffffff;
+
+  /* if J(n,NaN) is NaN */
+  if (ix >= 0x7fff0000)
+    {
+      if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3)
+	return x + x;
+    }
+
+  if (n < 0)
+    {
+      n = -n;
+      x = -x;
+      se ^= 0x80000000;
+    }
+  if (n == 0)
+    return (__ieee754_j0l (x));
+  if (n == 1)
+    return (__ieee754_j1l (x));
+  sgn = (n & 1) & (se >> 31);	/* even n -- 0, odd n -- sign(x) */
+  x = fabsl (x);
+
+  {
+    SET_RESTORE_ROUNDL (FE_TONEAREST);
+    if (x == 0 || ix >= 0x7fff0000)	/* if x is 0 or inf */
+      return sgn == 1 ? -zero : zero;
+    else if ((_Float128) n <= x)
+      {
+	/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+	if (ix >= 0x412D0000)
+	  {			/* x > 2**302 */
+
+	    /* ??? Could use an expansion for large x here.  */
+
+	    /* (x >> n**2)
+	     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+	     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+	     *      Let s=sin(x), c=cos(x),
+	     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+	     *
+	     *             n    sin(xn)*sqt2    cos(xn)*sqt2
+	     *          ----------------------------------
+	     *             0     s-c             c+s
+	     *             1    -s-c            -c+s
+	     *             2    -s+c            -c-s
+	     *             3     s+c             c-s
+	     */
+	    _Float128 s;
+	    _Float128 c;
+	    __sincosl (x, &s, &c);
+	    switch (n & 3)
+	      {
+	      case 0:
+		temp = c + s;
+		break;
+	      case 1:
+		temp = -c + s;
+		break;
+	      case 2:
+		temp = -c - s;
+		break;
+	      case 3:
+		temp = c - s;
+		break;
+	      }
+	    b = invsqrtpi * temp / __ieee754_sqrtl (x);
+	  }
+	else
+	  {
+	    a = __ieee754_j0l (x);
+	    b = __ieee754_j1l (x);
+	    for (i = 1; i < n; i++)
+	      {
+		temp = b;
+		b = b * ((_Float128) (i + i) / x) - a;	/* avoid underflow */
+		a = temp;
+	      }
+	  }
+      }
+    else
+      {
+	if (ix < 0x3fc60000)
+	  {			/* x < 2**-57 */
+	    /* x is tiny, return the first Taylor expansion of J(n,x)
+	     * J(n,x) = 1/n!*(x/2)^n  - ...
+	     */
+	    if (n >= 400)		/* underflow, result < 10^-4952 */
+	      b = zero;
+	    else
+	      {
+		temp = x * 0.5;
+		b = temp;
+		for (a = one, i = 2; i <= n; i++)
+		  {
+		    a *= (_Float128) i;	/* a = n! */
+		    b *= temp;	/* b = (x/2)^n */
+		  }
+		b = b / a;
+	      }
+	  }
+	else
+	  {
+	    /* use backward recurrence */
+	    /*                      x      x^2      x^2
+	     *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+	     *                      2n  - 2(n+1) - 2(n+2)
+	     *
+	     *                      1      1        1
+	     *  (for large x)   =  ----  ------   ------   .....
+	     *                      2n   2(n+1)   2(n+2)
+	     *                      -- - ------ - ------ -
+	     *                       x     x         x
+	     *
+	     * Let w = 2n/x and h=2/x, then the above quotient
+	     * is equal to the continued fraction:
+	     *                  1
+	     *      = -----------------------
+	     *                     1
+	     *         w - -----------------
+	     *                        1
+	     *              w+h - ---------
+	     *                     w+2h - ...
+	     *
+	     * To determine how many terms needed, let
+	     * Q(0) = w, Q(1) = w(w+h) - 1,
+	     * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+	     * When Q(k) > 1e4      good for single
+	     * When Q(k) > 1e9      good for double
+	     * When Q(k) > 1e17     good for quadruple
+	     */
+	    /* determine k */
+	    _Float128 t, v;
+	    _Float128 q0, q1, h, tmp;
+	    int32_t k, m;
+	    w = (n + n) / (_Float128) x;
+	    h = 2 / (_Float128) x;
+	    q0 = w;
+	    z = w + h;
+	    q1 = w * z - 1;
+	    k = 1;
+	    while (q1 < L(1.0e17))
+	      {
+		k += 1;
+		z += h;
+		tmp = z * q1 - q0;
+		q0 = q1;
+		q1 = tmp;
+	      }
+	    m = n + n;
+	    for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
+	      t = one / (i / x - t);
+	    a = t;
+	    b = one;
+	    /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+	     *  Hence, if n*(log(2n/x)) > ...
+	     *  single 8.8722839355e+01
+	     *  double 7.09782712893383973096e+02
+	     *  long double 1.1356523406294143949491931077970765006170e+04
+	     *  then recurrent value may overflow and the result is
+	     *  likely underflow to zero
+	     */
+	    tmp = n;
+	    v = two / x;
+	    tmp = tmp * __ieee754_logl (fabsl (v * tmp));
+
+	    if (tmp < L(1.1356523406294143949491931077970765006170e+04))
+	      {
+		for (i = n - 1, di = (_Float128) (i + i); i > 0; i--)
+		  {
+		    temp = b;
+		    b *= di;
+		    b = b / x - a;
+		    a = temp;
+		    di -= two;
+		  }
+	      }
+	    else
+	      {
+		for (i = n - 1, di = (_Float128) (i + i); i > 0; i--)
+		  {
+		    temp = b;
+		    b *= di;
+		    b = b / x - a;
+		    a = temp;
+		    di -= two;
+		    /* scale b to avoid spurious overflow */
+		    if (b > L(1e100))
+		      {
+			a /= b;
+			t /= b;
+			b = one;
+		      }
+		  }
+	      }
+	    /* j0() and j1() suffer enormous loss of precision at and
+	     * near zero; however, we know that their zero points never
+	     * coincide, so just choose the one further away from zero.
+	     */
+	    z = __ieee754_j0l (x);
+	    w = __ieee754_j1l (x);
+	    if (fabsl (z) >= fabsl (w))
+	      b = (t * z / b);
+	    else
+	      b = (t * w / a);
+	  }
+      }
+    if (sgn == 1)
+      ret = -b;
+    else
+      ret = b;
+  }
+  if (ret == 0)
+    {
+      ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN;
+      __set_errno (ERANGE);
+    }
+  else
+    math_check_force_underflow (ret);
+  return ret;
+}
+strong_alias (__ieee754_jnl, __jnl_finite)
+
+_Float128
+__ieee754_ynl (int n, _Float128 x)
+{
+  u_int32_t se;
+  int32_t i, ix;
+  int32_t sign;
+  _Float128 a, b, temp, ret;
+  ieee854_long_double_shape_type u;
+
+  u.value = x;
+  se = u.parts32.w0;
+  ix = se & 0x7fffffff;
+
+  /* if Y(n,NaN) is NaN */
+  if (ix >= 0x7fff0000)
+    {
+      if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3)
+	return x + x;
+    }
+  if (x <= 0)
+    {
+      if (x == 0)
+	return ((n < 0 && (n & 1) != 0) ? 1 : -1) / L(0.0);
+      if (se & 0x80000000)
+	return zero / (zero * x);
+    }
+  sign = 1;
+  if (n < 0)
+    {
+      n = -n;
+      sign = 1 - ((n & 1) << 1);
+    }
+  if (n == 0)
+    return (__ieee754_y0l (x));
+  {
+    SET_RESTORE_ROUNDL (FE_TONEAREST);
+    if (n == 1)
+      {
+	ret = sign * __ieee754_y1l (x);
+	goto out;
+      }
+    if (ix >= 0x7fff0000)
+      return zero;
+    if (ix >= 0x412D0000)
+      {				/* x > 2**302 */
+
+	/* ??? See comment above on the possible futility of this.  */
+
+	/* (x >> n**2)
+	 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+	 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+	 *      Let s=sin(x), c=cos(x),
+	 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+	 *
+	 *             n    sin(xn)*sqt2    cos(xn)*sqt2
+	 *          ----------------------------------
+	 *             0     s-c             c+s
+	 *             1    -s-c            -c+s
+	 *             2    -s+c            -c-s
+	 *             3     s+c             c-s
+	 */
+	_Float128 s;
+	_Float128 c;
+	__sincosl (x, &s, &c);
+	switch (n & 3)
+	  {
+	  case 0:
+	    temp = s - c;
+	    break;
+	  case 1:
+	    temp = -s - c;
+	    break;
+	  case 2:
+	    temp = -s + c;
+	    break;
+	  case 3:
+	    temp = s + c;
+	    break;
+	  }
+	b = invsqrtpi * temp / __ieee754_sqrtl (x);
+      }
+    else
+      {
+	a = __ieee754_y0l (x);
+	b = __ieee754_y1l (x);
+	/* quit if b is -inf */
+	u.value = b;
+	se = u.parts32.w0 & 0xffff0000;
+	for (i = 1; i < n && se != 0xffff0000; i++)
+	  {
+	    temp = b;
+	    b = ((_Float128) (i + i) / x) * b - a;
+	    u.value = b;
+	    se = u.parts32.w0 & 0xffff0000;
+	    a = temp;
+	  }
+      }
+    /* If B is +-Inf, set up errno accordingly.  */
+    if (! isfinite (b))
+      __set_errno (ERANGE);
+    if (sign > 0)
+      ret = b;
+    else
+      ret = -b;
+  }
+ out:
+  if (isinf (ret))
+    ret = __copysignl (LDBL_MAX, ret) * LDBL_MAX;
+  return ret;
+}
+strong_alias (__ieee754_ynl, __ynl_finite)