about summary refs log tree commit diff
path: root/REORG.TODO/sysdeps/ieee754/dbl-64/s_sin.c
diff options
context:
space:
mode:
Diffstat (limited to 'REORG.TODO/sysdeps/ieee754/dbl-64/s_sin.c')
-rw-r--r--REORG.TODO/sysdeps/ieee754/dbl-64/s_sin.c927
1 files changed, 927 insertions, 0 deletions
diff --git a/REORG.TODO/sysdeps/ieee754/dbl-64/s_sin.c b/REORG.TODO/sysdeps/ieee754/dbl-64/s_sin.c
new file mode 100644
index 0000000000..c258d39e49
--- /dev/null
+++ b/REORG.TODO/sysdeps/ieee754/dbl-64/s_sin.c
@@ -0,0 +1,927 @@
+/*
+ * IBM Accurate Mathematical Library
+ * written by International Business Machines Corp.
+ * Copyright (C) 2001-2017 Free Software Foundation, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU  Lesser General Public License
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+/****************************************************************************/
+/*                                                                          */
+/* MODULE_NAME:usncs.c                                                      */
+/*                                                                          */
+/* FUNCTIONS: usin                                                          */
+/*            ucos                                                          */
+/*            slow                                                          */
+/*            slow1                                                         */
+/*            slow2                                                         */
+/*            sloww                                                         */
+/*            sloww1                                                        */
+/*            sloww2                                                        */
+/*            bsloww                                                        */
+/*            bsloww1                                                       */
+/*            bsloww2                                                       */
+/*            cslow2                                                        */
+/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h  usncs.h                     */
+/*               branred.c sincos32.c dosincos.c mpa.c                      */
+/*               sincos.tbl                                                 */
+/*                                                                          */
+/* An ultimate sin and  routine. Given an IEEE double machine number x       */
+/* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */
+/* Assumption: Machine arithmetic operations are performed in               */
+/* round to nearest mode of IEEE 754 standard.                              */
+/*                                                                          */
+/****************************************************************************/
+
+
+#include <errno.h>
+#include <float.h>
+#include "endian.h"
+#include "mydefs.h"
+#include "usncs.h"
+#include "MathLib.h"
+#include <math.h>
+#include <math_private.h>
+#include <fenv.h>
+
+/* Helper macros to compute sin of the input values.  */
+#define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx))
+
+#define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1)
+
+/* The computed polynomial is a variation of the Taylor series expansion for
+   sin(a):
+
+   a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2
+
+   The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so
+   on.  The result is returned to LHS and correction in COR.  */
+#define TAYLOR_SIN(xx, a, da, cor) \
+({									      \
+  double t = ((POLYNOMIAL (xx)  * (a) - 0.5 * (da))  * (xx) + (da));	      \
+  double res = (a) + t;							      \
+  (cor) = ((a) - res) + t;						      \
+  res;									      \
+})
+
+/* This is again a variation of the Taylor series expansion with the term
+   x^3/3! expanded into the following for better accuracy:
+
+   bb * x ^ 3 + 3 * aa * x * x1 * x2 + aa * x1 ^ 3 + aa * x2 ^ 3
+
+   The correction term is dx and bb + aa = -1/3!
+   */
+#define TAYLOR_SLOW(x0, dx, cor) \
+({									      \
+  static const double th2_36 = 206158430208.0;	/*    1.5*2**37   */	      \
+  double xx = (x0) * (x0);						      \
+  double x1 = ((x0) + th2_36) - th2_36;					      \
+  double y = aa * x1 * x1 * x1;						      \
+  double r = (x0) + y;							      \
+  double x2 = ((x0) - x1) + (dx);					      \
+  double t = (((POLYNOMIAL2 (xx) + bb) * xx + 3.0 * aa * x1 * x2)	      \
+	      * (x0)  + aa * x2 * x2 * x2 + (dx));			      \
+  t = (((x0) - r) + y) + t;						      \
+  double res = r + t;							      \
+  (cor) = (r - res) + t;						      \
+  res;									      \
+})
+
+#define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \
+({									      \
+  int4 k = u.i[LOW_HALF] << 2;						      \
+  sn = __sincostab.x[k];						      \
+  ssn = __sincostab.x[k + 1];						      \
+  cs = __sincostab.x[k + 2];						      \
+  ccs = __sincostab.x[k + 3];						      \
+})
+
+#ifndef SECTION
+# define SECTION
+#endif
+
+extern const union
+{
+  int4 i[880];
+  double x[440];
+} __sincostab attribute_hidden;
+
+static const double
+  sn3 = -1.66666666666664880952546298448555E-01,
+  sn5 = 8.33333214285722277379541354343671E-03,
+  cs2 = 4.99999999999999999999950396842453E-01,
+  cs4 = -4.16666666666664434524222570944589E-02,
+  cs6 = 1.38888874007937613028114285595617E-03;
+
+static const double t22 = 0x1.8p22;
+
+void __dubsin (double x, double dx, double w[]);
+void __docos (double x, double dx, double w[]);
+double __mpsin (double x, double dx, bool reduce_range);
+double __mpcos (double x, double dx, bool reduce_range);
+static double slow (double x);
+static double slow1 (double x);
+static double slow2 (double x);
+static double sloww (double x, double dx, double orig, bool shift_quadrant);
+static double sloww1 (double x, double dx, double orig, bool shift_quadrant);
+static double sloww2 (double x, double dx, double orig, int n);
+static double bsloww (double x, double dx, double orig, int n);
+static double bsloww1 (double x, double dx, double orig, int n);
+static double bsloww2 (double x, double dx, double orig, int n);
+int __branred (double x, double *a, double *aa);
+static double cslow2 (double x);
+
+/* Given a number partitioned into X and DX, this function computes the cosine
+   of the number by combining the sin and cos of X (as computed by a variation
+   of the Taylor series) with the values looked up from the sin/cos table to
+   get the result in RES and a correction value in COR.  */
+static inline double
+__always_inline
+do_cos (double x, double dx, double *corp)
+{
+  mynumber u;
+
+  if (x < 0)
+    dx = -dx;
+
+  u.x = big + fabs (x);
+  x = fabs (x) - (u.x - big) + dx;
+
+  double xx, s, sn, ssn, c, cs, ccs, res, cor;
+  xx = x * x;
+  s = x + x * xx * (sn3 + xx * sn5);
+  c = xx * (cs2 + xx * (cs4 + xx * cs6));
+  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
+  cor = (ccs - s * ssn - cs * c) - sn * s;
+  res = cs + cor;
+  cor = (cs - res) + cor;
+  *corp = cor;
+  return res;
+}
+
+/* A more precise variant of DO_COS.  EPS is the adjustment to the correction
+   COR.  */
+static inline double
+__always_inline
+do_cos_slow (double x, double dx, double eps, double *corp)
+{
+  mynumber u;
+
+  if (x <= 0)
+    dx = -dx;
+
+  u.x = big + fabs (x);
+  x = fabs (x) - (u.x - big);
+
+  double xx, y, x1, x2, e1, e2, res, cor;
+  double s, sn, ssn, c, cs, ccs;
+  xx = x * x;
+  s = x * xx * (sn3 + xx * sn5);
+  c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
+  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
+  x1 = (x + t22) - t22;
+  x2 = (x - x1) + dx;
+  e1 = (sn + t22) - t22;
+  e2 = (sn - e1) + ssn;
+  cor = (ccs - cs * c - e1 * x2 - e2 * x) - sn * s;
+  y = cs - e1 * x1;
+  cor = cor + ((cs - y) - e1 * x1);
+  res = y + cor;
+  cor = (y - res) + cor;
+  cor = 1.0005 * cor + __copysign (eps, cor);
+  *corp = cor;
+  return res;
+}
+
+/* Given a number partitioned into X and DX, this function computes the sine of
+   the number by combining the sin and cos of X (as computed by a variation of
+   the Taylor series) with the values looked up from the sin/cos table to get
+   the result in RES and a correction value in COR.  */
+static inline double
+__always_inline
+do_sin (double x, double dx, double *corp)
+{
+  mynumber u;
+
+  if (x <= 0)
+    dx = -dx;
+  u.x = big + fabs (x);
+  x = fabs (x) - (u.x - big);
+
+  double xx, s, sn, ssn, c, cs, ccs, cor, res;
+  xx = x * x;
+  s = x + (dx + x * xx * (sn3 + xx * sn5));
+  c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
+  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
+  cor = (ssn + s * ccs - sn * c) + cs * s;
+  res = sn + cor;
+  cor = (sn - res) + cor;
+  *corp = cor;
+  return res;
+}
+
+/* A more precise variant of DO_SIN.  EPS is the adjustment to the correction
+   COR.  */
+static inline double
+__always_inline
+do_sin_slow (double x, double dx, double eps, double *corp)
+{
+  mynumber u;
+
+  if (x <= 0)
+    dx = -dx;
+  u.x = big + fabs (x);
+  x = fabs (x) - (u.x - big);
+
+  double xx, y, x1, x2, c1, c2, res, cor;
+  double s, sn, ssn, c, cs, ccs;
+  xx = x * x;
+  s = x * xx * (sn3 + xx * sn5);
+  c = xx * (cs2 + xx * (cs4 + xx * cs6));
+  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
+  x1 = (x + t22) - t22;
+  x2 = (x - x1) + dx;
+  c1 = (cs + t22) - t22;
+  c2 = (cs - c1) + ccs;
+  cor = (ssn + s * ccs + cs * s + c2 * x + c1 * x2 - sn * x * dx) - sn * c;
+  y = sn + c1 * x1;
+  cor = cor + ((sn - y) + c1 * x1);
+  res = y + cor;
+  cor = (y - res) + cor;
+  cor = 1.0005 * cor + __copysign (eps, cor);
+  *corp = cor;
+  return res;
+}
+
+/* Reduce range of X and compute sin of a + da. When SHIFT_QUADRANT is true,
+   the routine returns the cosine of a + da by rotating the quadrant once and
+   computing the sine of the result.  */
+static inline double
+__always_inline
+reduce_and_compute (double x, bool shift_quadrant)
+{
+  double retval = 0, a, da;
+  unsigned int n = __branred (x, &a, &da);
+  int4 k = (n + shift_quadrant) % 4;
+  switch (k)
+    {
+    case 2:
+      a = -a;
+      da = -da;
+      /* Fall through.  */
+    case 0:
+      if (a * a < 0.01588)
+	retval = bsloww (a, da, x, n);
+      else
+	retval = bsloww1 (a, da, x, n);
+      break;
+
+    case 1:
+    case 3:
+      retval = bsloww2 (a, da, x, n);
+      break;
+    }
+  return retval;
+}
+
+static inline int4
+__always_inline
+reduce_sincos_1 (double x, double *a, double *da)
+{
+  mynumber v;
+
+  double t = (x * hpinv + toint);
+  double xn = t - toint;
+  v.x = t;
+  double y = (x - xn * mp1) - xn * mp2;
+  int4 n = v.i[LOW_HALF] & 3;
+  double db = xn * mp3;
+  double b = y - db;
+  db = (y - b) - db;
+
+  *a = b;
+  *da = db;
+
+  return n;
+}
+
+/* Compute sin (A + DA).  cos can be computed by passing SHIFT_QUADRANT as
+   true, which results in shifting the quadrant N clockwise.  */
+static double
+__always_inline
+do_sincos_1 (double a, double da, double x, int4 n, bool shift_quadrant)
+{
+  double xx, retval, res, cor;
+  double eps = fabs (x) * 1.2e-30;
+
+  int k1 = (n + shift_quadrant) & 3;
+  switch (k1)
+    {			/* quarter of unit circle */
+    case 2:
+      a = -a;
+      da = -da;
+      /* Fall through.  */
+    case 0:
+      xx = a * a;
+      if (xx < 0.01588)
+	{
+	  /* Taylor series.  */
+	  res = TAYLOR_SIN (xx, a, da, cor);
+	  cor = 1.02 * cor + __copysign (eps, cor);
+	  retval = (res == res + cor) ? res : sloww (a, da, x, shift_quadrant);
+	}
+      else
+	{
+	  res = do_sin (a, da, &cor);
+	  cor = 1.035 * cor + __copysign (eps, cor);
+	  retval = ((res == res + cor) ? __copysign (res, a)
+		    : sloww1 (a, da, x, shift_quadrant));
+	}
+      break;
+
+    case 1:
+    case 3:
+      res = do_cos (a, da, &cor);
+      cor = 1.025 * cor + __copysign (eps, cor);
+      retval = ((res == res + cor) ? ((n & 2) ? -res : res)
+		: sloww2 (a, da, x, n));
+      break;
+    }
+
+  return retval;
+}
+
+static inline int4
+__always_inline
+reduce_sincos_2 (double x, double *a, double *da)
+{
+  mynumber v;
+
+  double t = (x * hpinv + toint);
+  double xn = t - toint;
+  v.x = t;
+  double xn1 = (xn + 8.0e22) - 8.0e22;
+  double xn2 = xn - xn1;
+  double y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
+  int4 n = v.i[LOW_HALF] & 3;
+  double db = xn1 * pp3;
+  t = y - db;
+  db = (y - t) - db;
+  db = (db - xn2 * pp3) - xn * pp4;
+  double b = t + db;
+  db = (t - b) + db;
+
+  *a = b;
+  *da = db;
+
+  return n;
+}
+
+/* Compute sin (A + DA).  cos can be computed by passing SHIFT_QUADRANT as
+   true, which results in shifting the quadrant N clockwise.  */
+static double
+__always_inline
+do_sincos_2 (double a, double da, double x, int4 n, bool shift_quadrant)
+{
+  double res, retval, cor, xx;
+
+  double eps = 1.0e-24;
+
+  int4 k = (n + shift_quadrant) & 3;
+
+  switch (k)
+    {
+    case 2:
+      a = -a;
+      da = -da;
+      /* Fall through.  */
+    case 0:
+      xx = a * a;
+      if (xx < 0.01588)
+	{
+	  /* Taylor series.  */
+	  res = TAYLOR_SIN (xx, a, da, cor);
+	  cor = 1.02 * cor + __copysign (eps, cor);
+	  retval = (res == res + cor) ? res : bsloww (a, da, x, n);
+	}
+      else
+	{
+	  res = do_sin (a, da, &cor);
+	  cor = 1.035 * cor + __copysign (eps, cor);
+	  retval = ((res == res + cor) ? __copysign (res, a)
+		    : bsloww1 (a, da, x, n));
+	}
+      break;
+
+    case 1:
+    case 3:
+      res = do_cos (a, da, &cor);
+      cor = 1.025 * cor + __copysign (eps, cor);
+      retval = ((res == res + cor) ? ((n & 2) ? -res : res)
+		: bsloww2 (a, da, x, n));
+      break;
+    }
+
+  return retval;
+}
+
+/*******************************************************************/
+/* An ultimate sin routine. Given an IEEE double machine number x   */
+/* it computes the correctly rounded (to nearest) value of sin(x)  */
+/*******************************************************************/
+#ifdef IN_SINCOS
+static double
+#else
+double
+SECTION
+#endif
+__sin (double x)
+{
+  double xx, res, t, cor;
+  mynumber u;
+  int4 k, m;
+  double retval = 0;
+
+#ifndef IN_SINCOS
+  SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
+#endif
+
+  u.x = x;
+  m = u.i[HIGH_HALF];
+  k = 0x7fffffff & m;		/* no sign           */
+  if (k < 0x3e500000)		/* if x->0 =>sin(x)=x */
+    {
+      math_check_force_underflow (x);
+      retval = x;
+    }
+ /*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/
+  else if (k < 0x3fd00000)
+    {
+      xx = x * x;
+      /* Taylor series.  */
+      t = POLYNOMIAL (xx) * (xx * x);
+      res = x + t;
+      cor = (x - res) + t;
+      retval = (res == res + 1.07 * cor) ? res : slow (x);
+    }				/*  else  if (k < 0x3fd00000)    */
+/*---------------------------- 0.25<|x|< 0.855469---------------------- */
+  else if (k < 0x3feb6000)
+    {
+      res = do_sin (x, 0, &cor);
+      retval = (res == res + 1.096 * cor) ? res : slow1 (x);
+      retval = __copysign (retval, x);
+    }				/*   else  if (k < 0x3feb6000)    */
+
+/*----------------------- 0.855469  <|x|<2.426265  ----------------------*/
+  else if (k < 0x400368fd)
+    {
+
+      t = hp0 - fabs (x);
+      res = do_cos (t, hp1, &cor);
+      retval = (res == res + 1.020 * cor) ? res : slow2 (x);
+      retval = __copysign (retval, x);
+    }				/*   else  if (k < 0x400368fd)    */
+
+#ifndef IN_SINCOS
+/*-------------------------- 2.426265<|x|< 105414350 ----------------------*/
+  else if (k < 0x419921FB)
+    {
+      double a, da;
+      int4 n = reduce_sincos_1 (x, &a, &da);
+      retval = do_sincos_1 (a, da, x, n, false);
+    }				/*   else  if (k <  0x419921FB )    */
+
+/*---------------------105414350 <|x|< 281474976710656 --------------------*/
+  else if (k < 0x42F00000)
+    {
+      double a, da;
+
+      int4 n = reduce_sincos_2 (x, &a, &da);
+      retval = do_sincos_2 (a, da, x, n, false);
+    }				/*   else  if (k <  0x42F00000 )   */
+
+/* -----------------281474976710656 <|x| <2^1024----------------------------*/
+  else if (k < 0x7ff00000)
+    retval = reduce_and_compute (x, false);
+
+/*--------------------- |x| > 2^1024 ----------------------------------*/
+  else
+    {
+      if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
+	__set_errno (EDOM);
+      retval = x / x;
+    }
+#endif
+
+  return retval;
+}
+
+
+/*******************************************************************/
+/* An ultimate cos routine. Given an IEEE double machine number x   */
+/* it computes the correctly rounded (to nearest) value of cos(x)  */
+/*******************************************************************/
+
+#ifdef IN_SINCOS
+static double
+#else
+double
+SECTION
+#endif
+__cos (double x)
+{
+  double y, xx, res, cor, a, da;
+  mynumber u;
+  int4 k, m;
+
+  double retval = 0;
+
+#ifndef IN_SINCOS
+  SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
+#endif
+
+  u.x = x;
+  m = u.i[HIGH_HALF];
+  k = 0x7fffffff & m;
+
+  /* |x|<2^-27 => cos(x)=1 */
+  if (k < 0x3e400000)
+    retval = 1.0;
+
+  else if (k < 0x3feb6000)
+    {				/* 2^-27 < |x| < 0.855469 */
+      res = do_cos (x, 0, &cor);
+      retval = (res == res + 1.020 * cor) ? res : cslow2 (x);
+    }				/*   else  if (k < 0x3feb6000)    */
+
+  else if (k < 0x400368fd)
+    { /* 0.855469  <|x|<2.426265  */ ;
+      y = hp0 - fabs (x);
+      a = y + hp1;
+      da = (y - a) + hp1;
+      xx = a * a;
+      if (xx < 0.01588)
+	{
+	  res = TAYLOR_SIN (xx, a, da, cor);
+	  cor = 1.02 * cor + __copysign (1.0e-31, cor);
+	  retval = (res == res + cor) ? res : sloww (a, da, x, true);
+	}
+      else
+	{
+	  res = do_sin (a, da, &cor);
+	  cor = 1.035 * cor + __copysign (1.0e-31, cor);
+	  retval = ((res == res + cor) ? __copysign (res, a)
+		    : sloww1 (a, da, x, true));
+	}
+
+    }				/*   else  if (k < 0x400368fd)    */
+
+
+#ifndef IN_SINCOS
+  else if (k < 0x419921FB)
+    {				/* 2.426265<|x|< 105414350 */
+      double a, da;
+      int4 n = reduce_sincos_1 (x, &a, &da);
+      retval = do_sincos_1 (a, da, x, n, true);
+    }				/*   else  if (k <  0x419921FB )    */
+
+  else if (k < 0x42F00000)
+    {
+      double a, da;
+
+      int4 n = reduce_sincos_2 (x, &a, &da);
+      retval = do_sincos_2 (a, da, x, n, true);
+    }				/*   else  if (k <  0x42F00000 )    */
+
+  /* 281474976710656 <|x| <2^1024 */
+  else if (k < 0x7ff00000)
+    retval = reduce_and_compute (x, true);
+
+  else
+    {
+      if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
+	__set_errno (EDOM);
+      retval = x / x;		/* |x| > 2^1024 */
+    }
+#endif
+
+  return retval;
+}
+
+/************************************************************************/
+/*  Routine compute sin(x) for  2^-26 < |x|< 0.25 by  Taylor with more   */
+/* precision  and if still doesn't accurate enough by mpsin   or dubsin */
+/************************************************************************/
+
+static inline double
+__always_inline
+slow (double x)
+{
+  double res, cor, w[2];
+  res = TAYLOR_SLOW (x, 0, cor);
+  if (res == res + 1.0007 * cor)
+    return res;
+
+  __dubsin (fabs (x), 0, w);
+  if (w[0] == w[0] + 1.000000001 * w[1])
+    return __copysign (w[0], x);
+
+  return __copysign (__mpsin (fabs (x), 0, false), x);
+}
+
+/*******************************************************************************/
+/* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */
+/* and if result still doesn't accurate enough by mpsin   or dubsin            */
+/*******************************************************************************/
+
+static inline double
+__always_inline
+slow1 (double x)
+{
+  double w[2], cor, res;
+
+  res = do_sin_slow (x, 0, 0, &cor);
+  if (res == res + cor)
+    return res;
+
+  __dubsin (fabs (x), 0, w);
+  if (w[0] == w[0] + 1.000000005 * w[1])
+    return w[0];
+
+  return __mpsin (fabs (x), 0, false);
+}
+
+/**************************************************************************/
+/*  Routine compute sin(x) for   0.855469  <|x|<2.426265  by  __sincostab.tbl  */
+/* and if result still doesn't accurate enough by mpsin   or dubsin       */
+/**************************************************************************/
+static inline double
+__always_inline
+slow2 (double x)
+{
+  double w[2], y, y1, y2, cor, res;
+
+  double t = hp0 - fabs (x);
+  res = do_cos_slow (t, hp1, 0, &cor);
+  if (res == res + cor)
+    return res;
+
+  y = fabs (x) - hp0;
+  y1 = y - hp1;
+  y2 = (y - y1) - hp1;
+  __docos (y1, y2, w);
+  if (w[0] == w[0] + 1.000000005 * w[1])
+    return w[0];
+
+  return __mpsin (fabs (x), 0, false);
+}
+
+/* Compute sin(x + dx) where X is small enough to use Taylor series around zero
+   and (x + dx) in the first or third quarter of the unit circle.  ORIG is the
+   original value of X for computing error of the result.  If the result is not
+   accurate enough, the routine calls mpsin or dubsin.  SHIFT_QUADRANT rotates
+   the unit circle by 1 to compute the cosine instead of sine.  */
+static inline double
+__always_inline
+sloww (double x, double dx, double orig, bool shift_quadrant)
+{
+  double y, t, res, cor, w[2], a, da, xn;
+  mynumber v;
+  int4 n;
+  res = TAYLOR_SLOW (x, dx, cor);
+
+  double eps = fabs (orig) * 3.1e-30;
+
+  cor = 1.0005 * cor + __copysign (eps, cor);
+
+  if (res == res + cor)
+    return res;
+
+  a = fabs (x);
+  da = (x > 0) ? dx : -dx;
+  __dubsin (a, da, w);
+  eps = fabs (orig) * 1.1e-30;
+  cor = 1.000000001 * w[1] + __copysign (eps, w[1]);
+
+  if (w[0] == w[0] + cor)
+    return __copysign (w[0], x);
+
+  t = (orig * hpinv + toint);
+  xn = t - toint;
+  v.x = t;
+  y = (orig - xn * mp1) - xn * mp2;
+  n = (v.i[LOW_HALF] + shift_quadrant) & 3;
+  da = xn * pp3;
+  t = y - da;
+  da = (y - t) - da;
+  y = xn * pp4;
+  a = t - y;
+  da = ((t - a) - y) + da;
+
+  if (n & 2)
+    {
+      a = -a;
+      da = -da;
+    }
+  x = fabs (a);
+  dx = (a > 0) ? da : -da;
+  __dubsin (x, dx, w);
+  eps = fabs (orig) * 1.1e-40;
+  cor = 1.000000001 * w[1] + __copysign (eps, w[1]);
+
+  if (w[0] == w[0] + cor)
+    return __copysign (w[0], a);
+
+  return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
+}
+
+/* Compute sin(x + dx) where X is in the first or third quarter of the unit
+   circle.  ORIG is the original value of X for computing error of the result.
+   If the result is not accurate enough, the routine calls mpsin or dubsin.
+   SHIFT_QUADRANT rotates the unit circle by 1 to compute the cosine instead of
+   sine.  */
+static inline double
+__always_inline
+sloww1 (double x, double dx, double orig, bool shift_quadrant)
+{
+  double w[2], cor, res;
+
+  res = do_sin_slow (x, dx, 3.1e-30 * fabs (orig), &cor);
+
+  if (res == res + cor)
+    return __copysign (res, x);
+
+  dx = (x > 0 ? dx : -dx);
+  __dubsin (fabs (x), dx, w);
+
+  double eps = 1.1e-30 * fabs (orig);
+  cor = 1.000000005 * w[1] + __copysign (eps, w[1]);
+
+  if (w[0] == w[0] + cor)
+    return __copysign (w[0], x);
+
+  return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
+}
+
+/***************************************************************************/
+/*  Routine compute sin(x+dx)   (Double-Length number) where x in second or */
+/*  fourth quarter of unit circle.Routine receive also  the  original value */
+/* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
+/* accurate enough routine calls  mpsin1   or dubsin                       */
+/***************************************************************************/
+
+static inline double
+__always_inline
+sloww2 (double x, double dx, double orig, int n)
+{
+  double w[2], cor, res;
+
+  res = do_cos_slow (x, dx, 3.1e-30 * fabs (orig), &cor);
+
+  if (res == res + cor)
+    return (n & 2) ? -res : res;
+
+  dx = x > 0 ? dx : -dx;
+  __docos (fabs (x), dx, w);
+
+  double eps = 1.1e-30 * fabs (orig);
+  cor = 1.000000005 * w[1] + __copysign (eps, w[1]);
+
+  if (w[0] == w[0] + cor)
+    return (n & 2) ? -w[0] : w[0];
+
+  return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
+}
+
+/***************************************************************************/
+/*  Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x   */
+/* is small enough to use Taylor series around zero and   (x+dx)            */
+/* in first or third quarter of unit circle.Routine receive also            */
+/* (right argument) the  original   value of x for computing error of      */
+/* result.And if result not accurate enough routine calls other routines    */
+/***************************************************************************/
+
+static inline double
+__always_inline
+bsloww (double x, double dx, double orig, int n)
+{
+  double res, cor, w[2], a, da;
+
+  res = TAYLOR_SLOW (x, dx, cor);
+  cor = 1.0005 * cor + __copysign (1.1e-24, cor);
+  if (res == res + cor)
+    return res;
+
+  a = fabs (x);
+  da = (x > 0) ? dx : -dx;
+  __dubsin (a, da, w);
+  cor = 1.000000001 * w[1] + __copysign (1.1e-24, w[1]);
+
+  if (w[0] == w[0] + cor)
+    return __copysign (w[0], x);
+
+  return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
+}
+
+/***************************************************************************/
+/*  Routine compute sin(x+dx)  or cos(x+dx) (Double-Length number) where x  */
+/* in first or third quarter of unit circle.Routine receive also            */
+/* (right argument) the original  value of x for computing error of result.*/
+/* And if result not  accurate enough routine calls  other routines         */
+/***************************************************************************/
+
+static inline double
+__always_inline
+bsloww1 (double x, double dx, double orig, int n)
+{
+  double w[2], cor, res;
+
+  res = do_sin_slow (x, dx, 1.1e-24, &cor);
+  if (res == res + cor)
+    return (x > 0) ? res : -res;
+
+  dx = (x > 0) ? dx : -dx;
+  __dubsin (fabs (x), dx, w);
+
+  cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);
+
+  if (w[0] == w[0] + cor)
+    return __copysign (w[0], x);
+
+  return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
+}
+
+/***************************************************************************/
+/*  Routine compute sin(x+dx)  or cos(x+dx) (Double-Length number) where x  */
+/* in second or fourth quarter of unit circle.Routine receive also  the     */
+/* original value and quarter(n= 1or 3)of x for computing error of result.  */
+/* And if result not accurate enough routine calls  other routines          */
+/***************************************************************************/
+
+static inline double
+__always_inline
+bsloww2 (double x, double dx, double orig, int n)
+{
+  double w[2], cor, res;
+
+  res = do_cos_slow (x, dx, 1.1e-24, &cor);
+  if (res == res + cor)
+    return (n & 2) ? -res : res;
+
+  dx = (x > 0) ? dx : -dx;
+  __docos (fabs (x), dx, w);
+
+  cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);
+
+  if (w[0] == w[0] + cor)
+    return (n & 2) ? -w[0] : w[0];
+
+  return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
+}
+
+/************************************************************************/
+/*  Routine compute cos(x) for  2^-27 < |x|< 0.25 by  Taylor with more   */
+/* precision  and if still doesn't accurate enough by mpcos   or docos  */
+/************************************************************************/
+
+static inline double
+__always_inline
+cslow2 (double x)
+{
+  double w[2], cor, res;
+
+  res = do_cos_slow (x, 0, 0, &cor);
+  if (res == res + cor)
+    return res;
+
+  __docos (fabs (x), 0, w);
+  if (w[0] == w[0] + 1.000000005 * w[1])
+    return w[0];
+
+  return __mpcos (x, 0, false);
+}
+
+#ifndef __cos
+weak_alias (__cos, cos)
+# ifdef NO_LONG_DOUBLE
+strong_alias (__cos, __cosl)
+weak_alias (__cos, cosl)
+# endif
+#endif
+#ifndef __sin
+weak_alias (__sin, sin)
+# ifdef NO_LONG_DOUBLE
+strong_alias (__sin, __sinl)
+weak_alias (__sin, sinl)
+# endif
+#endif