diff options
Diffstat (limited to 'REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c')
-rw-r--r-- | REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c | 620 |
1 files changed, 620 insertions, 0 deletions
diff --git a/REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c b/REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c new file mode 100644 index 0000000000..3c9d964b9b --- /dev/null +++ b/REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c @@ -0,0 +1,620 @@ +/* + * IBM Accurate Mathematical Library + * written by International Business Machines Corp. + * Copyright (C) 2001-2017 Free Software Foundation, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as published by + * the Free Software Foundation; either version 2.1 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public License + * along with this program; if not, see <http://www.gnu.org/licenses/>. + */ +/************************************************************************/ +/* MODULE_NAME: atnat2.c */ +/* */ +/* FUNCTIONS: uatan2 */ +/* atan2Mp */ +/* signArctan2 */ +/* normalized */ +/* */ +/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h */ +/* mpatan.c mpatan2.c mpsqrt.c */ +/* uatan.tbl */ +/* */ +/* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/ +/* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/ +/* */ +/* Assumption: Machine arithmetic operations are performed in */ +/* round to nearest mode of IEEE 754 standard. */ +/* */ +/************************************************************************/ + +#include <dla.h> +#include "mpa.h" +#include "MathLib.h" +#include "uatan.tbl" +#include "atnat2.h" +#include <fenv.h> +#include <float.h> +#include <math.h> +#include <math_private.h> +#include <stap-probe.h> + +#ifndef SECTION +# define SECTION +#endif + +/************************************************************************/ +/* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */ +/* it computes the correctly rounded (to nearest) value of atan2(y,x). */ +/* Assumption: Machine arithmetic operations are performed in */ +/* round to nearest mode of IEEE 754 standard. */ +/************************************************************************/ +static double atan2Mp (double, double, const int[]); + /* Fix the sign and return after stage 1 or stage 2 */ +static double +signArctan2 (double y, double z) +{ + return __copysign (z, y); +} + +static double normalized (double, double, double, double); +void __mpatan2 (mp_no *, mp_no *, mp_no *, int); + +double +SECTION +__ieee754_atan2 (double y, double x) +{ + int i, de, ux, dx, uy, dy; + static const int pr[MM] = { 6, 8, 10, 20, 32 }; + double ax, ay, u, du, u9, ua, v, vv, dv, t1, t2, t3, t7, t8, + z, zz, cor, s1, ss1, s2, ss2; +#ifndef DLA_FMS + double t4, t5, t6; +#endif + number num; + + static const int ep = 59768832, /* 57*16**5 */ + em = -59768832; /* -57*16**5 */ + + /* x=NaN or y=NaN */ + num.d = x; + ux = num.i[HIGH_HALF]; + dx = num.i[LOW_HALF]; + if ((ux & 0x7ff00000) == 0x7ff00000) + { + if (((ux & 0x000fffff) | dx) != 0x00000000) + return x + y; + } + num.d = y; + uy = num.i[HIGH_HALF]; + dy = num.i[LOW_HALF]; + if ((uy & 0x7ff00000) == 0x7ff00000) + { + if (((uy & 0x000fffff) | dy) != 0x00000000) + return y + y; + } + + /* y=+-0 */ + if (uy == 0x00000000) + { + if (dy == 0x00000000) + { + if ((ux & 0x80000000) == 0x00000000) + return 0; + else + return opi.d; + } + } + else if (uy == 0x80000000) + { + if (dy == 0x00000000) + { + if ((ux & 0x80000000) == 0x00000000) + return -0.0; + else + return mopi.d; + } + } + + /* x=+-0 */ + if (x == 0) + { + if ((uy & 0x80000000) == 0x00000000) + return hpi.d; + else + return mhpi.d; + } + + /* x=+-INF */ + if (ux == 0x7ff00000) + { + if (dx == 0x00000000) + { + if (uy == 0x7ff00000) + { + if (dy == 0x00000000) + return qpi.d; + } + else if (uy == 0xfff00000) + { + if (dy == 0x00000000) + return mqpi.d; + } + else + { + if ((uy & 0x80000000) == 0x00000000) + return 0; + else + return -0.0; + } + } + } + else if (ux == 0xfff00000) + { + if (dx == 0x00000000) + { + if (uy == 0x7ff00000) + { + if (dy == 0x00000000) + return tqpi.d; + } + else if (uy == 0xfff00000) + { + if (dy == 0x00000000) + return mtqpi.d; + } + else + { + if ((uy & 0x80000000) == 0x00000000) + return opi.d; + else + return mopi.d; + } + } + } + + /* y=+-INF */ + if (uy == 0x7ff00000) + { + if (dy == 0x00000000) + return hpi.d; + } + else if (uy == 0xfff00000) + { + if (dy == 0x00000000) + return mhpi.d; + } + + SET_RESTORE_ROUND (FE_TONEAREST); + /* either x/y or y/x is very close to zero */ + ax = (x < 0) ? -x : x; + ay = (y < 0) ? -y : y; + de = (uy & 0x7ff00000) - (ux & 0x7ff00000); + if (de >= ep) + { + return ((y > 0) ? hpi.d : mhpi.d); + } + else if (de <= em) + { + if (x > 0) + { + double ret; + if ((z = ay / ax) < TWOM1022) + ret = normalized (ax, ay, y, z); + else + ret = signArctan2 (y, z); + if (fabs (ret) < DBL_MIN) + { + double vret = ret ? ret : DBL_MIN; + double force_underflow = vret * vret; + math_force_eval (force_underflow); + } + return ret; + } + else + { + return ((y > 0) ? opi.d : mopi.d); + } + } + + /* if either x or y is extremely close to zero, scale abs(x), abs(y). */ + if (ax < twom500.d || ay < twom500.d) + { + ax *= two500.d; + ay *= two500.d; + } + + /* Likewise for large x and y. */ + if (ax > two500.d || ay > two500.d) + { + ax *= twom500.d; + ay *= twom500.d; + } + + /* x,y which are neither special nor extreme */ + if (ay < ax) + { + u = ay / ax; + EMULV (ax, u, v, vv, t1, t2, t3, t4, t5); + du = ((ay - v) - vv) / ax; + } + else + { + u = ax / ay; + EMULV (ay, u, v, vv, t1, t2, t3, t4, t5); + du = ((ax - v) - vv) / ay; + } + + if (x > 0) + { + /* (i) x>0, abs(y)< abs(x): atan(ay/ax) */ + if (ay < ax) + { + if (u < inv16.d) + { + v = u * u; + + zz = du + u * v * (d3.d + + v * (d5.d + + v * (d7.d + + v * (d9.d + + v * (d11.d + + v * d13.d))))); + + if ((z = u + (zz - u1.d * u)) == u + (zz + u1.d * u)) + return signArctan2 (y, z); + + MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8); + s1 = v * (f11.d + v * (f13.d + + v * (f15.d + v * (f17.d + v * f19.d)))); + ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); + + if ((z = s1 + (ss1 - u5.d * s1)) == s1 + (ss1 + u5.d * s1)) + return signArctan2 (y, z); + + return atan2Mp (x, y, pr); + } + + i = (TWO52 + TWO8 * u) - TWO52; + i -= 16; + t3 = u - cij[i][0].d; + EADD (t3, du, v, dv); + t1 = cij[i][1].d; + t2 = cij[i][2].d; + zz = v * t2 + (dv * t2 + + v * v * (cij[i][3].d + + v * (cij[i][4].d + + v * (cij[i][5].d + + v * cij[i][6].d)))); + if (i < 112) + { + if (i < 48) + u9 = u91.d; /* u < 1/4 */ + else + u9 = u92.d; + } /* 1/4 <= u < 1/2 */ + else + { + if (i < 176) + u9 = u93.d; /* 1/2 <= u < 3/4 */ + else + u9 = u94.d; + } /* 3/4 <= u <= 1 */ + if ((z = t1 + (zz - u9 * t1)) == t1 + (zz + u9 * t1)) + return signArctan2 (y, z); + + t1 = u - hij[i][0].d; + EADD (t1, du, v, vv); + s1 = v * (hij[i][11].d + + v * (hij[i][12].d + + v * (hij[i][13].d + + v * (hij[i][14].d + + v * hij[i][15].d)))); + ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); + + if ((z = s2 + (ss2 - ub.d * s2)) == s2 + (ss2 + ub.d * s2)) + return signArctan2 (y, z); + return atan2Mp (x, y, pr); + } + + /* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */ + if (u < inv16.d) + { + v = u * u; + zz = u * v * (d3.d + + v * (d5.d + + v * (d7.d + + v * (d9.d + + v * (d11.d + + v * d13.d))))); + ESUB (hpi.d, u, t2, cor); + t3 = ((hpi1.d + cor) - du) - zz; + if ((z = t2 + (t3 - u2.d)) == t2 + (t3 + u2.d)) + return signArctan2 (y, z); + + MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8); + s1 = v * (f11.d + + v * (f13.d + + v * (f15.d + v * (f17.d + v * f19.d)))); + ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); + SUB2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2); + + if ((z = s2 + (ss2 - u6.d)) == s2 + (ss2 + u6.d)) + return signArctan2 (y, z); + return atan2Mp (x, y, pr); + } + + i = (TWO52 + TWO8 * u) - TWO52; + i -= 16; + v = (u - cij[i][0].d) + du; + + zz = hpi1.d - v * (cij[i][2].d + + v * (cij[i][3].d + + v * (cij[i][4].d + + v * (cij[i][5].d + + v * cij[i][6].d)))); + t1 = hpi.d - cij[i][1].d; + if (i < 112) + ua = ua1.d; /* w < 1/2 */ + else + ua = ua2.d; /* w >= 1/2 */ + if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) + return signArctan2 (y, z); + + t1 = u - hij[i][0].d; + EADD (t1, du, v, vv); + + s1 = v * (hij[i][11].d + + v * (hij[i][12].d + + v * (hij[i][13].d + + v * (hij[i][14].d + + v * hij[i][15].d)))); + + ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); + SUB2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2); + + if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) + return signArctan2 (y, z); + return atan2Mp (x, y, pr); + } + + /* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */ + if (ax < ay) + { + if (u < inv16.d) + { + v = u * u; + zz = u * v * (d3.d + + v * (d5.d + + v * (d7.d + + v * (d9.d + + v * (d11.d + v * d13.d))))); + EADD (hpi.d, u, t2, cor); + t3 = ((hpi1.d + cor) + du) + zz; + if ((z = t2 + (t3 - u3.d)) == t2 + (t3 + u3.d)) + return signArctan2 (y, z); + + MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8); + s1 = v * (f11.d + + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d)))); + ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); + ADD2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2); + + if ((z = s2 + (ss2 - u7.d)) == s2 + (ss2 + u7.d)) + return signArctan2 (y, z); + return atan2Mp (x, y, pr); + } + + i = (TWO52 + TWO8 * u) - TWO52; + i -= 16; + v = (u - cij[i][0].d) + du; + zz = hpi1.d + v * (cij[i][2].d + + v * (cij[i][3].d + + v * (cij[i][4].d + + v * (cij[i][5].d + + v * cij[i][6].d)))); + t1 = hpi.d + cij[i][1].d; + if (i < 112) + ua = ua1.d; /* w < 1/2 */ + else + ua = ua2.d; /* w >= 1/2 */ + if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) + return signArctan2 (y, z); + + t1 = u - hij[i][0].d; + EADD (t1, du, v, vv); + s1 = v * (hij[i][11].d + + v * (hij[i][12].d + + v * (hij[i][13].d + + v * (hij[i][14].d + + v * hij[i][15].d)))); + ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); + ADD2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2); + + if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) + return signArctan2 (y, z); + return atan2Mp (x, y, pr); + } + + /* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */ + if (u < inv16.d) + { + v = u * u; + zz = u * v * (d3.d + + v * (d5.d + + v * (d7.d + + v * (d9.d + v * (d11.d + v * d13.d))))); + ESUB (opi.d, u, t2, cor); + t3 = ((opi1.d + cor) - du) - zz; + if ((z = t2 + (t3 - u4.d)) == t2 + (t3 + u4.d)) + return signArctan2 (y, z); + + MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8); + s1 = v * (f11.d + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d)))); + ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); + SUB2 (opi.d, opi1.d, s1, ss1, s2, ss2, t1, t2); + + if ((z = s2 + (ss2 - u8.d)) == s2 + (ss2 + u8.d)) + return signArctan2 (y, z); + return atan2Mp (x, y, pr); + } + + i = (TWO52 + TWO8 * u) - TWO52; + i -= 16; + v = (u - cij[i][0].d) + du; + zz = opi1.d - v * (cij[i][2].d + + v * (cij[i][3].d + + v * (cij[i][4].d + + v * (cij[i][5].d + v * cij[i][6].d)))); + t1 = opi.d - cij[i][1].d; + if (i < 112) + ua = ua1.d; /* w < 1/2 */ + else + ua = ua2.d; /* w >= 1/2 */ + if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) + return signArctan2 (y, z); + + t1 = u - hij[i][0].d; + + EADD (t1, du, v, vv); + + s1 = v * (hij[i][11].d + + v * (hij[i][12].d + + v * (hij[i][13].d + + v * (hij[i][14].d + v * hij[i][15].d)))); + + ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); + MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8); + ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); + SUB2 (opi.d, opi1.d, s2, ss2, s1, ss1, t1, t2); + + if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) + return signArctan2 (y, z); + return atan2Mp (x, y, pr); +} + +#ifndef __ieee754_atan2 +strong_alias (__ieee754_atan2, __atan2_finite) +#endif + +/* Treat the Denormalized case */ +static double +SECTION +normalized (double ax, double ay, double y, double z) +{ + int p; + mp_no mpx, mpy, mpz, mperr, mpz2, mpt1; + p = 6; + __dbl_mp (ax, &mpx, p); + __dbl_mp (ay, &mpy, p); + __dvd (&mpy, &mpx, &mpz, p); + __dbl_mp (ue.d, &mpt1, p); + __mul (&mpz, &mpt1, &mperr, p); + __sub (&mpz, &mperr, &mpz2, p); + __mp_dbl (&mpz2, &z, p); + return signArctan2 (y, z); +} + +/* Stage 3: Perform a multi-Precision computation */ +static double +SECTION +atan2Mp (double x, double y, const int pr[]) +{ + double z1, z2; + int i, p; + mp_no mpx, mpy, mpz, mpz1, mpz2, mperr, mpt1; + for (i = 0; i < MM; i++) + { + p = pr[i]; + __dbl_mp (x, &mpx, p); + __dbl_mp (y, &mpy, p); + __mpatan2 (&mpy, &mpx, &mpz, p); + __dbl_mp (ud[i].d, &mpt1, p); + __mul (&mpz, &mpt1, &mperr, p); + __add (&mpz, &mperr, &mpz1, p); + __sub (&mpz, &mperr, &mpz2, p); + __mp_dbl (&mpz1, &z1, p); + __mp_dbl (&mpz2, &z2, p); + if (z1 == z2) + { + LIBC_PROBE (slowatan2, 4, &p, &x, &y, &z1); + return z1; + } + } + LIBC_PROBE (slowatan2_inexact, 4, &p, &x, &y, &z1); + return z1; /*if impossible to do exact computing */ +} |