about summary refs log tree commit diff
path: root/REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c
diff options
context:
space:
mode:
Diffstat (limited to 'REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c')
-rw-r--r--REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c620
1 files changed, 620 insertions, 0 deletions
diff --git a/REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c b/REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c
new file mode 100644
index 0000000000..3c9d964b9b
--- /dev/null
+++ b/REORG.TODO/sysdeps/ieee754/dbl-64/e_atan2.c
@@ -0,0 +1,620 @@
+/*
+ * IBM Accurate Mathematical Library
+ * written by International Business Machines Corp.
+ * Copyright (C) 2001-2017 Free Software Foundation, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+/************************************************************************/
+/*  MODULE_NAME: atnat2.c                                               */
+/*                                                                      */
+/*  FUNCTIONS: uatan2                                                   */
+/*             atan2Mp                                                  */
+/*             signArctan2                                              */
+/*             normalized                                               */
+/*                                                                      */
+/*  FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h                */
+/*                mpatan.c mpatan2.c mpsqrt.c                           */
+/*                uatan.tbl                                             */
+/*                                                                      */
+/* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/
+/* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/
+/*                                                                      */
+/* Assumption: Machine arithmetic operations are performed in           */
+/* round to nearest mode of IEEE 754 standard.                          */
+/*                                                                      */
+/************************************************************************/
+
+#include <dla.h>
+#include "mpa.h"
+#include "MathLib.h"
+#include "uatan.tbl"
+#include "atnat2.h"
+#include <fenv.h>
+#include <float.h>
+#include <math.h>
+#include <math_private.h>
+#include <stap-probe.h>
+
+#ifndef SECTION
+# define SECTION
+#endif
+
+/************************************************************************/
+/* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */
+/* it computes the correctly rounded (to nearest) value of atan2(y,x).  */
+/* Assumption: Machine arithmetic operations are performed in           */
+/* round to nearest mode of IEEE 754 standard.                          */
+/************************************************************************/
+static double atan2Mp (double, double, const int[]);
+  /* Fix the sign and return after stage 1 or stage 2 */
+static double
+signArctan2 (double y, double z)
+{
+  return __copysign (z, y);
+}
+
+static double normalized (double, double, double, double);
+void __mpatan2 (mp_no *, mp_no *, mp_no *, int);
+
+double
+SECTION
+__ieee754_atan2 (double y, double x)
+{
+  int i, de, ux, dx, uy, dy;
+  static const int pr[MM] = { 6, 8, 10, 20, 32 };
+  double ax, ay, u, du, u9, ua, v, vv, dv, t1, t2, t3, t7, t8,
+	 z, zz, cor, s1, ss1, s2, ss2;
+#ifndef DLA_FMS
+  double t4, t5, t6;
+#endif
+  number num;
+
+  static const int ep = 59768832,      /*  57*16**5   */
+		   em = -59768832;      /* -57*16**5   */
+
+  /* x=NaN or y=NaN */
+  num.d = x;
+  ux = num.i[HIGH_HALF];
+  dx = num.i[LOW_HALF];
+  if ((ux & 0x7ff00000) == 0x7ff00000)
+    {
+      if (((ux & 0x000fffff) | dx) != 0x00000000)
+	return x + y;
+    }
+  num.d = y;
+  uy = num.i[HIGH_HALF];
+  dy = num.i[LOW_HALF];
+  if ((uy & 0x7ff00000) == 0x7ff00000)
+    {
+      if (((uy & 0x000fffff) | dy) != 0x00000000)
+	return y + y;
+    }
+
+  /* y=+-0 */
+  if (uy == 0x00000000)
+    {
+      if (dy == 0x00000000)
+	{
+	  if ((ux & 0x80000000) == 0x00000000)
+	    return 0;
+	  else
+	    return opi.d;
+	}
+    }
+  else if (uy == 0x80000000)
+    {
+      if (dy == 0x00000000)
+	{
+	  if ((ux & 0x80000000) == 0x00000000)
+	    return -0.0;
+	  else
+	    return mopi.d;
+	}
+    }
+
+  /* x=+-0 */
+  if (x == 0)
+    {
+      if ((uy & 0x80000000) == 0x00000000)
+	return hpi.d;
+      else
+	return mhpi.d;
+    }
+
+  /* x=+-INF */
+  if (ux == 0x7ff00000)
+    {
+      if (dx == 0x00000000)
+	{
+	  if (uy == 0x7ff00000)
+	    {
+	      if (dy == 0x00000000)
+		return qpi.d;
+	    }
+	  else if (uy == 0xfff00000)
+	    {
+	      if (dy == 0x00000000)
+		return mqpi.d;
+	    }
+	  else
+	    {
+	      if ((uy & 0x80000000) == 0x00000000)
+		return 0;
+	      else
+		return -0.0;
+	    }
+	}
+    }
+  else if (ux == 0xfff00000)
+    {
+      if (dx == 0x00000000)
+	{
+	  if (uy == 0x7ff00000)
+	    {
+	      if (dy == 0x00000000)
+		return tqpi.d;
+	    }
+	  else if (uy == 0xfff00000)
+	    {
+	      if (dy == 0x00000000)
+		return mtqpi.d;
+	    }
+	  else
+	    {
+	      if ((uy & 0x80000000) == 0x00000000)
+		return opi.d;
+	      else
+		return mopi.d;
+	    }
+	}
+    }
+
+  /* y=+-INF */
+  if (uy == 0x7ff00000)
+    {
+      if (dy == 0x00000000)
+	return hpi.d;
+    }
+  else if (uy == 0xfff00000)
+    {
+      if (dy == 0x00000000)
+	return mhpi.d;
+    }
+
+  SET_RESTORE_ROUND (FE_TONEAREST);
+  /* either x/y or y/x is very close to zero */
+  ax = (x < 0) ? -x : x;
+  ay = (y < 0) ? -y : y;
+  de = (uy & 0x7ff00000) - (ux & 0x7ff00000);
+  if (de >= ep)
+    {
+      return ((y > 0) ? hpi.d : mhpi.d);
+    }
+  else if (de <= em)
+    {
+      if (x > 0)
+	{
+	  double ret;
+	  if ((z = ay / ax) < TWOM1022)
+	    ret = normalized (ax, ay, y, z);
+	  else
+	    ret = signArctan2 (y, z);
+	  if (fabs (ret) < DBL_MIN)
+	    {
+	      double vret = ret ? ret : DBL_MIN;
+	      double force_underflow = vret * vret;
+	      math_force_eval (force_underflow);
+	    }
+	  return ret;
+	}
+      else
+	{
+	  return ((y > 0) ? opi.d : mopi.d);
+	}
+    }
+
+  /* if either x or y is extremely close to zero, scale abs(x), abs(y). */
+  if (ax < twom500.d || ay < twom500.d)
+    {
+      ax *= two500.d;
+      ay *= two500.d;
+    }
+
+  /* Likewise for large x and y.  */
+  if (ax > two500.d || ay > two500.d)
+    {
+      ax *= twom500.d;
+      ay *= twom500.d;
+    }
+
+  /* x,y which are neither special nor extreme */
+  if (ay < ax)
+    {
+      u = ay / ax;
+      EMULV (ax, u, v, vv, t1, t2, t3, t4, t5);
+      du = ((ay - v) - vv) / ax;
+    }
+  else
+    {
+      u = ax / ay;
+      EMULV (ay, u, v, vv, t1, t2, t3, t4, t5);
+      du = ((ax - v) - vv) / ay;
+    }
+
+  if (x > 0)
+    {
+      /* (i)   x>0, abs(y)< abs(x):  atan(ay/ax) */
+      if (ay < ax)
+	{
+	  if (u < inv16.d)
+	    {
+	      v = u * u;
+
+	      zz = du + u * v * (d3.d
+				 + v * (d5.d
+					+ v * (d7.d
+					       + v * (d9.d
+						      + v * (d11.d
+							     + v * d13.d)))));
+
+	      if ((z = u + (zz - u1.d * u)) == u + (zz + u1.d * u))
+		return signArctan2 (y, z);
+
+	      MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8);
+	      s1 = v * (f11.d + v * (f13.d
+				     + v * (f15.d + v * (f17.d + v * f19.d))));
+	      ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
+	      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	      ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
+	      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	      ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
+	      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	      ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
+	      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	      MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
+	      ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
+
+	      if ((z = s1 + (ss1 - u5.d * s1)) == s1 + (ss1 + u5.d * s1))
+		return signArctan2 (y, z);
+
+	      return atan2Mp (x, y, pr);
+	    }
+
+	  i = (TWO52 + TWO8 * u) - TWO52;
+	  i -= 16;
+	  t3 = u - cij[i][0].d;
+	  EADD (t3, du, v, dv);
+	  t1 = cij[i][1].d;
+	  t2 = cij[i][2].d;
+	  zz = v * t2 + (dv * t2
+			 + v * v * (cij[i][3].d
+				    + v * (cij[i][4].d
+					   + v * (cij[i][5].d
+						  + v * cij[i][6].d))));
+	  if (i < 112)
+	    {
+	      if (i < 48)
+		u9 = u91.d;     /* u < 1/4	*/
+	      else
+		u9 = u92.d;
+	    }           /* 1/4 <= u < 1/2 */
+	  else
+	    {
+	      if (i < 176)
+		u9 = u93.d;     /* 1/2 <= u < 3/4 */
+	      else
+		u9 = u94.d;
+	    }           /* 3/4 <= u <= 1  */
+	  if ((z = t1 + (zz - u9 * t1)) == t1 + (zz + u9 * t1))
+	    return signArctan2 (y, z);
+
+	  t1 = u - hij[i][0].d;
+	  EADD (t1, du, v, vv);
+	  s1 = v * (hij[i][11].d
+		    + v * (hij[i][12].d
+			   + v * (hij[i][13].d
+				  + v * (hij[i][14].d
+					 + v * hij[i][15].d))));
+	  ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
+
+	  if ((z = s2 + (ss2 - ub.d * s2)) == s2 + (ss2 + ub.d * s2))
+	    return signArctan2 (y, z);
+	  return atan2Mp (x, y, pr);
+	}
+
+      /* (ii)  x>0, abs(x)<=abs(y):  pi/2-atan(ax/ay) */
+      if (u < inv16.d)
+	{
+	  v = u * u;
+	  zz = u * v * (d3.d
+			+ v * (d5.d
+			       + v * (d7.d
+				      + v * (d9.d
+					     + v * (d11.d
+						    + v * d13.d)))));
+	  ESUB (hpi.d, u, t2, cor);
+	  t3 = ((hpi1.d + cor) - du) - zz;
+	  if ((z = t2 + (t3 - u2.d)) == t2 + (t3 + u2.d))
+	    return signArctan2 (y, z);
+
+	  MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8);
+	  s1 = v * (f11.d
+		    + v * (f13.d
+			   + v * (f15.d + v * (f17.d + v * f19.d))));
+	  ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
+	  SUB2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2);
+
+	  if ((z = s2 + (ss2 - u6.d)) == s2 + (ss2 + u6.d))
+	    return signArctan2 (y, z);
+	  return atan2Mp (x, y, pr);
+	}
+
+      i = (TWO52 + TWO8 * u) - TWO52;
+      i -= 16;
+      v = (u - cij[i][0].d) + du;
+
+      zz = hpi1.d - v * (cij[i][2].d
+			 + v * (cij[i][3].d
+				+ v * (cij[i][4].d
+				       + v * (cij[i][5].d
+					      + v * cij[i][6].d))));
+      t1 = hpi.d - cij[i][1].d;
+      if (i < 112)
+	ua = ua1.d;	/* w <  1/2 */
+      else
+	ua = ua2.d;	/* w >= 1/2 */
+      if ((z = t1 + (zz - ua)) == t1 + (zz + ua))
+	return signArctan2 (y, z);
+
+      t1 = u - hij[i][0].d;
+      EADD (t1, du, v, vv);
+
+      s1 = v * (hij[i][11].d
+		+ v * (hij[i][12].d
+		       + v * (hij[i][13].d
+			      + v * (hij[i][14].d
+				     + v * hij[i][15].d))));
+
+      ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
+      SUB2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2);
+
+      if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d))
+	return signArctan2 (y, z);
+      return atan2Mp (x, y, pr);
+    }
+
+  /* (iii) x<0, abs(x)< abs(y):  pi/2+atan(ax/ay) */
+  if (ax < ay)
+    {
+      if (u < inv16.d)
+	{
+	  v = u * u;
+	  zz = u * v * (d3.d
+			+ v * (d5.d
+			       + v * (d7.d
+				      + v * (d9.d
+					     + v * (d11.d + v * d13.d)))));
+	  EADD (hpi.d, u, t2, cor);
+	  t3 = ((hpi1.d + cor) + du) + zz;
+	  if ((z = t2 + (t3 - u3.d)) == t2 + (t3 + u3.d))
+	    return signArctan2 (y, z);
+
+	  MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8);
+	  s1 = v * (f11.d
+		    + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d))));
+	  ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
+	  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+	  MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
+	  ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
+	  ADD2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2);
+
+	  if ((z = s2 + (ss2 - u7.d)) == s2 + (ss2 + u7.d))
+	    return signArctan2 (y, z);
+	  return atan2Mp (x, y, pr);
+	}
+
+      i = (TWO52 + TWO8 * u) - TWO52;
+      i -= 16;
+      v = (u - cij[i][0].d) + du;
+      zz = hpi1.d + v * (cij[i][2].d
+			 + v * (cij[i][3].d
+				+ v * (cij[i][4].d
+				       + v * (cij[i][5].d
+					      + v * cij[i][6].d))));
+      t1 = hpi.d + cij[i][1].d;
+      if (i < 112)
+	ua = ua1.d;	/* w <  1/2 */
+      else
+	ua = ua2.d;	/* w >= 1/2 */
+      if ((z = t1 + (zz - ua)) == t1 + (zz + ua))
+	return signArctan2 (y, z);
+
+      t1 = u - hij[i][0].d;
+      EADD (t1, du, v, vv);
+      s1 = v * (hij[i][11].d
+		+ v * (hij[i][12].d
+		       + v * (hij[i][13].d
+			      + v * (hij[i][14].d
+				     + v * hij[i][15].d))));
+      ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
+      ADD2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2);
+
+      if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d))
+	return signArctan2 (y, z);
+      return atan2Mp (x, y, pr);
+    }
+
+  /* (iv)  x<0, abs(y)<=abs(x):  pi-atan(ax/ay) */
+  if (u < inv16.d)
+    {
+      v = u * u;
+      zz = u * v * (d3.d
+		    + v * (d5.d
+			   + v * (d7.d
+				  + v * (d9.d + v * (d11.d + v * d13.d)))));
+      ESUB (opi.d, u, t2, cor);
+      t3 = ((opi1.d + cor) - du) - zz;
+      if ((z = t2 + (t3 - u4.d)) == t2 + (t3 + u4.d))
+	return signArctan2 (y, z);
+
+      MUL2 (u, du, u, du, v, vv, t1, t2, t3, t4, t5, t6, t7, t8);
+      s1 = v * (f11.d + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d))));
+      ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2);
+      MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+      MUL2 (u, du, s1, ss1, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
+      ADD2 (u, du, s2, ss2, s1, ss1, t1, t2);
+      SUB2 (opi.d, opi1.d, s1, ss1, s2, ss2, t1, t2);
+
+      if ((z = s2 + (ss2 - u8.d)) == s2 + (ss2 + u8.d))
+	return signArctan2 (y, z);
+      return atan2Mp (x, y, pr);
+    }
+
+  i = (TWO52 + TWO8 * u) - TWO52;
+  i -= 16;
+  v = (u - cij[i][0].d) + du;
+  zz = opi1.d - v * (cij[i][2].d
+		     + v * (cij[i][3].d
+			    + v * (cij[i][4].d
+				   + v * (cij[i][5].d + v * cij[i][6].d))));
+  t1 = opi.d - cij[i][1].d;
+  if (i < 112)
+    ua = ua1.d;	/* w <  1/2 */
+  else
+    ua = ua2.d;	/* w >= 1/2 */
+  if ((z = t1 + (zz - ua)) == t1 + (zz + ua))
+    return signArctan2 (y, z);
+
+  t1 = u - hij[i][0].d;
+
+  EADD (t1, du, v, vv);
+
+  s1 = v * (hij[i][11].d
+	    + v * (hij[i][12].d
+		   + v * (hij[i][13].d
+			  + v * (hij[i][14].d + v * hij[i][15].d))));
+
+  ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2);
+  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+  ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2);
+  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+  ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2);
+  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+  ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2);
+  MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2, t3, t4, t5, t6, t7, t8);
+  ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2);
+  SUB2 (opi.d, opi1.d, s2, ss2, s1, ss1, t1, t2);
+
+  if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d))
+    return signArctan2 (y, z);
+  return atan2Mp (x, y, pr);
+}
+
+#ifndef __ieee754_atan2
+strong_alias (__ieee754_atan2, __atan2_finite)
+#endif
+
+/* Treat the Denormalized case */
+static double
+SECTION
+normalized (double ax, double ay, double y, double z)
+{
+  int p;
+  mp_no mpx, mpy, mpz, mperr, mpz2, mpt1;
+  p = 6;
+  __dbl_mp (ax, &mpx, p);
+  __dbl_mp (ay, &mpy, p);
+  __dvd (&mpy, &mpx, &mpz, p);
+  __dbl_mp (ue.d, &mpt1, p);
+  __mul (&mpz, &mpt1, &mperr, p);
+  __sub (&mpz, &mperr, &mpz2, p);
+  __mp_dbl (&mpz2, &z, p);
+  return signArctan2 (y, z);
+}
+
+/* Stage 3: Perform a multi-Precision computation */
+static double
+SECTION
+atan2Mp (double x, double y, const int pr[])
+{
+  double z1, z2;
+  int i, p;
+  mp_no mpx, mpy, mpz, mpz1, mpz2, mperr, mpt1;
+  for (i = 0; i < MM; i++)
+    {
+      p = pr[i];
+      __dbl_mp (x, &mpx, p);
+      __dbl_mp (y, &mpy, p);
+      __mpatan2 (&mpy, &mpx, &mpz, p);
+      __dbl_mp (ud[i].d, &mpt1, p);
+      __mul (&mpz, &mpt1, &mperr, p);
+      __add (&mpz, &mperr, &mpz1, p);
+      __sub (&mpz, &mperr, &mpz2, p);
+      __mp_dbl (&mpz1, &z1, p);
+      __mp_dbl (&mpz2, &z2, p);
+      if (z1 == z2)
+	{
+	  LIBC_PROBE (slowatan2, 4, &p, &x, &y, &z1);
+	  return z1;
+	}
+    }
+  LIBC_PROBE (slowatan2_inexact, 4, &p, &x, &y, &z1);
+  return z1;			/*if impossible to do exact computing */
+}