about summary refs log tree commit diff
path: root/REORG.TODO/sysdeps/i386/fpu/e_pow.S
diff options
context:
space:
mode:
Diffstat (limited to 'REORG.TODO/sysdeps/i386/fpu/e_pow.S')
-rw-r--r--REORG.TODO/sysdeps/i386/fpu/e_pow.S456
1 files changed, 456 insertions, 0 deletions
diff --git a/REORG.TODO/sysdeps/i386/fpu/e_pow.S b/REORG.TODO/sysdeps/i386/fpu/e_pow.S
new file mode 100644
index 0000000000..2edb9a9fbc
--- /dev/null
+++ b/REORG.TODO/sysdeps/i386/fpu/e_pow.S
@@ -0,0 +1,456 @@
+/* ix87 specific implementation of pow function.
+   Copyright (C) 1996-2017 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+#include <machine/asm.h>
+#include <i386-math-asm.h>
+
+	.section .rodata.cst8,"aM",@progbits,8
+
+	.p2align 3
+	.type one,@object
+one:	.double 1.0
+	ASM_SIZE_DIRECTIVE(one)
+	.type limit,@object
+limit:	.double 0.29
+	ASM_SIZE_DIRECTIVE(limit)
+	.type p63,@object
+p63:	.byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
+	ASM_SIZE_DIRECTIVE(p63)
+	.type p10,@object
+p10:	.byte 0, 0, 0, 0, 0, 0, 0x90, 0x40
+	ASM_SIZE_DIRECTIVE(p10)
+
+	.section .rodata.cst16,"aM",@progbits,16
+
+	.p2align 3
+	.type infinity,@object
+inf_zero:
+infinity:
+	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
+	ASM_SIZE_DIRECTIVE(infinity)
+	.type zero,@object
+zero:	.double 0.0
+	ASM_SIZE_DIRECTIVE(zero)
+	.type minf_mzero,@object
+minf_mzero:
+minfinity:
+	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
+mzero:
+	.byte 0, 0, 0, 0, 0, 0, 0, 0x80
+	ASM_SIZE_DIRECTIVE(minf_mzero)
+DEFINE_DBL_MIN
+
+#ifdef PIC
+# define MO(op) op##@GOTOFF(%ecx)
+# define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
+#else
+# define MO(op) op
+# define MOX(op,x,f) op(,x,f)
+#endif
+
+	.text
+ENTRY(__ieee754_pow)
+	fldl	12(%esp)	// y
+	fxam
+
+#ifdef	PIC
+	LOAD_PIC_REG (cx)
+#endif
+
+	fnstsw
+	movb	%ah, %dl
+	andb	$0x45, %ah
+	cmpb	$0x40, %ah	// is y == 0 ?
+	je	11f
+
+	cmpb	$0x05, %ah	// is y == ±inf ?
+	je	12f
+
+	cmpb	$0x01, %ah	// is y == NaN ?
+	je	30f
+
+	fldl	4(%esp)		// x : y
+
+	subl	$8,%esp
+	cfi_adjust_cfa_offset (8)
+
+	fxam
+	fnstsw
+	movb	%ah, %dh
+	andb	$0x45, %ah
+	cmpb	$0x40, %ah
+	je	20f		// x is ±0
+
+	cmpb	$0x05, %ah
+	je	15f		// x is ±inf
+
+	cmpb	$0x01, %ah
+	je	32f		// x is NaN
+
+	fxch			// y : x
+
+	/* fistpll raises invalid exception for |y| >= 1L<<63.  */
+	fld	%st		// y : y : x
+	fabs			// |y| : y : x
+	fcompl	MO(p63)		// y : x
+	fnstsw
+	sahf
+	jnc	2f
+
+	/* First see whether `y' is a natural number.  In this case we
+	   can use a more precise algorithm.  */
+	fld	%st		// y : y : x
+	fistpll	(%esp)		// y : x
+	fildll	(%esp)		// int(y) : y : x
+	fucomp	%st(1)		// y : x
+	fnstsw
+	sahf
+	jne	3f
+
+	/* OK, we have an integer value for y.  If large enough that
+	   errors may propagate out of the 11 bits excess precision, use
+	   the algorithm for real exponent instead.  */
+	fld	%st		// y : y : x
+	fabs			// |y| : y : x
+	fcompl	MO(p10)		// y : x
+	fnstsw
+	sahf
+	jnc	2f
+	popl	%eax
+	cfi_adjust_cfa_offset (-4)
+	popl	%edx
+	cfi_adjust_cfa_offset (-4)
+	orl	$0, %edx
+	fstp	%st(0)		// x
+	jns	4f		// y >= 0, jump
+	fdivrl	MO(one)		// 1/x		(now referred to as x)
+	negl	%eax
+	adcl	$0, %edx
+	negl	%edx
+4:	fldl	MO(one)		// 1 : x
+	fxch
+
+	/* If y is even, take the absolute value of x.  Otherwise,
+	   ensure all intermediate values that might overflow have the
+	   sign of x.  */
+	testb	$1, %al
+	jnz	6f
+	fabs
+
+6:	shrdl	$1, %edx, %eax
+	jnc	5f
+	fxch
+	fabs
+	fmul	%st(1)		// x : ST*x
+	fxch
+5:	fld	%st		// x : x : ST*x
+	fabs			// |x| : x : ST*x
+	fmulp			// |x|*x : ST*x
+	shrl	$1, %edx
+	movl	%eax, %ecx
+	orl	%edx, %ecx
+	jnz	6b
+	fstp	%st(0)		// ST*x
+#ifdef	PIC
+	LOAD_PIC_REG (cx)
+#endif
+	DBL_NARROW_EVAL_UFLOW_NONNAN
+	ret
+
+	/* y is ±NAN */
+30:	fldl	4(%esp)		// x : y
+	fldl	MO(one)		// 1.0 : x : y
+	fucomp	%st(1)		// x : y
+	fnstsw
+	sahf
+	je	31f
+	fxch			// y : x
+31:	fstp	%st(1)
+	ret
+
+	cfi_adjust_cfa_offset (8)
+32:	addl	$8, %esp
+	cfi_adjust_cfa_offset (-8)
+	fstp	%st(1)
+	ret
+
+	cfi_adjust_cfa_offset (8)
+	.align ALIGNARG(4)
+2:	// y is a large integer (absolute value at least 1L<<10), but
+	// may be odd unless at least 1L<<64.  So it may be necessary
+	// to adjust the sign of a negative result afterwards.
+	fxch			// x : y
+	fabs			// |x| : y
+	fxch			// y : x
+	.align ALIGNARG(4)
+3:	/* y is a real number.  */
+	fxch			// x : y
+	fldl	MO(one)		// 1.0 : x : y
+	fldl	MO(limit)	// 0.29 : 1.0 : x : y
+	fld	%st(2)		// x : 0.29 : 1.0 : x : y
+	fsub	%st(2)		// x-1 : 0.29 : 1.0 : x : y
+	fabs			// |x-1| : 0.29 : 1.0 : x : y
+	fucompp			// 1.0 : x : y
+	fnstsw
+	fxch			// x : 1.0 : y
+	sahf
+	ja	7f
+	fsub	%st(1)		// x-1 : 1.0 : y
+	fyl2xp1			// log2(x) : y
+	jmp	8f
+
+7:	fyl2x			// log2(x) : y
+8:	fmul	%st(1)		// y*log2(x) : y
+	fst	%st(1)		// y*log2(x) : y*log2(x)
+	frndint			// int(y*log2(x)) : y*log2(x)
+	fsubr	%st, %st(1)	// int(y*log2(x)) : fract(y*log2(x))
+	fxch			// fract(y*log2(x)) : int(y*log2(x))
+	f2xm1			// 2^fract(y*log2(x))-1 : int(y*log2(x))
+	faddl	MO(one)		// 2^fract(y*log2(x)) : int(y*log2(x))
+
+	// Before scaling, we must negate if x is negative and y is an
+	// odd integer.
+	testb	$2, %dh
+	jz	291f
+	// x is negative.  If y is an odd integer, negate the result.
+	fldl	20(%esp)	// y : 2^fract(y*log2(x)) : int(y*log2(x))
+	fld	%st		// y : y : 2^fract(y*log2(x)) : int(y*log2(x))
+	fabs			// |y| : y : 2^fract(y*log2(x)) : int(y*log2(x))
+	fcompl	MO(p63)		// y : 2^fract(y*log2(x)) : int(y*log2(x))
+	fnstsw
+	sahf
+	jnc	290f
+
+	// We must find out whether y is an odd integer.
+	fld	%st		// y : y : 2^fract(y*log2(x)) : int(y*log2(x))
+	fistpll	(%esp)		// y : 2^fract(y*log2(x)) : int(y*log2(x))
+	fildll	(%esp)		// int(y) : y : 2^fract(y*log2(x)) : int(y*log2(x))
+	fucompp			// 2^fract(y*log2(x)) : int(y*log2(x))
+	fnstsw
+	sahf
+	jne	291f
+
+	// OK, the value is an integer, but is it odd?
+	popl	%eax
+	cfi_adjust_cfa_offset (-4)
+	popl	%edx
+	cfi_adjust_cfa_offset (-4)
+	andb	$1, %al
+	jz	292f		// jump if not odd
+	// It's an odd integer.
+	fchs
+	jmp	292f
+
+	cfi_adjust_cfa_offset (8)
+290:	fstp	%st(0)		// 2^fract(y*log2(x)) : int(y*log2(x))
+291:	addl	$8, %esp
+	cfi_adjust_cfa_offset (-8)
+292:	fscale			// +/- 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
+	fstp	%st(1)		// +/- 2^fract(y*log2(x))*2^int(y*log2(x))
+	DBL_NARROW_EVAL_UFLOW_NONNAN
+	ret
+
+
+	// pow(x,±0) = 1
+	.align ALIGNARG(4)
+11:	fstp	%st(0)		// pop y
+	fldl	MO(one)
+	ret
+
+	// y == ±inf
+	.align ALIGNARG(4)
+12:	fstp	%st(0)		// pop y
+	fldl	MO(one)		// 1
+	fldl	4(%esp)		// x : 1
+	fabs			// abs(x) : 1
+	fucompp			// < 1, == 1, or > 1
+	fnstsw
+	andb	$0x45, %ah
+	cmpb	$0x45, %ah
+	je	13f		// jump if x is NaN
+
+	cmpb	$0x40, %ah
+	je	14f		// jump if |x| == 1
+
+	shlb	$1, %ah
+	xorb	%ah, %dl
+	andl	$2, %edx
+	fldl	MOX(inf_zero, %edx, 4)
+	ret
+
+	.align ALIGNARG(4)
+14:	fldl	MO(one)
+	ret
+
+	.align ALIGNARG(4)
+13:	fldl	4(%esp)		// load x == NaN
+	ret
+
+	cfi_adjust_cfa_offset (8)
+	.align ALIGNARG(4)
+	// x is ±inf
+15:	fstp	%st(0)		// y
+	testb	$2, %dh
+	jz	16f		// jump if x == +inf
+
+	// fistpll raises invalid exception for |y| >= 1L<<63, so test
+	// that (in which case y is certainly even) before testing
+	// whether y is odd.
+	fld	%st		// y : y
+	fabs			// |y| : y
+	fcompl	MO(p63)		// y
+	fnstsw
+	sahf
+	jnc	16f
+
+	// We must find out whether y is an odd integer.
+	fld	%st		// y : y
+	fistpll	(%esp)		// y
+	fildll	(%esp)		// int(y) : y
+	fucompp			// <empty>
+	fnstsw
+	sahf
+	jne	17f
+
+	// OK, the value is an integer.
+	popl	%eax
+	cfi_adjust_cfa_offset (-4)
+	popl	%edx
+	cfi_adjust_cfa_offset (-4)
+	andb	$1, %al
+	jz	18f		// jump if not odd
+	// It's an odd integer.
+	shrl	$31, %edx
+	fldl	MOX(minf_mzero, %edx, 8)
+	ret
+
+	cfi_adjust_cfa_offset (8)
+	.align ALIGNARG(4)
+16:	fcompl	MO(zero)
+	addl	$8, %esp
+	cfi_adjust_cfa_offset (-8)
+	fnstsw
+	shrl	$5, %eax
+	andl	$8, %eax
+	fldl	MOX(inf_zero, %eax, 1)
+	ret
+
+	cfi_adjust_cfa_offset (8)
+	.align ALIGNARG(4)
+17:	shll	$30, %edx	// sign bit for y in right position
+	addl	$8, %esp
+	cfi_adjust_cfa_offset (-8)
+18:	shrl	$31, %edx
+	fldl	MOX(inf_zero, %edx, 8)
+	ret
+
+	cfi_adjust_cfa_offset (8)
+	.align ALIGNARG(4)
+	// x is ±0
+20:	fstp	%st(0)		// y
+	testb	$2, %dl
+	jz	21f		// y > 0
+
+	// x is ±0 and y is < 0.  We must find out whether y is an odd integer.
+	testb	$2, %dh
+	jz	25f
+
+	// fistpll raises invalid exception for |y| >= 1L<<63, so test
+	// that (in which case y is certainly even) before testing
+	// whether y is odd.
+	fld	%st		// y : y
+	fabs			// |y| : y
+	fcompl	MO(p63)		// y
+	fnstsw
+	sahf
+	jnc	25f
+
+	fld	%st		// y : y
+	fistpll	(%esp)		// y
+	fildll	(%esp)		// int(y) : y
+	fucompp			// <empty>
+	fnstsw
+	sahf
+	jne	26f
+
+	// OK, the value is an integer.
+	popl	%eax
+	cfi_adjust_cfa_offset (-4)
+	popl	%edx
+	cfi_adjust_cfa_offset (-4)
+	andb	$1, %al
+	jz	27f		// jump if not odd
+	// It's an odd integer.
+	// Raise divide-by-zero exception and get minus infinity value.
+	fldl	MO(one)
+	fdivl	MO(zero)
+	fchs
+	ret
+
+	cfi_adjust_cfa_offset (8)
+25:	fstp	%st(0)
+26:	addl	$8, %esp
+	cfi_adjust_cfa_offset (-8)
+27:	// Raise divide-by-zero exception and get infinity value.
+	fldl	MO(one)
+	fdivl	MO(zero)
+	ret
+
+	cfi_adjust_cfa_offset (8)
+	.align ALIGNARG(4)
+	// x is ±0 and y is > 0.  We must find out whether y is an odd integer.
+21:	testb	$2, %dh
+	jz	22f
+
+	// fistpll raises invalid exception for |y| >= 1L<<63, so test
+	// that (in which case y is certainly even) before testing
+	// whether y is odd.
+	fcoml	MO(p63)		// y
+	fnstsw
+	sahf
+	jnc	22f
+
+	fld	%st		// y : y
+	fistpll	(%esp)		// y
+	fildll	(%esp)		// int(y) : y
+	fucompp			// <empty>
+	fnstsw
+	sahf
+	jne	23f
+
+	// OK, the value is an integer.
+	popl	%eax
+	cfi_adjust_cfa_offset (-4)
+	popl	%edx
+	cfi_adjust_cfa_offset (-4)
+	andb	$1, %al
+	jz	24f		// jump if not odd
+	// It's an odd integer.
+	fldl	MO(mzero)
+	ret
+
+	cfi_adjust_cfa_offset (8)
+22:	fstp	%st(0)
+23:	addl	$8, %esp	// Don't use 2 x pop
+	cfi_adjust_cfa_offset (-8)
+24:	fldl	MO(zero)
+	ret
+
+END(__ieee754_pow)
+strong_alias (__ieee754_pow, __pow_finite)