about summary refs log tree commit diff
path: root/REORG.TODO/soft-fp/extended.h
diff options
context:
space:
mode:
Diffstat (limited to 'REORG.TODO/soft-fp/extended.h')
-rw-r--r--REORG.TODO/soft-fp/extended.h517
1 files changed, 517 insertions, 0 deletions
diff --git a/REORG.TODO/soft-fp/extended.h b/REORG.TODO/soft-fp/extended.h
new file mode 100644
index 0000000000..da285a6ecb
--- /dev/null
+++ b/REORG.TODO/soft-fp/extended.h
@@ -0,0 +1,517 @@
+/* Software floating-point emulation.
+   Definitions for IEEE Extended Precision.
+   Copyright (C) 1999-2017 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Jakub Jelinek (jj@ultra.linux.cz).
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   In addition to the permissions in the GNU Lesser General Public
+   License, the Free Software Foundation gives you unlimited
+   permission to link the compiled version of this file into
+   combinations with other programs, and to distribute those
+   combinations without any restriction coming from the use of this
+   file.  (The Lesser General Public License restrictions do apply in
+   other respects; for example, they cover modification of the file,
+   and distribution when not linked into a combine executable.)
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+#ifndef SOFT_FP_EXTENDED_H
+#define SOFT_FP_EXTENDED_H	1
+
+#if _FP_W_TYPE_SIZE < 32
+# error "Here's a nickel, kid. Go buy yourself a real computer."
+#endif
+
+#if _FP_W_TYPE_SIZE < 64
+# define _FP_FRACTBITS_E	(4*_FP_W_TYPE_SIZE)
+# define _FP_FRACTBITS_DW_E	(8*_FP_W_TYPE_SIZE)
+#else
+# define _FP_FRACTBITS_E	(2*_FP_W_TYPE_SIZE)
+# define _FP_FRACTBITS_DW_E	(4*_FP_W_TYPE_SIZE)
+#endif
+
+#define _FP_FRACBITS_E		64
+#define _FP_FRACXBITS_E		(_FP_FRACTBITS_E - _FP_FRACBITS_E)
+#define _FP_WFRACBITS_E		(_FP_WORKBITS + _FP_FRACBITS_E)
+#define _FP_WFRACXBITS_E	(_FP_FRACTBITS_E - _FP_WFRACBITS_E)
+#define _FP_EXPBITS_E		15
+#define _FP_EXPBIAS_E		16383
+#define _FP_EXPMAX_E		32767
+
+#define _FP_QNANBIT_E		\
+	((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
+#define _FP_QNANBIT_SH_E		\
+	((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_E		\
+	((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_SH_E		\
+	((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
+#define _FP_OVERFLOW_E		\
+	((_FP_W_TYPE) 1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
+
+#define _FP_WFRACBITS_DW_E	(2 * _FP_WFRACBITS_E)
+#define _FP_WFRACXBITS_DW_E	(_FP_FRACTBITS_DW_E - _FP_WFRACBITS_DW_E)
+#define _FP_HIGHBIT_DW_E	\
+  ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_E - 1) % _FP_W_TYPE_SIZE)
+
+typedef float XFtype __attribute__ ((mode (XF)));
+
+#if _FP_W_TYPE_SIZE < 64
+
+union _FP_UNION_E
+{
+  XFtype flt;
+  struct _FP_STRUCT_LAYOUT
+  {
+# if __BYTE_ORDER == __BIG_ENDIAN
+    unsigned long pad1 : _FP_W_TYPE_SIZE;
+    unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
+    unsigned long sign : 1;
+    unsigned long exp : _FP_EXPBITS_E;
+    unsigned long frac1 : _FP_W_TYPE_SIZE;
+    unsigned long frac0 : _FP_W_TYPE_SIZE;
+# else
+    unsigned long frac0 : _FP_W_TYPE_SIZE;
+    unsigned long frac1 : _FP_W_TYPE_SIZE;
+    unsigned exp : _FP_EXPBITS_E;
+    unsigned sign : 1;
+# endif /* not bigendian */
+  } bits __attribute__ ((packed));
+};
+
+
+# define FP_DECL_E(X)		_FP_DECL (4, X)
+
+# define FP_UNPACK_RAW_E(X, val)			\
+  do							\
+    {							\
+      union _FP_UNION_E FP_UNPACK_RAW_E_flo;		\
+      FP_UNPACK_RAW_E_flo.flt = (val);			\
+							\
+      X##_f[2] = 0;					\
+      X##_f[3] = 0;					\
+      X##_f[0] = FP_UNPACK_RAW_E_flo.bits.frac0;	\
+      X##_f[1] = FP_UNPACK_RAW_E_flo.bits.frac1;	\
+      X##_f[1] &= ~_FP_IMPLBIT_E;			\
+      X##_e  = FP_UNPACK_RAW_E_flo.bits.exp;		\
+      X##_s  = FP_UNPACK_RAW_E_flo.bits.sign;		\
+    }							\
+  while (0)
+
+# define FP_UNPACK_RAW_EP(X, val)			\
+  do							\
+    {							\
+      union _FP_UNION_E *FP_UNPACK_RAW_EP_flo		\
+	= (union _FP_UNION_E *) (val);			\
+							\
+      X##_f[2] = 0;					\
+      X##_f[3] = 0;					\
+      X##_f[0] = FP_UNPACK_RAW_EP_flo->bits.frac0;	\
+      X##_f[1] = FP_UNPACK_RAW_EP_flo->bits.frac1;	\
+      X##_f[1] &= ~_FP_IMPLBIT_E;			\
+      X##_e  = FP_UNPACK_RAW_EP_flo->bits.exp;		\
+      X##_s  = FP_UNPACK_RAW_EP_flo->bits.sign;		\
+    }							\
+  while (0)
+
+# define FP_PACK_RAW_E(val, X)			\
+  do						\
+    {						\
+      union _FP_UNION_E FP_PACK_RAW_E_flo;	\
+						\
+      if (X##_e)				\
+	X##_f[1] |= _FP_IMPLBIT_E;		\
+      else					\
+	X##_f[1] &= ~(_FP_IMPLBIT_E);		\
+      FP_PACK_RAW_E_flo.bits.frac0 = X##_f[0];	\
+      FP_PACK_RAW_E_flo.bits.frac1 = X##_f[1];	\
+      FP_PACK_RAW_E_flo.bits.exp   = X##_e;	\
+      FP_PACK_RAW_E_flo.bits.sign  = X##_s;	\
+						\
+      (val) = FP_PACK_RAW_E_flo.flt;		\
+    }						\
+  while (0)
+
+# define FP_PACK_RAW_EP(val, X)				\
+  do							\
+    {							\
+      if (!FP_INHIBIT_RESULTS)				\
+	{						\
+	  union _FP_UNION_E *FP_PACK_RAW_EP_flo		\
+	    = (union _FP_UNION_E *) (val);		\
+							\
+	  if (X##_e)					\
+	    X##_f[1] |= _FP_IMPLBIT_E;			\
+	  else						\
+	    X##_f[1] &= ~(_FP_IMPLBIT_E);		\
+	  FP_PACK_RAW_EP_flo->bits.frac0 = X##_f[0];	\
+	  FP_PACK_RAW_EP_flo->bits.frac1 = X##_f[1];	\
+	  FP_PACK_RAW_EP_flo->bits.exp   = X##_e;	\
+	  FP_PACK_RAW_EP_flo->bits.sign  = X##_s;	\
+	}						\
+    }							\
+  while (0)
+
+# define FP_UNPACK_E(X, val)			\
+  do						\
+    {						\
+      FP_UNPACK_RAW_E (X, (val));		\
+      _FP_UNPACK_CANONICAL (E, 4, X);		\
+    }						\
+  while (0)
+
+# define FP_UNPACK_EP(X, val)			\
+  do						\
+    {						\
+      FP_UNPACK_RAW_EP (X, (val));		\
+      _FP_UNPACK_CANONICAL (E, 4, X);		\
+    }						\
+  while (0)
+
+# define FP_UNPACK_SEMIRAW_E(X, val)		\
+  do						\
+    {						\
+      FP_UNPACK_RAW_E (X, (val));		\
+      _FP_UNPACK_SEMIRAW (E, 4, X);		\
+    }						\
+  while (0)
+
+# define FP_UNPACK_SEMIRAW_EP(X, val)		\
+  do						\
+    {						\
+      FP_UNPACK_RAW_EP (X, (val));		\
+      _FP_UNPACK_SEMIRAW (E, 4, X);		\
+    }						\
+  while (0)
+
+# define FP_PACK_E(val, X)			\
+  do						\
+    {						\
+      _FP_PACK_CANONICAL (E, 4, X);		\
+      FP_PACK_RAW_E ((val), X);			\
+    }						\
+  while (0)
+
+# define FP_PACK_EP(val, X)			\
+  do						\
+    {						\
+      _FP_PACK_CANONICAL (E, 4, X);		\
+      FP_PACK_RAW_EP ((val), X);		\
+    }						\
+  while (0)
+
+# define FP_PACK_SEMIRAW_E(val, X)		\
+  do						\
+    {						\
+      _FP_PACK_SEMIRAW (E, 4, X);		\
+      FP_PACK_RAW_E ((val), X);			\
+    }						\
+  while (0)
+
+# define FP_PACK_SEMIRAW_EP(val, X)		\
+  do						\
+    {						\
+      _FP_PACK_SEMIRAW (E, 4, X);		\
+      FP_PACK_RAW_EP ((val), X);		\
+    }						\
+  while (0)
+
+# define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN (E, 4, X)
+# define FP_NEG_E(R, X)		_FP_NEG (E, 4, R, X)
+# define FP_ADD_E(R, X, Y)	_FP_ADD (E, 4, R, X, Y)
+# define FP_SUB_E(R, X, Y)	_FP_SUB (E, 4, R, X, Y)
+# define FP_MUL_E(R, X, Y)	_FP_MUL (E, 4, R, X, Y)
+# define FP_DIV_E(R, X, Y)	_FP_DIV (E, 4, R, X, Y)
+# define FP_SQRT_E(R, X)	_FP_SQRT (E, 4, R, X)
+# define FP_FMA_E(R, X, Y, Z)	_FP_FMA (E, 4, 8, R, X, Y, Z)
+
+/* Square root algorithms:
+   We have just one right now, maybe Newton approximation
+   should be added for those machines where division is fast.
+   This has special _E version because standard _4 square
+   root would not work (it has to start normally with the
+   second word and not the first), but as we have to do it
+   anyway, we optimize it by doing most of the calculations
+   in two UWtype registers instead of four.  */
+
+# define _FP_SQRT_MEAT_E(R, S, T, X, q)			\
+  do							\
+    {							\
+      (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1);	\
+      _FP_FRAC_SRL_4 (X, (_FP_WORKBITS));		\
+      while (q)						\
+	{						\
+	  T##_f[1] = S##_f[1] + (q);			\
+	  if (T##_f[1] <= X##_f[1])			\
+	    {						\
+	      S##_f[1] = T##_f[1] + (q);		\
+	      X##_f[1] -= T##_f[1];			\
+	      R##_f[1] += (q);				\
+	    }						\
+	  _FP_FRAC_SLL_2 (X, 1);			\
+	  (q) >>= 1;					\
+	}						\
+      (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1);	\
+      while (q)						\
+	{						\
+	  T##_f[0] = S##_f[0] + (q);			\
+	  T##_f[1] = S##_f[1];				\
+	  if (T##_f[1] < X##_f[1]			\
+	      || (T##_f[1] == X##_f[1]			\
+		  && T##_f[0] <= X##_f[0]))		\
+	    {						\
+	      S##_f[0] = T##_f[0] + (q);		\
+	      S##_f[1] += (T##_f[0] > S##_f[0]);	\
+	      _FP_FRAC_DEC_2 (X, T);			\
+	      R##_f[0] += (q);				\
+	    }						\
+	  _FP_FRAC_SLL_2 (X, 1);			\
+	  (q) >>= 1;					\
+	}						\
+      _FP_FRAC_SLL_4 (R, (_FP_WORKBITS));		\
+      if (X##_f[0] | X##_f[1])				\
+	{						\
+	  if (S##_f[1] < X##_f[1]			\
+	      || (S##_f[1] == X##_f[1]			\
+		  && S##_f[0] < X##_f[0]))		\
+	    R##_f[0] |= _FP_WORK_ROUND;			\
+	  R##_f[0] |= _FP_WORK_STICKY;			\
+	}						\
+    }							\
+  while (0)
+
+# define FP_CMP_E(r, X, Y, un, ex)	_FP_CMP (E, 4, (r), X, Y, (un), (ex))
+# define FP_CMP_EQ_E(r, X, Y, ex)	_FP_CMP_EQ (E, 4, (r), X, Y, (ex))
+# define FP_CMP_UNORD_E(r, X, Y, ex)	_FP_CMP_UNORD (E, 4, (r), X, Y, (ex))
+
+# define FP_TO_INT_E(r, X, rsz, rsg)	_FP_TO_INT (E, 4, (r), X, (rsz), (rsg))
+# define FP_TO_INT_ROUND_E(r, X, rsz, rsg)	\
+  _FP_TO_INT_ROUND (E, 4, (r), X, (rsz), (rsg))
+# define FP_FROM_INT_E(X, r, rs, rt)	_FP_FROM_INT (E, 4, X, (r), (rs), rt)
+
+# define _FP_FRAC_HIGH_E(X)	(X##_f[2])
+# define _FP_FRAC_HIGH_RAW_E(X)	(X##_f[1])
+
+# define _FP_FRAC_HIGH_DW_E(X)	(X##_f[4])
+
+#else   /* not _FP_W_TYPE_SIZE < 64 */
+union _FP_UNION_E
+{
+  XFtype flt;
+  struct _FP_STRUCT_LAYOUT
+  {
+# if __BYTE_ORDER == __BIG_ENDIAN
+    _FP_W_TYPE pad  : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
+    unsigned sign   : 1;
+    unsigned exp    : _FP_EXPBITS_E;
+    _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
+# else
+    _FP_W_TYPE frac : _FP_W_TYPE_SIZE;
+    unsigned exp    : _FP_EXPBITS_E;
+    unsigned sign   : 1;
+# endif
+  } bits;
+};
+
+# define FP_DECL_E(X)		_FP_DECL (2, X)
+
+# define FP_UNPACK_RAW_E(X, val)		\
+  do						\
+    {						\
+      union _FP_UNION_E FP_UNPACK_RAW_E_flo;	\
+      FP_UNPACK_RAW_E_flo.flt = (val);		\
+						\
+      X##_f0 = FP_UNPACK_RAW_E_flo.bits.frac;	\
+      X##_f0 &= ~_FP_IMPLBIT_E;			\
+      X##_f1 = 0;				\
+      X##_e = FP_UNPACK_RAW_E_flo.bits.exp;	\
+      X##_s = FP_UNPACK_RAW_E_flo.bits.sign;	\
+    }						\
+  while (0)
+
+# define FP_UNPACK_RAW_EP(X, val)		\
+  do						\
+    {						\
+      union _FP_UNION_E *FP_UNPACK_RAW_EP_flo	\
+	= (union _FP_UNION_E *) (val);		\
+						\
+      X##_f0 = FP_UNPACK_RAW_EP_flo->bits.frac;	\
+      X##_f0 &= ~_FP_IMPLBIT_E;			\
+      X##_f1 = 0;				\
+      X##_e = FP_UNPACK_RAW_EP_flo->bits.exp;	\
+      X##_s = FP_UNPACK_RAW_EP_flo->bits.sign;	\
+    }						\
+  while (0)
+
+# define FP_PACK_RAW_E(val, X)			\
+  do						\
+    {						\
+      union _FP_UNION_E FP_PACK_RAW_E_flo;	\
+						\
+      if (X##_e)				\
+	X##_f0 |= _FP_IMPLBIT_E;		\
+      else					\
+	X##_f0 &= ~(_FP_IMPLBIT_E);		\
+      FP_PACK_RAW_E_flo.bits.frac = X##_f0;	\
+      FP_PACK_RAW_E_flo.bits.exp  = X##_e;	\
+      FP_PACK_RAW_E_flo.bits.sign = X##_s;	\
+						\
+      (val) = FP_PACK_RAW_E_flo.flt;		\
+    }						\
+  while (0)
+
+# define FP_PACK_RAW_EP(fs, val, X)			\
+  do							\
+    {							\
+      if (!FP_INHIBIT_RESULTS)				\
+	{						\
+	  union _FP_UNION_E *FP_PACK_RAW_EP_flo		\
+	    = (union _FP_UNION_E *) (val);		\
+							\
+	  if (X##_e)					\
+	    X##_f0 |= _FP_IMPLBIT_E;			\
+	  else						\
+	    X##_f0 &= ~(_FP_IMPLBIT_E);			\
+	  FP_PACK_RAW_EP_flo->bits.frac = X##_f0;	\
+	  FP_PACK_RAW_EP_flo->bits.exp  = X##_e;	\
+	  FP_PACK_RAW_EP_flo->bits.sign = X##_s;	\
+	}						\
+    }							\
+  while (0)
+
+
+# define FP_UNPACK_E(X, val)			\
+  do						\
+    {						\
+      FP_UNPACK_RAW_E (X, (val));		\
+      _FP_UNPACK_CANONICAL (E, 2, X);		\
+    }						\
+  while (0)
+
+# define FP_UNPACK_EP(X, val)			\
+  do						\
+    {						\
+      FP_UNPACK_RAW_EP (X, (val));		\
+      _FP_UNPACK_CANONICAL (E, 2, X);		\
+    }						\
+  while (0)
+
+# define FP_UNPACK_SEMIRAW_E(X, val)		\
+  do						\
+    {						\
+      FP_UNPACK_RAW_E (X, (val));		\
+      _FP_UNPACK_SEMIRAW (E, 2, X);		\
+    }						\
+  while (0)
+
+# define FP_UNPACK_SEMIRAW_EP(X, val)		\
+  do						\
+    {						\
+      FP_UNPACK_RAW_EP (X, (val));		\
+      _FP_UNPACK_SEMIRAW (E, 2, X);		\
+    }						\
+  while (0)
+
+# define FP_PACK_E(val, X)			\
+  do						\
+    {						\
+      _FP_PACK_CANONICAL (E, 2, X);		\
+      FP_PACK_RAW_E ((val), X);			\
+    }						\
+  while (0)
+
+# define FP_PACK_EP(val, X)			\
+  do						\
+    {						\
+      _FP_PACK_CANONICAL (E, 2, X);		\
+      FP_PACK_RAW_EP ((val), X);		\
+    }						\
+  while (0)
+
+# define FP_PACK_SEMIRAW_E(val, X)		\
+  do						\
+    {						\
+      _FP_PACK_SEMIRAW (E, 2, X);		\
+      FP_PACK_RAW_E ((val), X);			\
+    }						\
+  while (0)
+
+# define FP_PACK_SEMIRAW_EP(val, X)		\
+  do						\
+    {						\
+      _FP_PACK_SEMIRAW (E, 2, X);		\
+      FP_PACK_RAW_EP ((val), X);		\
+    }						\
+  while (0)
+
+# define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN (E, 2, X)
+# define FP_NEG_E(R, X)		_FP_NEG (E, 2, R, X)
+# define FP_ADD_E(R, X, Y)	_FP_ADD (E, 2, R, X, Y)
+# define FP_SUB_E(R, X, Y)	_FP_SUB (E, 2, R, X, Y)
+# define FP_MUL_E(R, X, Y)	_FP_MUL (E, 2, R, X, Y)
+# define FP_DIV_E(R, X, Y)	_FP_DIV (E, 2, R, X, Y)
+# define FP_SQRT_E(R, X)	_FP_SQRT (E, 2, R, X)
+# define FP_FMA_E(R, X, Y, Z)	_FP_FMA (E, 2, 4, R, X, Y, Z)
+
+/* Square root algorithms:
+   We have just one right now, maybe Newton approximation
+   should be added for those machines where division is fast.
+   We optimize it by doing most of the calculations
+   in one UWtype registers instead of two, although we don't
+   have to.  */
+# define _FP_SQRT_MEAT_E(R, S, T, X, q)			\
+  do							\
+    {							\
+      (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1);	\
+      _FP_FRAC_SRL_2 (X, (_FP_WORKBITS));		\
+      while (q)						\
+	{						\
+	  T##_f0 = S##_f0 + (q);			\
+	  if (T##_f0 <= X##_f0)				\
+	    {						\
+	      S##_f0 = T##_f0 + (q);			\
+	      X##_f0 -= T##_f0;				\
+	      R##_f0 += (q);				\
+	    }						\
+	  _FP_FRAC_SLL_1 (X, 1);			\
+	  (q) >>= 1;					\
+	}						\
+      _FP_FRAC_SLL_2 (R, (_FP_WORKBITS));		\
+      if (X##_f0)					\
+	{						\
+	  if (S##_f0 < X##_f0)				\
+	    R##_f0 |= _FP_WORK_ROUND;			\
+	  R##_f0 |= _FP_WORK_STICKY;			\
+	}						\
+    }							\
+  while (0)
+
+# define FP_CMP_E(r, X, Y, un, ex)	_FP_CMP (E, 2, (r), X, Y, (un), (ex))
+# define FP_CMP_EQ_E(r, X, Y, ex)	_FP_CMP_EQ (E, 2, (r), X, Y, (ex))
+# define FP_CMP_UNORD_E(r, X, Y, ex)	_FP_CMP_UNORD (E, 2, (r), X, Y, (ex))
+
+# define FP_TO_INT_E(r, X, rsz, rsg)	_FP_TO_INT (E, 2, (r), X, (rsz), (rsg))
+# define FP_TO_INT_ROUND_E(r, X, rsz, rsg)	\
+  _FP_TO_INT_ROUND (E, 2, (r), X, (rsz), (rsg))
+# define FP_FROM_INT_E(X, r, rs, rt)	_FP_FROM_INT (E, 2, X, (r), (rs), rt)
+
+# define _FP_FRAC_HIGH_E(X)	(X##_f1)
+# define _FP_FRAC_HIGH_RAW_E(X)	(X##_f0)
+
+# define _FP_FRAC_HIGH_DW_E(X)	(X##_f[2])
+
+#endif /* not _FP_W_TYPE_SIZE < 64 */
+
+#endif /* !SOFT_FP_EXTENDED_H */