about summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--ChangeLog7
-rw-r--r--manual/probes.texi17
-rw-r--r--sysdeps/ieee754/dbl-64/e_log.c127
-rw-r--r--sysdeps/ieee754/dbl-64/ulog.h94
4 files changed, 23 insertions, 222 deletions
diff --git a/ChangeLog b/ChangeLog
index 290d474218..d823e3ac3b 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,10 @@
+2018-02-07  Wilco Dijkstra  <wdijkstr@arm.com>
+
+	* manual/probes.texi (slowlog): Delete documentation of removed probe.
+	(slowlog_inexact): Likewise
+	* sysdeps/ieee754/dbl-64/e_log.c (__ieee754_log): Remove slow paths.
+	* sysdeps/ieee754/dbl-64/ulog.h: Remove unused declarations.
+
 2018-02-07  Igor Gnatenko  <ignatenko@redhat.com>
 
 	[BZ #22797]
diff --git a/manual/probes.texi b/manual/probes.texi
index 8ab67562d7..e99b7f3cb4 100644
--- a/manual/probes.texi
+++ b/manual/probes.texi
@@ -288,23 +288,6 @@ input that results in multiple precision computation with precision
 and @code{$arg4} is the final accurate value.
 @end deftp
 
-@deftp Probe slowlog (int @var{$arg1}, double @var{$arg2}, double @var{$arg3})
-This probe is triggered when the @code{log} function is called with an
-input that results in multiple precision computation.  Argument
-@var{$arg1} is the precision with which the computation succeeded.
-Argument @var{$arg2} is the input and @var{$arg3} is the computed
-output.
-@end deftp
-
-@deftp Probe slowlog_inexact (int @var{$arg1}, double @var{$arg2}, double @var{$arg3})
-This probe is triggered when the @code{log} function is called with an
-input that results in multiple precision computation and none of the
-multiple precision computations result in an accurate result.
-Argument @var{$arg1} is the maximum precision with which computations
-were performed.  Argument @var{$arg2} is the input and @var{$arg3} is
-the computed output.
-@end deftp
-
 @deftp Probe slowatan2 (int @var{$arg1}, double @var{$arg2}, double @var{$arg3}, double @var{$arg4})
 This probe is triggered when the @code{atan2} function is called with
 an input that results in multiple precision computation.  Argument
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c
index 6a18ebb904..2483dd8551 100644
--- a/sysdeps/ieee754/dbl-64/e_log.c
+++ b/sysdeps/ieee754/dbl-64/e_log.c
@@ -23,11 +23,10 @@
 /*      FUNCTION:ulog                                                */
 /*                                                                   */
 /*      FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h           */
-/*                    mpexp.c mplog.c mpa.c                          */
 /*                    ulog.tbl                                       */
 /*                                                                   */
 /* An ultimate log routine. Given an IEEE double machine number x    */
-/* it computes the correctly rounded (to nearest) value of log(x).   */
+/* it computes the rounded (to nearest) value of log(x).	     */
 /* Assumption: Machine arithmetic operations are performed in        */
 /* round to nearest mode of IEEE 754 standard.                       */
 /*                                                                   */
@@ -40,34 +39,26 @@
 #include "MathLib.h"
 #include <math.h>
 #include <math_private.h>
-#include <stap-probe.h>
 
 #ifndef SECTION
 # define SECTION
 #endif
 
-void __mplog (mp_no *, mp_no *, int);
-
 /*********************************************************************/
-/* An ultimate log routine. Given an IEEE double machine number x     */
-/* it computes the correctly rounded (to nearest) value of log(x).   */
+/* An ultimate log routine. Given an IEEE double machine number x    */
+/* it computes the rounded (to nearest) value of log(x).	     */
 /*********************************************************************/
 double
 SECTION
 __ieee754_log (double x)
 {
-#define M 4
-  static const int pr[M] = { 8, 10, 18, 32 };
-  int i, j, n, ux, dx, p;
+  int i, j, n, ux, dx;
   double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj,
-	 sij, ssij, ttij, A, B, B0, y, y1, y2, polI, polII, sa, sb,
-	 t1, t2, t7, t8, t, ra, rb, ww,
-	 a0, aa0, s1, s2, ss2, s3, ss3, a1, aa1, a, aa, b, bb, c;
+	 sij, ssij, ttij, A, B, B0, polI, polII, t8, a, aa, b, bb, c;
 #ifndef DLA_FMS
-  double t3, t4, t5, t6;
+  double t1, t2, t3, t4, t5;
 #endif
   number num;
-  mp_no mpx, mpy, mpy1, mpy2, mperr;
 
 #include "ulog.tbl"
 #include "ulog.h"
@@ -101,7 +92,7 @@ __ieee754_log (double x)
   if (w == 0.0)
     return 0.0;
 
-  /*--- Stage I, the case abs(x-1) < 0.03 */
+  /*--- The case abs(x-1) < 0.03 */
 
   t8 = MHALF * w;
   EMULV (t8, w, a, aa, t1, t2, t3, t4, t5);
@@ -118,50 +109,12 @@ __ieee754_log (double x)
   polII *= w * w * w;
   c = (aa + bb) + polII;
 
-  /* End stage I, case abs(x-1) < 0.03 */
-  if ((y = b + (c + b * E2)) == b + (c - b * E2))
-    return y;
-
-  /*--- Stage II, the case abs(x-1) < 0.03 */
-
-  a = d19.d + w * d20.d;
-  a = d18.d + w * a;
-  a = d17.d + w * a;
-  a = d16.d + w * a;
-  a = d15.d + w * a;
-  a = d14.d + w * a;
-  a = d13.d + w * a;
-  a = d12.d + w * a;
-  a = d11.d + w * a;
-
-  EMULV (w, a, s2, ss2, t1, t2, t3, t4, t5);
-  ADD2 (d10.d, dd10.d, s2, ss2, s3, ss3, t1, t2);
-  MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (d9.d, dd9.d, s2, ss2, s3, ss3, t1, t2);
-  MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (d8.d, dd8.d, s2, ss2, s3, ss3, t1, t2);
-  MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (d7.d, dd7.d, s2, ss2, s3, ss3, t1, t2);
-  MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (d6.d, dd6.d, s2, ss2, s3, ss3, t1, t2);
-  MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (d5.d, dd5.d, s2, ss2, s3, ss3, t1, t2);
-  MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (d4.d, dd4.d, s2, ss2, s3, ss3, t1, t2);
-  MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (d3.d, dd3.d, s2, ss2, s3, ss3, t1, t2);
-  MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (d2.d, dd2.d, s2, ss2, s3, ss3, t1, t2);
-  MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  MUL2 (w, 0, s2, ss2, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (w, 0, s3, ss3, b, bb, t1, t2);
+  /* Here b contains the high part of the result, and c the low part.
+     Maximum error is b * 2.334e-19, so accuracy is >61 bits.
+     Therefore max ULP error of b + c is ~0.502.  */
+  return b + c;
 
-  /* End stage II, case abs(x-1) < 0.03 */
-  if ((y = b + (bb + b * E4)) == b + (bb - b * E4))
-    return y;
-  goto stage_n;
-
-  /*--- Stage I, the case abs(x-1) > 0.03 */
+  /*--- The case abs(x-1) > 0.03 */
 case_03:
 
   /* Find n,u such that x = u*2**n,   1/sqrt(2) < u < sqrt(2)  */
@@ -203,58 +156,10 @@ case_03:
   B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B;
   B = polI + B0;
 
-  /* End stage I, case abs(x-1) >= 0.03 */
-  if ((y = A + (B + E1)) == A + (B - E1))
-    return y;
-
-
-  /*--- Stage II, the case abs(x-1) > 0.03 */
-
-  /* Improve the accuracy of r0 */
-  EMULV (p0, r0, sa, sb, t1, t2, t3, t4, t5);
-  t = r0 * ((1 - sa) - sb);
-  EADD (r0, t, ra, rb);
-
-  /* Compute w */
-  MUL2 (q, 0, ra, rb, w, ww, t1, t2, t3, t4, t5, t6, t7, t8);
-
-  EADD (A, B0, a0, aa0);
-
-  /* Evaluate polynomial III */
-  s1 = (c3.d + (c4.d + c5.d * w) * w) * w;
-  EADD (c2.d, s1, s2, ss2);
-  MUL2 (s2, ss2, w, ww, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
-  MUL2 (s3, ss3, w, ww, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
-  ADD2 (s2, ss2, w, ww, s3, ss3, t1, t2);
-  ADD2 (s3, ss3, a0, aa0, a1, aa1, t1, t2);
-
-  /* End stage II, case abs(x-1) >= 0.03 */
-  if ((y = a1 + (aa1 + E3)) == a1 + (aa1 - E3))
-    return y;
-
-
-  /* Final stages. Use multi-precision arithmetic. */
-stage_n:
-
-  for (i = 0; i < M; i++)
-    {
-      p = pr[i];
-      __dbl_mp (x, &mpx, p);
-      __dbl_mp (y, &mpy, p);
-      __mplog (&mpx, &mpy, p);
-      __dbl_mp (e[i].d, &mperr, p);
-      __add (&mpy, &mperr, &mpy1, p);
-      __sub (&mpy, &mperr, &mpy2, p);
-      __mp_dbl (&mpy1, &y1, p);
-      __mp_dbl (&mpy2, &y2, p);
-      if (y1 == y2)
-	{
-	  LIBC_PROBE (slowlog, 3, &p, &x, &y1);
-	  return y1;
-	}
-    }
-  LIBC_PROBE (slowlog_inexact, 3, &p, &x, &y1);
-  return y1;
+  /* Here A contains the high part of the result, and B the low part.
+     Maximum abs error is 6.095e-21 and min log (x) is 0.0295 since x > 1.03.
+     Therefore max ULP error of A + B is ~0.502.  */
+  return A + B;
 }
 
 #ifndef __ieee754_log
diff --git a/sysdeps/ieee754/dbl-64/ulog.h b/sysdeps/ieee754/dbl-64/ulog.h
index 36a31137b7..087b76e2ab 100644
--- a/sysdeps/ieee754/dbl-64/ulog.h
+++ b/sysdeps/ieee754/dbl-64/ulog.h
@@ -42,43 +42,6 @@
 /**/ b6             = {{0x3fbc71c5, 0x25db58ac} }, /*  0.111... */
 /**/ b7             = {{0xbfb9a4ac, 0x11a2a61c} }, /* -0.100... */
 /**/ b8             = {{0x3fb75077, 0x0df2b591} }, /*  0.091... */
-  /* polynomial III */
-#if 0
-/**/ c1             = {{0x3ff00000, 0x00000000} }, /*  1        */
-#endif
-/**/ c2             = {{0xbfe00000, 0x00000000} }, /* -1/2      */
-/**/ c3             = {{0x3fd55555, 0x55555555} }, /*  1/3      */
-/**/ c4             = {{0xbfd00000, 0x00000000} }, /* -1/4      */
-/**/ c5             = {{0x3fc99999, 0x9999999a} }, /*  1/5      */
-  /* polynomial IV */
-/**/ d2             = {{0xbfe00000, 0x00000000} }, /* -1/2      */
-/**/ dd2            = {{0x00000000, 0x00000000} }, /* -1/2-d2   */
-/**/ d3             = {{0x3fd55555, 0x55555555} }, /*  1/3      */
-/**/ dd3            = {{0x3c755555, 0x55555555} }, /*  1/3-d3   */
-/**/ d4             = {{0xbfd00000, 0x00000000} }, /* -1/4      */
-/**/ dd4            = {{0x00000000, 0x00000000} }, /* -1/4-d4   */
-/**/ d5             = {{0x3fc99999, 0x9999999a} }, /*  1/5      */
-/**/ dd5            = {{0xbc699999, 0x9999999a} }, /*  1/5-d5   */
-/**/ d6             = {{0xbfc55555, 0x55555555} }, /* -1/6      */
-/**/ dd6            = {{0xbc655555, 0x55555555} }, /* -1/6-d6   */
-/**/ d7             = {{0x3fc24924, 0x92492492} }, /*  1/7      */
-/**/ dd7            = {{0x3c624924, 0x92492492} }, /*  1/7-d7   */
-/**/ d8             = {{0xbfc00000, 0x00000000} }, /* -1/8      */
-/**/ dd8            = {{0x00000000, 0x00000000} }, /* -1/8-d8   */
-/**/ d9             = {{0x3fbc71c7, 0x1c71c71c} }, /*  1/9      */
-/**/ dd9            = {{0x3c5c71c7, 0x1c71c71c} }, /*  1/9-d9   */
-/**/ d10            = {{0xbfb99999, 0x9999999a} }, /* -1/10     */
-/**/ dd10           = {{0x3c599999, 0x9999999a} }, /* -1/10-d10 */
-/**/ d11            = {{0x3fb745d1, 0x745d1746} }, /*  1/11     */
-/**/ d12            = {{0xbfb55555, 0x55555555} }, /* -1/12     */
-/**/ d13            = {{0x3fb3b13b, 0x13b13b14} }, /*  1/13     */
-/**/ d14            = {{0xbfb24924, 0x92492492} }, /* -1/14     */
-/**/ d15            = {{0x3fb11111, 0x11111111} }, /*  1/15     */
-/**/ d16            = {{0xbfb00000, 0x00000000} }, /* -1/16     */
-/**/ d17            = {{0x3fae1e1e, 0x1e1e1e1e} }, /*  1/17     */
-/**/ d18            = {{0xbfac71c7, 0x1c71c71c} }, /* -1/18     */
-/**/ d19            = {{0x3faaf286, 0xbca1af28} }, /*  1/19     */
-/**/ d20            = {{0xbfa99999, 0x9999999a} }, /* -1/20     */
   /* constants    */
 /**/ sqrt_2         = {{0x3ff6a09e, 0x667f3bcc} }, /* sqrt(2)   */
 /**/ h1             = {{0x3fd2e000, 0x00000000} }, /* 151/2**9  */
@@ -87,14 +50,6 @@
 /**/ delv           = {{0x3ef00000, 0x00000000} }, /* 1/2**16   */
 /**/ ln2a           = {{0x3fe62e42, 0xfefa3800} }, /* ln(2) 43 bits */
 /**/ ln2b           = {{0x3d2ef357, 0x93c76730} }, /* ln(2)-ln2a    */
-/**/ e1             = {{0x3bbcc868, 0x00000000} }, /* 6.095e-21     */
-/**/ e2             = {{0x3c1138ce, 0x00000000} }, /* 2.334e-19     */
-/**/ e3             = {{0x3aa1565d, 0x00000000} }, /* 2.801e-26     */
-/**/ e4             = {{0x39809d88, 0x00000000} }, /* 1.024e-31     */
-/**/ e[M]           ={{{0x37da223a, 0x00000000} }, /* 1.2e-39       */
-/**/                  {{0x35c851c4, 0x00000000} }, /* 1.3e-49       */
-/**/                  {{0x2ab85e51, 0x00000000} }, /* 6.8e-103      */
-/**/                  {{0x17383827, 0x00000000} }},/* 8.1e-197      */
 /**/ two54          = {{0x43500000, 0x00000000} }, /* 2**54         */
 /**/ u03            = {{0x3f9eb851, 0xeb851eb8} }; /* 0.03          */
 
@@ -114,43 +69,6 @@
 /**/ b6             = {{0x25db58ac, 0x3fbc71c5} }, /*  0.111... */
 /**/ b7             = {{0x11a2a61c, 0xbfb9a4ac} }, /* -0.100... */
 /**/ b8             = {{0x0df2b591, 0x3fb75077} }, /*  0.091... */
-  /* polynomial III */
-#if 0
-/**/ c1             = {{0x00000000, 0x3ff00000} }, /*  1        */
-#endif
-/**/ c2             = {{0x00000000, 0xbfe00000} }, /* -1/2      */
-/**/ c3             = {{0x55555555, 0x3fd55555} }, /*  1/3      */
-/**/ c4             = {{0x00000000, 0xbfd00000} }, /* -1/4      */
-/**/ c5             = {{0x9999999a, 0x3fc99999} }, /*  1/5      */
-  /* polynomial IV */
-/**/ d2             = {{0x00000000, 0xbfe00000} }, /* -1/2      */
-/**/ dd2            = {{0x00000000, 0x00000000} }, /* -1/2-d2   */
-/**/ d3             = {{0x55555555, 0x3fd55555} }, /*  1/3      */
-/**/ dd3            = {{0x55555555, 0x3c755555} }, /*  1/3-d3   */
-/**/ d4             = {{0x00000000, 0xbfd00000} }, /* -1/4      */
-/**/ dd4            = {{0x00000000, 0x00000000} }, /* -1/4-d4   */
-/**/ d5             = {{0x9999999a, 0x3fc99999} }, /*  1/5      */
-/**/ dd5            = {{0x9999999a, 0xbc699999} }, /*  1/5-d5   */
-/**/ d6             = {{0x55555555, 0xbfc55555} }, /* -1/6      */
-/**/ dd6            = {{0x55555555, 0xbc655555} }, /* -1/6-d6   */
-/**/ d7             = {{0x92492492, 0x3fc24924} }, /*  1/7      */
-/**/ dd7            = {{0x92492492, 0x3c624924} }, /*  1/7-d7   */
-/**/ d8             = {{0x00000000, 0xbfc00000} }, /* -1/8      */
-/**/ dd8            = {{0x00000000, 0x00000000} }, /* -1/8-d8   */
-/**/ d9             = {{0x1c71c71c, 0x3fbc71c7} }, /*  1/9      */
-/**/ dd9            = {{0x1c71c71c, 0x3c5c71c7} }, /*  1/9-d9   */
-/**/ d10            = {{0x9999999a, 0xbfb99999} }, /* -1/10     */
-/**/ dd10           = {{0x9999999a, 0x3c599999} }, /* -1/10-d10 */
-/**/ d11            = {{0x745d1746, 0x3fb745d1} }, /*  1/11     */
-/**/ d12            = {{0x55555555, 0xbfb55555} }, /* -1/12     */
-/**/ d13            = {{0x13b13b14, 0x3fb3b13b} }, /*  1/13     */
-/**/ d14            = {{0x92492492, 0xbfb24924} }, /* -1/14     */
-/**/ d15            = {{0x11111111, 0x3fb11111} }, /*  1/15     */
-/**/ d16            = {{0x00000000, 0xbfb00000} }, /* -1/16     */
-/**/ d17            = {{0x1e1e1e1e, 0x3fae1e1e} }, /*  1/17     */
-/**/ d18            = {{0x1c71c71c, 0xbfac71c7} }, /* -1/18     */
-/**/ d19            = {{0xbca1af28, 0x3faaf286} }, /*  1/19     */
-/**/ d20            = {{0x9999999a, 0xbfa99999} }, /* -1/20     */
   /* constants    */
 /**/ sqrt_2         = {{0x667f3bcc, 0x3ff6a09e} }, /* sqrt(2)   */
 /**/ h1             = {{0x00000000, 0x3fd2e000} }, /* 151/2**9  */
@@ -159,14 +77,6 @@
 /**/ delv           = {{0x00000000, 0x3ef00000} }, /* 1/2**16   */
 /**/ ln2a           = {{0xfefa3800, 0x3fe62e42} }, /* ln(2) 43 bits */
 /**/ ln2b           = {{0x93c76730, 0x3d2ef357} }, /* ln(2)-ln2a    */
-/**/ e1             = {{0x00000000, 0x3bbcc868} }, /* 6.095e-21     */
-/**/ e2             = {{0x00000000, 0x3c1138ce} }, /* 2.334e-19     */
-/**/ e3             = {{0x00000000, 0x3aa1565d} }, /* 2.801e-26     */
-/**/ e4             = {{0x00000000, 0x39809d88} }, /* 1.024e-31     */
-/**/ e[M]           ={{{0x00000000, 0x37da223a} }, /* 1.2e-39       */
-/**/                  {{0x00000000, 0x35c851c4} }, /* 1.3e-49       */
-/**/                  {{0x00000000, 0x2ab85e51} }, /* 6.8e-103      */
-/**/                  {{0x00000000, 0x17383827} }},/* 8.1e-197      */
 /**/ two54          = {{0x00000000, 0x43500000} }, /* 2**54         */
 /**/ u03            = {{0xeb851eb8, 0x3f9eb851} }; /* 0.03          */
 
@@ -178,10 +88,6 @@
 #define  DEL_V     delv.d
 #define  LN2A      ln2a.d
 #define  LN2B      ln2b.d
-#define  E1        e1.d
-#define  E2        e2.d
-#define  E3        e3.d
-#define  E4        e4.d
 #define  U03       u03.d
 
 #endif