about summary refs log tree commit diff
path: root/sysdeps
diff options
context:
space:
mode:
authorAlex Butler <Alex.Butler@arm.com>2020-06-09 15:57:03 +0000
committerSzabolcs Nagy <szabolcs.nagy@arm.com>2020-06-23 17:55:39 +0100
commitbb2c12aecbd26a8d29f63b51b80b7c84e65d1818 (patch)
tree0e5678dba91892a3ea39eea9f1b020a06cc1918e /sysdeps
parent8ec13b46395a7075d3f01e9d0a65b4bee0adbfca (diff)
downloadglibc-bb2c12aecbd26a8d29f63b51b80b7c84e65d1818.tar.gz
glibc-bb2c12aecbd26a8d29f63b51b80b7c84e65d1818.tar.xz
glibc-bb2c12aecbd26a8d29f63b51b80b7c84e65d1818.zip
aarch64: MTE compatible strcpy
Add support for MTE to strcpy. Regression tested with xcheck and benchmarked
with glibc's benchtests on the Cortex-A53, Cortex-A72, and Neoverse N1.

The existing implementation assumes that any access to the pages in which the
string resides is safe. This assumption is not true when MTE is enabled. This
patch updates the algorithm to ensure that accesses remain within the bounds
of an MTE tag (16-byte chunks) and improves overall performance.

Co-authored-by: Wilco Dijkstra <wilco.dijkstra@arm.com>
Diffstat (limited to 'sysdeps')
-rw-r--r--sysdeps/aarch64/strcpy.S385
1 files changed, 122 insertions, 263 deletions
diff --git a/sysdeps/aarch64/strcpy.S b/sysdeps/aarch64/strcpy.S
index a8ff52c072..80b16a0931 100644
--- a/sysdeps/aarch64/strcpy.S
+++ b/sysdeps/aarch64/strcpy.S
@@ -26,297 +26,156 @@
 
 /* Assumptions:
  *
- * ARMv8-a, AArch64, unaligned accesses, min page size 4k.
+ * ARMv8-a, AArch64, Advanced SIMD.
+ * MTE compatible.
  */
 
 /* Arguments and results.  */
 #define dstin		x0
 #define srcin		x1
+#define result		x0
 
-/* Locals and temporaries.  */
 #define src		x2
 #define dst		x3
-#define data1		x4
-#define data1w		w4
-#define data2		x5
-#define data2w		w5
-#define has_nul1	x6
-#define has_nul2	x7
-#define tmp1		x8
-#define tmp2		x9
-#define tmp3		x10
-#define tmp4		x11
-#define zeroones	x12
-#define data1a		x13
-#define data2a		x14
-#define pos		x15
-#define len		x16
-#define to_align	x17
-
-/* NEON register */
-#define dataq		q2
-#define datav		v2
-#define datab2		b3
-#define datav2		v3
+#define len		x4
+#define synd		x4
+#define	tmp		x5
+#define wtmp		w5
+#define shift		x5
+#define data1		x6
+#define dataw1		w6
+#define data2		x7
+#define dataw2		w7
+
+#define dataq		q0
+#define vdata		v0
+#define vhas_nul	v1
+#define vrepmask	v2
+#define vend		v3
+#define dend		d3
+#define dataq2		q1
 
 #ifdef BUILD_STPCPY
-#define STRCPY __stpcpy
+# define STRCPY __stpcpy
+# define IFSTPCPY(X,...) X,__VA_ARGS__
 #else
-#define STRCPY strcpy
+# define STRCPY strcpy
+# define IFSTPCPY(X,...)
 #endif
 
-	/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
-	   (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
-	   can be done in parallel across the entire word.  */
-
-#define REP8_01 0x0101010101010101
-#define REP8_7f 0x7f7f7f7f7f7f7f7f
-#define REP8_80 0x8080808080808080
-
-	/* AArch64 systems have a minimum page size of 4k.  We can do a quick
-	   page size check for crossing this boundary on entry and if we
-	   do not, then we can short-circuit much of the entry code.  We
-	   expect early page-crossing strings to be rare (probability of
-	   16/MIN_PAGE_SIZE ~= 0.4%), so the branch should be quite
-	   predictable, even with random strings.
-
-	   We don't bother checking for larger page sizes, the cost of setting
-	   up the correct page size is just not worth the extra gain from
-	   a small reduction in the cases taking the slow path.  Note that
-	   we only care about whether the first fetch, which may be
-	   misaligned, crosses a page boundary - after that we move to aligned
-	   fetches for the remainder of the string.  */
+/* Core algorithm:
 
-#ifdef STRCPY_TEST_PAGE_CROSS
-	/* Make everything that isn't Qword aligned look like a page cross.  */
-#define MIN_PAGE_P2 4
-#else
-#define MIN_PAGE_P2 12
-#endif
+   For each 16-byte chunk we calculate a 64-bit syndrome value with four bits
+   per byte. For even bytes, bits 0-3 are set if the relevant byte matched the
+   requested character or the byte is NUL. Bits 4-7 must be zero. Bits 4-7 are
+   set likewise for odd bytes so that adjacent bytes can be merged. Since the
+   bits in the syndrome reflect the order in which things occur in the original
+   string, counting trailing zeros identifies exactly which byte matched.  */
 
-#define MIN_PAGE_SIZE (1 << MIN_PAGE_P2)
-
-ENTRY_ALIGN (STRCPY, 6)
+ENTRY (STRCPY)
 	DELOUSE (0)
 	DELOUSE (1)
-	/* For moderately short strings, the fastest way to do the copy is to
-	   calculate the length of the string in the same way as strlen, then
-	   essentially do a memcpy of the result.  This avoids the need for
-	   multiple byte copies and further means that by the time we
-	   reach the bulk copy loop we know we can always use DWord
-	   accesses.  We expect strcpy to rarely be called repeatedly
-	   with the same source string, so branch prediction is likely to
-	   always be difficult - we mitigate against this by preferring
-	   conditional select operations over branches whenever this is
-	   feasible.  */
-	and	tmp2, srcin, #(MIN_PAGE_SIZE - 1)
-	mov	zeroones, #REP8_01
-	and	to_align, srcin, #15
-	cmp	tmp2, #(MIN_PAGE_SIZE - 16)
-	neg	tmp1, to_align
-	/* The first fetch will straddle a (possible) page boundary iff
-	   srcin + 15 causes bit[MIN_PAGE_P2] to change value.  A 16-byte
-	   aligned string will never fail the page align check, so will
-	   always take the fast path.  */
-	b.gt	L(page_cross)
-
-L(page_cross_ok):
-	ldp	data1, data2, [srcin]
-#ifdef __AARCH64EB__
-	/* Because we expect the end to be found within 16 characters
-	   (profiling shows this is the most common case), it's worth
-	   swapping the bytes now to save having to recalculate the
-	   termination syndrome later.  We preserve data1 and data2
-	   so that we can re-use the values later on.  */
-	rev	tmp2, data1
-	sub	tmp1, tmp2, zeroones
-	orr	tmp2, tmp2, #REP8_7f
-	bics	has_nul1, tmp1, tmp2
-	b.ne	L(fp_le8)
-	rev	tmp4, data2
-	sub	tmp3, tmp4, zeroones
-	orr	tmp4, tmp4, #REP8_7f
-#else
-	sub	tmp1, data1, zeroones
-	orr	tmp2, data1, #REP8_7f
-	bics	has_nul1, tmp1, tmp2
-	b.ne	L(fp_le8)
-	sub	tmp3, data2, zeroones
-	orr	tmp4, data2, #REP8_7f
+	bic	src, srcin, 15
+	mov	wtmp, 0xf00f
+	ld1	{vdata.16b}, [src]
+	dup	vrepmask.8h, wtmp
+	cmeq	vhas_nul.16b, vdata.16b, 0
+	lsl	shift, srcin, 2
+	and	vhas_nul.16b, vhas_nul.16b, vrepmask.16b
+	addp	vend.16b, vhas_nul.16b, vhas_nul.16b
+	fmov	synd, dend
+	lsr	synd, synd, shift
+	cbnz	synd, L(tail)
+
+	ldr	dataq, [src, 16]!
+	cmeq	vhas_nul.16b, vdata.16b, 0
+	and	vhas_nul.16b, vhas_nul.16b, vrepmask.16b
+	addp	vend.16b, vhas_nul.16b, vhas_nul.16b
+	fmov	synd, dend
+	cbz	synd, L(start_loop)
+
+#ifndef __AARCH64EB__
+	rbit	synd, synd
 #endif
-	bics	has_nul2, tmp3, tmp4
-	b.eq	L(bulk_entry)
+	sub	tmp, src, srcin
+	clz	len, synd
+	add	len, tmp, len, lsr 2
+	tbz	len, 4, L(less16)
+	sub	tmp, len, 15
+	ldr	dataq, [srcin]
+	ldr	dataq2, [srcin, tmp]
+	str	dataq, [dstin]
+	str	dataq2, [dstin, tmp]
+	IFSTPCPY (add result, dstin, len)
+	ret
 
-	/* The string is short (<=16 bytes).  We don't know exactly how
-	   short though, yet.  Work out the exact length so that we can
-	   quickly select the optimal copy strategy.  */
-L(fp_gt8):
-	rev	has_nul2, has_nul2
-	clz	pos, has_nul2
-	mov	tmp2, #56
-	add	dst, dstin, pos, lsr #3		/* Bits to bytes.  */
-	sub	pos, tmp2, pos
-#ifdef __AARCH64EB__
-	lsr	data2, data2, pos
-#else
-	lsl	data2, data2, pos
-#endif
-	str	data2, [dst, #1]
+	.p2align 4,,8
+L(tail):
+	rbit	synd, synd
+	clz	len, synd
+	lsr	len, len, 2
+
+	.p2align 4
+L(less16):
+	tbz	len, 3, L(less8)
+	sub	tmp, len, 7
+	ldr	data1, [srcin]
+	ldr	data2, [srcin, tmp]
 	str	data1, [dstin]
-#ifdef BUILD_STPCPY
-	add	dstin, dst, #8
-#endif
+	str	data2, [dstin, tmp]
+	IFSTPCPY (add result, dstin, len)
 	ret
 
-L(fp_le8):
-	rev	has_nul1, has_nul1
-	clz	pos, has_nul1
-	add	dst, dstin, pos, lsr #3		/* Bits to bytes.  */
-	subs	tmp2, pos, #24			/* Pos in bits. */
-	b.lt	L(fp_lt4)
-#ifdef __AARCH64EB__
-	mov	tmp2, #56
-	sub	pos, tmp2, pos
-	lsr	data2, data1, pos
-	lsr	data1, data1, #32
-#else
-	lsr	data2, data1, tmp2
-#endif
-	/* 4->7 bytes to copy.  */
-	str	data2w, [dst, #-3]
-	str	data1w, [dstin]
-#ifdef BUILD_STPCPY
-	mov	dstin, dst
-#endif
-	ret
-L(fp_lt4):
-	cbz	pos, L(fp_lt2)
-	/* 2->3 bytes to copy.  */
-#ifdef __AARCH64EB__
-	lsr	data1, data1, #48
-#endif
-	strh	data1w, [dstin]
-	/* Fall-through, one byte (max) to go.  */
-L(fp_lt2):
-	/* Null-terminated string.  Last character must be zero!  */
-	strb	wzr, [dst]
-#ifdef BUILD_STPCPY
-	mov	dstin, dst
-#endif
+	.p2align 4
+L(less8):
+	subs	tmp, len, 3
+	b.lo	L(less4)
+	ldr	dataw1, [srcin]
+	ldr	dataw2, [srcin, tmp]
+	str	dataw1, [dstin]
+	str	dataw2, [dstin, tmp]
+	IFSTPCPY (add result, dstin, len)
 	ret
 
-	/* Aligning here ensures that the entry code and main loop all lies
-	   within one 64-byte cache line.  */
-L(bulk_entry):
-	sub	to_align, to_align, #16
-	stp	data1, data2, [dstin]
-	sub	src, srcin, to_align
-	sub	dst, dstin, to_align
-	b	L(entry_no_page_cross)
-
-	/* The inner loop deals with two Dwords at a time.  This has a
-	   slightly higher start-up cost, but we should win quite quickly,
-	   especially on cores with a high number of issue slots per
-	   cycle, as we get much better parallelism out of the operations.  */
-L(main_loop):
-	str	dataq, [dst], #16
-L(entry_no_page_cross):
-	ldr	dataq, [src], #16
-	uminv	datab2, datav.16b
-	mov	tmp3, datav2.d[0]
-	cbnz	tmp3, L(main_loop)
+L(less4):
+	cbz	len, L(zerobyte)
+	ldrh	dataw1, [srcin]
+	strh	dataw1, [dstin]
+L(zerobyte):
+	strb	wzr, [dstin, len]
+	IFSTPCPY (add result, dstin, len)
+	ret
 
-	/* Since we know we are copying at least 16 bytes, the fastest way
-	   to deal with the tail is to determine the location of the
-	   trailing NUL, then (re)copy the 16 bytes leading up to that.  */
-#ifdef __AARCH64EB__
-	rev64	datav.16b, datav.16b
-#endif
-	/* calculate the loc value */
-	cmeq	datav.16b, datav.16b, #0
-#ifdef __AARCH64EB__
-	mov	data1, datav.d[1]
-	mov	data2, datav.d[0]
-#else
-	mov	data1, datav.d[0]
-	mov	data2, datav.d[1]
-#endif
-	cmp	data1, 0
-	csel	data1, data1, data2, ne
-	mov	pos, 8
-	rev	data1, data1
-	clz	tmp1, data1
-	csel	pos, xzr, pos, ne
-	add	pos, pos, tmp1, lsr 3
-	add	src, src, pos
-	add	dst, dst, pos
-	ldr	dataq,[src, #-31]
-	str	dataq,[dst, #-15]
-#ifdef BUILD_STPCPY
-	mov	dstin, dst
+	.p2align 4
+L(start_loop):
+	sub	len, src, srcin
+	ldr	dataq2, [srcin]
+	add	dst, dstin, len
+	str	dataq2, [dstin]
+
+	.p2align 5
+L(loop):
+	str	dataq, [dst], 16
+	ldr	dataq, [src, 16]!
+	cmeq	vhas_nul.16b, vdata.16b, 0
+	umaxp	vend.16b, vhas_nul.16b, vhas_nul.16b
+	fmov	synd, dend
+	cbz	synd, L(loop)
+
+	and	vhas_nul.16b, vhas_nul.16b, vrepmask.16b
+	addp	vend.16b, vhas_nul.16b, vhas_nul.16b		/* 128->64 */
+	fmov	synd, dend
+#ifndef __AARCH64EB__
+	rbit	synd, synd
 #endif
+	clz	len, synd
+	lsr	len, len, 2
+	sub	tmp, len, 15
+	ldr	dataq, [src, tmp]
+	str	dataq, [dst, tmp]
+	IFSTPCPY (add result, dst, len)
 	ret
 
-L(page_cross):
-	bic	src, srcin, #15
-	/* Start by loading two words at [srcin & ~15], then forcing the
-	   bytes that precede srcin to 0xff.  This means they never look
-	   like termination bytes.  */
-	ldp	data1, data2, [src]
-	lsl	tmp1, tmp1, #3	/* Bytes beyond alignment -> bits.  */
-	tst	to_align, #7
-	csetm	tmp2, ne
-#ifdef __AARCH64EB__
-	lsl	tmp2, tmp2, tmp1	/* Shift (tmp1 & 63).  */
-#else
-	lsr	tmp2, tmp2, tmp1	/* Shift (tmp1 & 63).  */
-#endif
-	orr	data1, data1, tmp2
-	orr	data2a, data2, tmp2
-	cmp	to_align, #8
-	csinv	data1, data1, xzr, lt
-	csel	data2, data2, data2a, lt
-	sub	tmp1, data1, zeroones
-	orr	tmp2, data1, #REP8_7f
-	sub	tmp3, data2, zeroones
-	orr	tmp4, data2, #REP8_7f
-	bic	has_nul1, tmp1, tmp2
-	bics	has_nul2, tmp3, tmp4
-	ccmp	has_nul1, #0, #0, eq	/* NZCV = 0000  */
-	b.eq	L(page_cross_ok)
-	/* We now need to make data1 and data2 look like they've been
-	   loaded directly from srcin.  Do a rotate on the 128-bit value.  */
-	lsl	tmp1, to_align, #3	/* Bytes->bits.  */
-	neg	tmp2, to_align, lsl #3
-#ifdef __AARCH64EB__
-	lsl	data1a, data1, tmp1
-	lsr	tmp4, data2, tmp2
-	lsl	data2, data2, tmp1
-	orr	tmp4, tmp4, data1a
-	cmp	to_align, #8
-	csel	data1, tmp4, data2, lt
-	rev	tmp2, data1
-	rev	tmp4, data2
-	sub	tmp1, tmp2, zeroones
-	orr	tmp2, tmp2, #REP8_7f
-	sub	tmp3, tmp4, zeroones
-	orr	tmp4, tmp4, #REP8_7f
-#else
-	lsr	data1a, data1, tmp1
-	lsl	tmp4, data2, tmp2
-	lsr	data2, data2, tmp1
-	orr	tmp4, tmp4, data1a
-	cmp	to_align, #8
-	csel	data1, tmp4, data2, lt
-	sub	tmp1, data1, zeroones
-	orr	tmp2, data1, #REP8_7f
-	sub	tmp3, data2, zeroones
-	orr	tmp4, data2, #REP8_7f
-#endif
-	bic	has_nul1, tmp1, tmp2
-	cbnz	has_nul1, L(fp_le8)
-	bic	has_nul2, tmp3, tmp4
-	b	L(fp_gt8)
 END (STRCPY)
 
 #ifdef BUILD_STPCPY