diff options
author | Siddhesh Poyarekar <siddhesh@redhat.com> | 2013-03-08 11:38:41 +0530 |
---|---|---|
committer | Siddhesh Poyarekar <siddhesh@redhat.com> | 2013-03-08 11:38:41 +0530 |
commit | 6d9145d817e570cd986bb088cf2af0bf51ac7dde (patch) | |
tree | 145d9913f7ccb0479b1da335e207efc1d034c9c5 /sysdeps/powerpc/powerpc64 | |
parent | f5ad94e02ab6b086506cef1f3fea6fe4218073e6 (diff) | |
download | glibc-6d9145d817e570cd986bb088cf2af0bf51ac7dde.tar.gz glibc-6d9145d817e570cd986bb088cf2af0bf51ac7dde.tar.xz glibc-6d9145d817e570cd986bb088cf2af0bf51ac7dde.zip |
Consolidate copies of mp code in powerpc
Retain a single copy of the mp code in power4 instead of the two identical copies in powerpc32 and powerpc64.
Diffstat (limited to 'sysdeps/powerpc/powerpc64')
-rw-r--r-- | sysdeps/powerpc/powerpc64/power4/Implies | 2 | ||||
-rw-r--r-- | sysdeps/powerpc/powerpc64/power4/fpu/Makefile | 7 | ||||
-rw-r--r-- | sysdeps/powerpc/powerpc64/power4/fpu/mpa.c | 214 |
3 files changed, 2 insertions, 221 deletions
diff --git a/sysdeps/powerpc/powerpc64/power4/Implies b/sysdeps/powerpc/powerpc64/power4/Implies new file mode 100644 index 0000000000..a372141bb7 --- /dev/null +++ b/sysdeps/powerpc/powerpc64/power4/Implies @@ -0,0 +1,2 @@ +powerpc/power4/fpu +powerpc/power4 diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/Makefile b/sysdeps/powerpc/powerpc64/power4/fpu/Makefile deleted file mode 100644 index 2d44f727a5..0000000000 --- a/sysdeps/powerpc/powerpc64/power4/fpu/Makefile +++ /dev/null @@ -1,7 +0,0 @@ -# Makefile fragment for POWER4/5/5+ platforms with FPU. - -ifeq ($(subdir),math) -CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops -CPPFLAGS-slowpow.c += -DUSE_LONG_DOUBLE_FOR_MP=1 -CPPFLAGS-slowexp.c += -DUSE_LONG_DOUBLE_FOR_MP=1 -endif diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c b/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c deleted file mode 100644 index 1858c97407..0000000000 --- a/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c +++ /dev/null @@ -1,214 +0,0 @@ - -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001-2013 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, see <http://www.gnu.org/licenses/>. - */ - -/* Define __mul and __sqr and use the rest from generic code. */ -#define NO__MUL -#define NO__SQR - -#include <sysdeps/ieee754/dbl-64/mpa.c> - -/* Multiply *X and *Y and store result in *Z. X and Y may overlap but not X - and Z or Y and Z. For P in [1, 2, 3], the exact result is truncated to P - digits. In case P > 3 the error is bounded by 1.001 ULP. */ -void -__mul (const mp_no *x, const mp_no *y, mp_no *z, int p) -{ - long i, i1, i2, j, k, k2; - long p2 = p; - double u, zk, zk2; - - /* Is z=0? */ - if (__glibc_unlikely (X[0] * Y[0] == ZERO)) - { - Z[0] = ZERO; - return; - } - - /* Multiply, add and carry */ - k2 = (p2 < 3) ? p2 + p2 : p2 + 3; - zk = Z[k2] = ZERO; - for (k = k2; k > 1;) - { - if (k > p2) - { - i1 = k - p2; - i2 = p2 + 1; - } - else - { - i1 = 1; - i2 = k; - } -#if 1 - /* Rearrange this inner loop to allow the fmadd instructions to be - independent and execute in parallel on processors that have - dual symmetrical FP pipelines. */ - if (i1 < (i2 - 1)) - { - /* Make sure we have at least 2 iterations. */ - if (((i2 - i1) & 1L) == 1L) - { - /* Handle the odd iterations case. */ - zk2 = x->d[i2 - 1] * y->d[i1]; - } - else - zk2 = 0.0; - /* Do two multiply/adds per loop iteration, using independent - accumulators; zk and zk2. */ - for (i = i1, j = i2 - 1; i < i2 - 1; i += 2, j -= 2) - { - zk += x->d[i] * y->d[j]; - zk2 += x->d[i + 1] * y->d[j - 1]; - } - zk += zk2; /* Final sum. */ - } - else - { - /* Special case when iterations is 1. */ - zk += x->d[i1] * y->d[i1]; - } -#else - /* The original code. */ - for (i = i1, j = i2 - 1; i < i2; i++, j--) - zk += X[i] * Y[j]; -#endif - - u = (zk + CUTTER) - CUTTER; - if (u > zk) - u -= RADIX; - Z[k] = zk - u; - zk = u * RADIXI; - --k; - } - Z[k] = zk; - - int e = EX + EY; - /* Is there a carry beyond the most significant digit? */ - if (Z[1] == ZERO) - { - for (i = 1; i <= p2; i++) - Z[i] = Z[i + 1]; - e--; - } - - EZ = e; - Z[0] = X[0] * Y[0]; -} - -/* Square *X and store result in *Y. X and Y may not overlap. For P in - [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the - error is bounded by 1.001 ULP. This is a faster special case of - multiplication. */ -void -__sqr (const mp_no *x, mp_no *y, int p) -{ - long i, j, k, ip; - double u, yk; - - /* Is z=0? */ - if (__glibc_unlikely (X[0] == ZERO)) - { - Y[0] = ZERO; - return; - } - - /* We need not iterate through all X's since it's pointless to - multiply zeroes. */ - for (ip = p; ip > 0; ip--) - if (X[ip] != ZERO) - break; - - k = (__glibc_unlikely (p < 3)) ? p + p : p + 3; - - while (k > 2 * ip + 1) - Y[k--] = ZERO; - - yk = ZERO; - - while (k > p) - { - double yk2 = 0.0; - long lim = k / 2; - - if (k % 2 == 0) - { - yk += X[lim] * X[lim]; - lim--; - } - - /* In __mul, this loop (and the one within the next while loop) run - between a range to calculate the mantissa as follows: - - Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1] - + X[n] * Y[k] - - For X == Y, we can get away with summing halfway and doubling the - result. For cases where the range size is even, the mid-point needs - to be added separately (above). */ - for (i = k - p, j = p; i <= lim; i++, j--) - yk2 += X[i] * X[j]; - - yk += 2.0 * yk2; - - u = (yk + CUTTER) - CUTTER; - if (u > yk) - u -= RADIX; - Y[k--] = yk - u; - yk = u * RADIXI; - } - - while (k > 1) - { - double yk2 = 0.0; - long lim = k / 2; - - if (k % 2 == 0) - { - yk += X[lim] * X[lim]; - lim--; - } - - /* Likewise for this loop. */ - for (i = 1, j = k - 1; i <= lim; i++, j--) - yk2 += X[i] * X[j]; - - yk += 2.0 * yk2; - - u = (yk + CUTTER) - CUTTER; - if (u > yk) - u -= RADIX; - Y[k--] = yk - u; - yk = u * RADIXI; - } - Y[k] = yk; - - /* Squares are always positive. */ - Y[0] = 1.0; - - int e = EX * 2; - /* Is there a carry beyond the most significant digit? */ - if (__glibc_unlikely (Y[1] == ZERO)) - { - for (i = 1; i <= p; i++) - Y[i] = Y[i + 1]; - e--; - } - EY = e; -} |