diff options
author | Siddhesh Poyarekar <siddhesh@redhat.com> | 2013-01-14 21:31:25 +0530 |
---|---|---|
committer | Siddhesh Poyarekar <siddhesh@redhat.com> | 2013-01-14 21:53:43 +0530 |
commit | 1066a53440d2744566e97c59bcd0d422186b3e90 (patch) | |
tree | 6a33b17d2efa2a1b105fbabd44d4f3c2d0e09c46 /sysdeps/powerpc/powerpc32/power4 | |
parent | e34ab7055034ee0815473f8006def7ce20017f33 (diff) | |
download | glibc-1066a53440d2744566e97c59bcd0d422186b3e90.tar.gz glibc-1066a53440d2744566e97c59bcd0d422186b3e90.tar.xz glibc-1066a53440d2744566e97c59bcd0d422186b3e90.zip |
Fix code formatting in mpa.c
This includes the overridden mpa.c in power4.
Diffstat (limited to 'sysdeps/powerpc/powerpc32/power4')
-rw-r--r-- | sysdeps/powerpc/powerpc32/power4/fpu/mpa.c | 803 |
1 files changed, 534 insertions, 269 deletions
diff --git a/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c b/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c index 11404ab8b8..16cb57785d 100644 --- a/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c +++ b/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c @@ -51,91 +51,135 @@ const mp_no mptwo = {1, {1.0, 2.0}}; /* Compare mantissa of two multiple precision numbers regardless of the sign and exponent of the numbers. */ -static int mcr(const mp_no *x, const mp_no *y, int p) { +static int +mcr (const mp_no *x, const mp_no *y, int p) +{ long i; long p2 = p; - for (i=1; i<=p2; i++) { - if (X[i] == Y[i]) continue; - else if (X[i] > Y[i]) return 1; - else return -1; } + for (i = 1; i <= p2; i++) + { + if (X[i] == Y[i]) + continue; + else if (X[i] > Y[i]) + return 1; + else + return -1; + } return 0; } /* Compare the absolute values of two multiple precision numbers. */ -int __acr(const mp_no *x, const mp_no *y, int p) { +int +__acr (const mp_no *x, const mp_no *y, int p) +{ long i; - if (X[0] == ZERO) { - if (Y[0] == ZERO) i= 0; - else i=-1; - } - else if (Y[0] == ZERO) i= 1; - else { - if (EX > EY) i= 1; - else if (EX < EY) i=-1; - else i= mcr(x,y,p); - } + if (X[0] == ZERO) + { + if (Y[0] == ZERO) + i = 0; + else + i = -1; + } + else if (Y[0] == ZERO) + i = 1; + else + { + if (EX > EY) + i = 1; + else if (EX < EY) + i = -1; + else + i = mcr (x, y, p); + } return i; } /* Copy multiple precision number X into Y. They could be the same number. */ -void __cpy(const mp_no *x, mp_no *y, int p) { +void +__cpy (const mp_no *x, mp_no *y, int p) +{ long i; EY = EX; - for (i=0; i <= p; i++) Y[i] = X[i]; + for (i = 0; i <= p; i++) + Y[i] = X[i]; return; } /* Convert a multiple precision number *X into a double precision number *Y, normalized case (|x| >= 2**(-1022))). */ -static void norm(const mp_no *x, double *y, int p) +static void +norm (const mp_no *x, double *y, int p) { - #define R RADIXI +#define R RADIXI long i; - double a,c,u,v,z[5]; - if (p<5) { - if (p==1) c = X[1]; - else if (p==2) c = X[1] + R* X[2]; - else if (p==3) c = X[1] + R*(X[2] + R* X[3]); - else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]); - } - else { - for (a=ONE, z[1]=X[1]; z[1] < TWO23; ) - {a *= TWO; z[1] *= TWO; } - - for (i=2; i<5; i++) { - z[i] = X[i]*a; - u = (z[i] + CUTTER)-CUTTER; - if (u > z[i]) u -= RADIX; - z[i] -= u; - z[i-1] += u*RADIXI; - } - - u = (z[3] + TWO71) - TWO71; - if (u > z[3]) u -= TWO19; - v = z[3]-u; - - if (v == TWO18) { - if (z[4] == ZERO) { - for (i=5; i <= p; i++) { - if (X[i] == ZERO) continue; - else {z[3] += ONE; break; } - } - } - else z[3] += ONE; - } - - c = (z[1] + R *(z[2] + R * z[3]))/a; - } + double a, c, u, v, z[5]; + if (p < 5) + { + if (p == 1) + c = X[1]; + else if (p == 2) + c = X[1] + R * X[2]; + else if (p == 3) + c = X[1] + R * (X[2] + R * X[3]); + else if (p == 4) + c = (X[1] + R * X[2]) + R * R * (X[3] + R * X[4]); + } + else + { + for (a = ONE, z[1] = X[1]; z[1] < TWO23;) + { + a *= TWO; + z[1] *= TWO; + } + + for (i = 2; i < 5; i++) + { + z[i] = X[i] * a; + u = (z[i] + CUTTER) - CUTTER; + if (u > z[i]) + u -= RADIX; + z[i] -= u; + z[i - 1] += u * RADIXI; + } + + u = (z[3] + TWO71) - TWO71; + if (u > z[3]) + u -= TWO19; + v = z[3] - u; + + if (v == TWO18) + { + if (z[4] == ZERO) + { + for (i = 5; i <= p; i++) + { + if (X[i] == ZERO) + continue; + else + { + z[3] += ONE; + break; + } + } + } + else + z[3] += ONE; + } + + c = (z[1] + R * (z[2] + R * z[3])) / a; + } c *= X[0]; - for (i=1; i<EX; i++) c *= RADIX; - for (i=1; i>EX; i--) c *= RADIXI; + for (i = 1; i < EX; i++) + c *= RADIX; + for (i = 1; i > EX; i--) + c *= RADIXI; *y = c; return; @@ -144,46 +188,112 @@ static void norm(const mp_no *x, double *y, int p) /* Convert a multiple precision number *X into a double precision number *Y, Denormal case (|x| < 2**(-1022))). */ -static void denorm(const mp_no *x, double *y, int p) +static void +denorm (const mp_no *x, double *y, int p) { - long i,k; + long i, k; long p2 = p; - double c,u,z[5]; + double c, u, z[5]; #define R RADIXI - if (EX<-44 || (EX==-44 && X[1]<TWO5)) - { *y=ZERO; return; } - - if (p2==1) { - if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;} - else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;} - else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} - } - else if (p2==2) { - if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;} - else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;} - else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} - } - else { - if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;} - else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;} - else {z[1]= TWO10; z[2]=ZERO; k=1;} - z[3] = X[k]; - } + if (EX < -44 || (EX == -44 && X[1] < TWO5)) + { + *y = ZERO; + return; + } + + if (p2 == 1) + { + if (EX == -42) + { + z[1] = X[1] + TWO10; + z[2] = ZERO; + z[3] = ZERO; + k = 3; + } + else if (EX == -43) + { + z[1] = TWO10; + z[2] = X[1]; + z[3] = ZERO; + k = 2; + } + else + { + z[1] = TWO10; + z[2] = ZERO; + z[3] = X[1]; + k = 1; + } + } + else if (p2 == 2) + { + if (EX == -42) + { + z[1] = X[1] + TWO10; + z[2] = X[2]; + z[3] = ZERO; + k = 3; + } + else if (EX == -43) + { + z[1] = TWO10; + z[2] = X[1]; + z[3] = X[2]; + k = 2; + } + else + { + z[1] = TWO10; + z[2] = ZERO; + z[3] = X[1]; + k = 1; + } + } + else + { + if (EX == -42) + { + z[1] = X[1] + TWO10; + z[2] = X[2]; + k = 3; + } + else if (EX == -43) + { + z[1] = TWO10; + z[2] = X[1]; + k = 2; + } + else + { + z[1] = TWO10; + z[2] = ZERO; + k = 1; + } + z[3] = X[k]; + } u = (z[3] + TWO57) - TWO57; - if (u > z[3]) u -= TWO5; + if (u > z[3]) + u -= TWO5; - if (u==z[3]) { - for (i=k+1; i <= p2; i++) { - if (X[i] == ZERO) continue; - else {z[3] += ONE; break; } + if (u == z[3]) + { + for (i = k + 1; i <= p2; i++) + { + if (X[i] == ZERO) + continue; + else + { + z[3] += ONE; + break; + } + } } - } - c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10); + c = X[0] * ((z[1] + R * (z[2] + R * z[3])) - TWO10); - *y = c*TWOM1032; + *y = c * TWOM1032; return; #undef R @@ -191,39 +301,65 @@ static void denorm(const mp_no *x, double *y, int p) /* Convert multiple precision number *X into double precision number *Y. The result is correctly rounded to the nearest/even. */ -void __mp_dbl(const mp_no *x, double *y, int p) { - - if (X[0] == ZERO) {*y = ZERO; return; } +void +__mp_dbl (const mp_no *x, double *y, int p) +{ + if (X[0] == ZERO) + { + *y = ZERO; + return; + } - if (EX> -42) norm(x,y,p); - else if (EX==-42 && X[1]>=TWO10) norm(x,y,p); - else denorm(x,y,p); + if (EX > -42) + norm (x, y, p); + else if (EX == -42 && X[1] >= TWO10) + norm (x, y, p); + else + denorm (x, y, p); } /* Get the multiple precision equivalent of X into *Y. If the precision is too small, the result is truncated. */ -void __dbl_mp(double x, mp_no *y, int p) { - - long i,n; +void +__dbl_mp (double x, mp_no *y, int p) +{ + long i, n; long p2 = p; double u; /* Sign. */ - if (x == ZERO) {Y[0] = ZERO; return; } - else if (x > ZERO) Y[0] = ONE; - else {Y[0] = MONE; x=-x; } + if (x == ZERO) + { + Y[0] = ZERO; + return; + } + else if (x > ZERO) + Y[0] = ONE; + else + { + Y[0] = MONE; + x = -x; + } /* Exponent. */ - for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI; - for ( ; x < ONE; EY -= ONE) x *= RADIX; + for (EY = ONE; x >= RADIX; EY += ONE) + x *= RADIXI; + for (; x < ONE; EY -= ONE) + x *= RADIX; /* Digits. */ - n=MIN(p2,4); - for (i=1; i<=n; i++) { - u = (x + TWO52) - TWO52; - if (u>x) u -= ONE; - Y[i] = u; x -= u; x *= RADIX; } - for ( ; i<=p2; i++) Y[i] = ZERO; + n = MIN (p2, 4); + for (i = 1; i <= n; i++) + { + u = (x + TWO52) - TWO52; + if (u > x) + u -= ONE; + Y[i] = u; + x -= u; + x *= RADIX; + } + for (; i <= p2; i++) + Y[i] = ZERO; return; } @@ -231,93 +367,132 @@ void __dbl_mp(double x, mp_no *y, int p) { sign of the sum *Z is not changed. X and Y may overlap but not X and Z or Y and Z. No guard digit is used. The result equals the exact sum, truncated. */ -static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - long i,j,k; +static void +add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) +{ + long i, j, k; long p2 = p; EZ = EX; - i=p2; j=p2+ EY - EX; k=p2+1; - - if (j<1) - {__cpy(x,z,p); return; } - else Z[k] = ZERO; - - for (; j>0; i--,j--) { - Z[k] += X[i] + Y[j]; - if (Z[k] >= RADIX) { - Z[k] -= RADIX; - Z[--k] = ONE; } - else - Z[--k] = ZERO; - } - - for (; i>0; i--) { - Z[k] += X[i]; - if (Z[k] >= RADIX) { - Z[k] -= RADIX; - Z[--k] = ONE; } - else - Z[--k] = ZERO; - } - - if (Z[1] == ZERO) { - for (i=1; i<=p2; i++) Z[i] = Z[i+1]; } - else EZ += ONE; + i = p2; + j = p2 + EY - EX; + k = p2 + 1; + + if (j < 1) + { + __cpy (x, z, p); + return; + } + else + Z[k] = ZERO; + + for (; j > 0; i--, j--) + { + Z[k] += X[i] + Y[j]; + if (Z[k] >= RADIX) + { + Z[k] -= RADIX; + Z[--k] = ONE; + } + else + Z[--k] = ZERO; + } + + for (; i > 0; i--) + { + Z[k] += X[i]; + if (Z[k] >= RADIX) + { + Z[k] -= RADIX; + Z[--k] = ONE; + } + else + Z[--k] = ZERO; + } + + if (Z[1] == ZERO) + { + for (i = 1; i <= p2; i++) + Z[i] = Z[i + 1]; + } + else + EZ += ONE; } /* Subtract the magnitudes of *X and *Y assuming that abs (*x) > abs (*y) > 0. The sign of the difference *Z is not changed. X and Y may overlap but not X and Z or Y and Z. One guard digit is used. The error is less than one ULP. */ -static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - long i,j,k; +static void +sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) +{ + long i, j, k; long p2 = p; EZ = EX; - if (EX == EY) { - i=j=k=p2; - Z[k] = Z[k+1] = ZERO; } - else { - j= EX - EY; - if (j > p2) {__cpy(x,z,p); return; } - else { - i=p2; j=p2+1-j; k=p2; - if (Y[j] > ZERO) { - Z[k+1] = RADIX - Y[j--]; - Z[k] = MONE; } - else { - Z[k+1] = ZERO; - Z[k] = ZERO; j--;} - } - } - - for (; j>0; i--,j--) { - Z[k] += (X[i] - Y[j]); - if (Z[k] < ZERO) { - Z[k] += RADIX; - Z[--k] = MONE; } - else - Z[--k] = ZERO; - } - - for (; i>0; i--) { - Z[k] += X[i]; - if (Z[k] < ZERO) { - Z[k] += RADIX; - Z[--k] = MONE; } - else - Z[--k] = ZERO; - } - - for (i=1; Z[i] == ZERO; i++) ; + if (EX == EY) + { + i = j = k = p2; + Z[k] = Z[k + 1] = ZERO; + } + else + { + j = EX - EY; + if (j > p2) + { + __cpy (x, z, p); + return; + } + else + { + i = p2; + j = p2 + 1 - j; + k = p2; + if (Y[j] > ZERO) + { + Z[k + 1] = RADIX - Y[j--]; + Z[k] = MONE; + } + else + { + Z[k + 1] = ZERO; + Z[k] = ZERO; + j--; + } + } + } + + for (; j > 0; i--, j--) + { + Z[k] += (X[i] - Y[j]); + if (Z[k] < ZERO) + { + Z[k] += RADIX; + Z[--k] = MONE; + } + else + Z[--k] = ZERO; + } + + for (; i > 0; i--) + { + Z[k] += X[i]; + if (Z[k] < ZERO) + { + Z[k] += RADIX; + Z[--k] = MONE; + } + else + Z[--k] = ZERO; + } + + for (i = 1; Z[i] == ZERO; i++); EZ = EZ - i + 1; - for (k=1; i <= p2+1; ) + for (k = 1; i <= p2 + 1;) Z[k++] = Z[i++]; - for (; k <= p2; ) + for (; k <= p2;) Z[k++] = ZERO; return; @@ -326,111 +501,186 @@ static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { /* Add *X and *Y and store the result in *Z. X and Y may overlap, but not X and Z or Y and Z. One guard digit is used. The error is less than one ULP. */ -void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) { - +void +__add (const mp_no *x, const mp_no *y, mp_no *z, int p) +{ int n; - if (X[0] == ZERO) {__cpy(y,z,p); return; } - else if (Y[0] == ZERO) {__cpy(x,z,p); return; } - - if (X[0] == Y[0]) { - if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } - else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; } - } - else { - if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } - else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; } - else Z[0] = ZERO; - } + if (X[0] == ZERO) + { + __cpy (y, z, p); + return; + } + else if (Y[0] == ZERO) + { + __cpy (x, z, p); + return; + } + + if (X[0] == Y[0]) + { + if (__acr (x, y, p) > 0) + { + add_magnitudes (x, y, z, p); + Z[0] = X[0]; + } + else + { + add_magnitudes (y, x, z, p); + Z[0] = Y[0]; + } + } + else + { + if ((n = __acr (x, y, p)) == 1) + { + sub_magnitudes (x, y, z, p); + Z[0] = X[0]; + } + else if (n == -1) + { + sub_magnitudes (y, x, z, p); + Z[0] = Y[0]; + } + else + Z[0] = ZERO; + } return; } /* Subtract *Y from *X and return the result in *Z. X and Y may overlap but not X and Z or Y and Z. One guard digit is used. The error is less than one ULP. */ -void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) { - +void +__sub (const mp_no *x, const mp_no *y, mp_no *z, int p) +{ int n; - if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; } - else if (Y[0] == ZERO) {__cpy(x,z,p); return; } - - if (X[0] != Y[0]) { - if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } - else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; } - } - else { - if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } - else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; } - else Z[0] = ZERO; - } + if (X[0] == ZERO) + { + __cpy (y, z, p); + Z[0] = -Z[0]; + return; + } + else if (Y[0] == ZERO) + { + __cpy (x, z, p); + return; + } + + if (X[0] != Y[0]) + { + if (__acr (x, y, p) > 0) + { + add_magnitudes (x, y, z, p); + Z[0] = X[0]; + } + else + { + add_magnitudes (y, x, z, p); + Z[0] = -Y[0]; + } + } + else + { + if ((n = __acr (x, y, p)) == 1) + { + sub_magnitudes (x, y, z, p); + Z[0] = X[0]; + } + else if (n == -1) + { + sub_magnitudes (y, x, z, p); + Z[0] = -Y[0]; + } + else + Z[0] = ZERO; + } return; } /* Multiply *X and *Y and store result in *Z. X and Y may overlap but not X and Z or Y and Z. For P in [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the error is bounded by 1.001 ULP. */ -void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { - +void +__mul (const mp_no *x, const mp_no *y, mp_no *z, int p) +{ long i, i1, i2, j, k, k2; long p2 = p; double u, zk, zk2; - /* Is z=0? */ - if (X[0]*Y[0]==ZERO) - { Z[0]=ZERO; return; } + /* Is z=0? */ + if (X[0] * Y[0] == ZERO) + { + Z[0] = ZERO; + return; + } - /* Multiply, add and carry */ - k2 = (p2<3) ? p2+p2 : p2+3; - zk = Z[k2]=ZERO; - for (k=k2; k>1; ) { - if (k > p2) {i1=k-p2; i2=p2+1; } - else {i1=1; i2=k; } -#if 1 - /* Rearrange this inner loop to allow the fmadd instructions to be - independent and execute in parallel on processors that have - dual symmetrical FP pipelines. */ - if (i1 < (i2-1)) + /* Multiply, add and carry */ + k2 = (p2 < 3) ? p2 + p2 : p2 + 3; + zk = Z[k2] = ZERO; + for (k = k2; k > 1;) { - /* Make sure we have at least 2 iterations. */ - if (((i2 - i1) & 1L) == 1L) + if (k > p2) { - /* Handle the odd iterations case. */ - zk2 = x->d[i2-1]*y->d[i1]; + i1 = k - p2; + i2 = p2 + 1; } - else - zk2 = 0.0; - /* Do two multiply/adds per loop iteration, using independent - accumulators; zk and zk2. */ - for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) + else { - zk += x->d[i]*y->d[j]; - zk2 += x->d[i+1]*y->d[j-1]; + i1 = 1; + i2 = k; + } +#if 1 + /* Rearrange this inner loop to allow the fmadd instructions to be + independent and execute in parallel on processors that have + dual symmetrical FP pipelines. */ + if (i1 < (i2 - 1)) + { + /* Make sure we have at least 2 iterations. */ + if (((i2 - i1) & 1L) == 1L) + { + /* Handle the odd iterations case. */ + zk2 = x->d[i2 - 1] * y->d[i1]; + } + else + zk2 = 0.0; + /* Do two multiply/adds per loop iteration, using independent + accumulators; zk and zk2. */ + for (i = i1, j = i2 - 1; i < i2 - 1; i += 2, j -= 2) + { + zk += x->d[i] * y->d[j]; + zk2 += x->d[i + 1] * y->d[j - 1]; + } + zk += zk2; /* Final sum. */ + } + else + { + /* Special case when iterations is 1. */ + zk += x->d[i1] * y->d[i1]; } - zk += zk2; /* Final sum. */ - } - else - { - /* Special case when iterations is 1. */ - zk += x->d[i1]*y->d[i1]; - } #else - /* The original code. */ - for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j]; + /* The original code. */ + for (i = i1, j = i2 - 1; i < i2; i++, j--) + zk += X[i] * Y[j]; #endif - u = (zk + CUTTER)-CUTTER; - if (u > zk) u -= RADIX; - Z[k] = zk - u; - zk = u*RADIXI; - --k; - } + u = (zk + CUTTER) - CUTTER; + if (u > zk) + u -= RADIX; + Z[k] = zk - u; + zk = u * RADIXI; + --k; + } Z[k] = zk; /* Is there a carry beyond the most significant digit? */ - if (Z[1] == ZERO) { - for (i=1; i<=p2; i++) Z[i]=Z[i+1]; - EZ = EX + EY - 1; } + if (Z[1] == ZERO) + { + for (i = 1; i <= p2; i++) + Z[i] = Z[i + 1]; + EZ = EX + EY - 1; + } else EZ = EX + EY; @@ -444,22 +694,31 @@ void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { - For P > 3: 2.001 * R ^ (1 - P) *X = 0 is not permissible. */ -void __inv(const mp_no *x, mp_no *y, int p) { +void +__inv (const mp_no *x, mp_no *y, int p) +{ long i; double t; - mp_no z,w; - static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3, - 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}; - - __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p); - t=ONE/t; __dbl_mp(t,y,p); EY -= EX; - - for (i=0; i<np1[p]; i++) { - __cpy(y,&w,p); - __mul(x,&w,y,p); - __sub(&mptwo,y,&z,p); - __mul(&w,&z,y,p); - } + mp_no z, w; + static const int np1[] = + { 0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 + }; + + __cpy (x, &z, p); + z.e = 0; + __mp_dbl (&z, &t, p); + t = ONE / t; + __dbl_mp (t, y, p); + EY -= EX; + + for (i = 0; i < np1[p]; i++) + { + __cpy (y, &w, p); + __mul (x, &w, y, p); + __sub (&mptwo, y, &z, p); + __mul (&w, &z, y, p); + } return; } @@ -470,11 +729,17 @@ void __inv(const mp_no *x, mp_no *y, int p) { - For P > 3: 3.001 * R ^ (1 - P) *X = 0 is not permissible. */ -void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) { - +void +__dvd (const mp_no *x, const mp_no *y, mp_no *z, int p) +{ mp_no w; - if (X[0] == ZERO) Z[0] = ZERO; - else {__inv(y,&w,p); __mul(x,&w,z,p);} + if (X[0] == ZERO) + Z[0] = ZERO; + else + { + __inv (y, &w, p); + __mul (x, &w, z, p); + } return; } |