summary refs log tree commit diff
path: root/sysdeps/powerpc/power4
diff options
context:
space:
mode:
authorSiddhesh Poyarekar <siddhesh@redhat.com>2013-03-08 11:38:41 +0530
committerSiddhesh Poyarekar <siddhesh@redhat.com>2013-03-08 11:38:41 +0530
commit6d9145d817e570cd986bb088cf2af0bf51ac7dde (patch)
tree145d9913f7ccb0479b1da335e207efc1d034c9c5 /sysdeps/powerpc/power4
parentf5ad94e02ab6b086506cef1f3fea6fe4218073e6 (diff)
downloadglibc-6d9145d817e570cd986bb088cf2af0bf51ac7dde.tar.gz
glibc-6d9145d817e570cd986bb088cf2af0bf51ac7dde.tar.xz
glibc-6d9145d817e570cd986bb088cf2af0bf51ac7dde.zip
Consolidate copies of mp code in powerpc
Retain a single copy of the mp code in power4 instead of the two
identical copies in powerpc32 and powerpc64.
Diffstat (limited to 'sysdeps/powerpc/power4')
-rw-r--r--sysdeps/powerpc/power4/fpu/Makefile7
-rw-r--r--sysdeps/powerpc/power4/fpu/mpa.c214
2 files changed, 221 insertions, 0 deletions
diff --git a/sysdeps/powerpc/power4/fpu/Makefile b/sysdeps/powerpc/power4/fpu/Makefile
new file mode 100644
index 0000000000..e17d32f30e
--- /dev/null
+++ b/sysdeps/powerpc/power4/fpu/Makefile
@@ -0,0 +1,7 @@
+# Makefile fragment for POWER4/5/5+ with FPU.
+
+ifeq ($(subdir),math)
+CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops
+CPPFLAGS-slowpow.c += -DUSE_LONG_DOUBLE_FOR_MP=1
+CPPFLAGS-slowexp.c += -DUSE_LONG_DOUBLE_FOR_MP=1
+endif
diff --git a/sysdeps/powerpc/power4/fpu/mpa.c b/sysdeps/powerpc/power4/fpu/mpa.c
new file mode 100644
index 0000000000..1858c97407
--- /dev/null
+++ b/sysdeps/powerpc/power4/fpu/mpa.c
@@ -0,0 +1,214 @@
+
+/*
+ * IBM Accurate Mathematical Library
+ * written by International Business Machines Corp.
+ * Copyright (C) 2001-2013 Free Software Foundation, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/* Define __mul and __sqr and use the rest from generic code.  */
+#define NO__MUL
+#define NO__SQR
+
+#include <sysdeps/ieee754/dbl-64/mpa.c>
+
+/* Multiply *X and *Y and store result in *Z.  X and Y may overlap but not X
+   and Z or Y and Z.  For P in [1, 2, 3], the exact result is truncated to P
+   digits.  In case P > 3 the error is bounded by 1.001 ULP.  */
+void
+__mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
+{
+  long i, i1, i2, j, k, k2;
+  long p2 = p;
+  double u, zk, zk2;
+
+  /* Is z=0?  */
+  if (__glibc_unlikely (X[0] * Y[0] == ZERO))
+    {
+      Z[0] = ZERO;
+      return;
+    }
+
+  /* Multiply, add and carry */
+  k2 = (p2 < 3) ? p2 + p2 : p2 + 3;
+  zk = Z[k2] = ZERO;
+  for (k = k2; k > 1;)
+    {
+      if (k > p2)
+	{
+	  i1 = k - p2;
+	  i2 = p2 + 1;
+	}
+      else
+	{
+	  i1 = 1;
+	  i2 = k;
+	}
+#if 1
+      /* Rearrange this inner loop to allow the fmadd instructions to be
+         independent and execute in parallel on processors that have
+         dual symmetrical FP pipelines.  */
+      if (i1 < (i2 - 1))
+	{
+	  /* Make sure we have at least 2 iterations.  */
+	  if (((i2 - i1) & 1L) == 1L)
+	    {
+	      /* Handle the odd iterations case.  */
+	      zk2 = x->d[i2 - 1] * y->d[i1];
+	    }
+	  else
+	    zk2 = 0.0;
+	  /* Do two multiply/adds per loop iteration, using independent
+	     accumulators; zk and zk2.  */
+	  for (i = i1, j = i2 - 1; i < i2 - 1; i += 2, j -= 2)
+	    {
+	      zk += x->d[i] * y->d[j];
+	      zk2 += x->d[i + 1] * y->d[j - 1];
+	    }
+	  zk += zk2;		/* Final sum.  */
+	}
+      else
+	{
+	  /* Special case when iterations is 1.  */
+	  zk += x->d[i1] * y->d[i1];
+	}
+#else
+      /* The original code.  */
+      for (i = i1, j = i2 - 1; i < i2; i++, j--)
+	zk += X[i] * Y[j];
+#endif
+
+      u = (zk + CUTTER) - CUTTER;
+      if (u > zk)
+	u -= RADIX;
+      Z[k] = zk - u;
+      zk = u * RADIXI;
+      --k;
+    }
+  Z[k] = zk;
+
+  int e = EX + EY;
+  /* Is there a carry beyond the most significant digit?  */
+  if (Z[1] == ZERO)
+    {
+      for (i = 1; i <= p2; i++)
+	Z[i] = Z[i + 1];
+      e--;
+    }
+
+  EZ = e;
+  Z[0] = X[0] * Y[0];
+}
+
+/* Square *X and store result in *Y.  X and Y may not overlap.  For P in
+   [1, 2, 3], the exact result is truncated to P digits.  In case P > 3 the
+   error is bounded by 1.001 ULP.  This is a faster special case of
+   multiplication.  */
+void
+__sqr (const mp_no *x, mp_no *y, int p)
+{
+  long i, j, k, ip;
+  double u, yk;
+
+  /* Is z=0?  */
+  if (__glibc_unlikely (X[0] == ZERO))
+    {
+      Y[0] = ZERO;
+      return;
+    }
+
+  /* We need not iterate through all X's since it's pointless to
+     multiply zeroes.  */
+  for (ip = p; ip > 0; ip--)
+    if (X[ip] != ZERO)
+      break;
+
+  k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
+
+  while (k > 2 * ip + 1)
+    Y[k--] = ZERO;
+
+  yk = ZERO;
+
+  while (k > p)
+    {
+      double yk2 = 0.0;
+      long lim = k / 2;
+
+      if (k % 2 == 0)
+        {
+	  yk += X[lim] * X[lim];
+	  lim--;
+	}
+
+      /* In __mul, this loop (and the one within the next while loop) run
+         between a range to calculate the mantissa as follows:
+
+         Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
+		+ X[n] * Y[k]
+
+         For X == Y, we can get away with summing halfway and doubling the
+	 result.  For cases where the range size is even, the mid-point needs
+	 to be added separately (above).  */
+      for (i = k - p, j = p; i <= lim; i++, j--)
+	yk2 += X[i] * X[j];
+
+      yk += 2.0 * yk2;
+
+      u = (yk + CUTTER) - CUTTER;
+      if (u > yk)
+	u -= RADIX;
+      Y[k--] = yk - u;
+      yk = u * RADIXI;
+    }
+
+  while (k > 1)
+    {
+      double yk2 = 0.0;
+      long lim = k / 2;
+
+      if (k % 2 == 0)
+        {
+	  yk += X[lim] * X[lim];
+	  lim--;
+	}
+
+      /* Likewise for this loop.  */
+      for (i = 1, j = k - 1; i <= lim; i++, j--)
+	yk2 += X[i] * X[j];
+
+      yk += 2.0 * yk2;
+
+      u = (yk + CUTTER) - CUTTER;
+      if (u > yk)
+	u -= RADIX;
+      Y[k--] = yk - u;
+      yk = u * RADIXI;
+    }
+  Y[k] = yk;
+
+  /* Squares are always positive.  */
+  Y[0] = 1.0;
+
+  int e = EX * 2;
+  /* Is there a carry beyond the most significant digit?  */
+  if (__glibc_unlikely (Y[1] == ZERO))
+    {
+      for (i = 1; i <= p; i++)
+	Y[i] = Y[i + 1];
+      e--;
+    }
+  EY = e;
+}