diff options
author | Adhemerval Zanella <adhemerval.zanella@linaro.org> | 2020-06-04 22:47:16 +0300 |
---|---|---|
committer | Adhemerval Zanella <adhemerval.zanella@linaro.org> | 2020-06-22 11:09:49 -0300 |
commit | 169ea8f928fc04a2824f67b2f69b6355a00153b2 (patch) | |
tree | 81099aaaddb02672607d2d416cfbac04f081a10d /sysdeps/powerpc/fpu | |
parent | a2e833667d5de877fbc0c5a221a72c68abaa1203 (diff) | |
download | glibc-169ea8f928fc04a2824f67b2f69b6355a00153b2.tar.gz glibc-169ea8f928fc04a2824f67b2f69b6355a00153b2.tar.xz glibc-169ea8f928fc04a2824f67b2f69b6355a00153b2.zip |
powerpc: Use sqrt{f} builtin
The powerpc sqrt implementation is also simplified: - the static constants are open coded within the implementation. - for !USE_SQRT_BUILTIN the function is implemented directly on __ieee754_sqrt (it avoid an superflous extra jump). Checked on powerpc-linux-gnu and powerpc64le-linux-gnu.
Diffstat (limited to 'sysdeps/powerpc/fpu')
-rw-r--r-- | sysdeps/powerpc/fpu/e_sqrt.c | 57 | ||||
-rw-r--r-- | sysdeps/powerpc/fpu/e_sqrtf.c | 56 | ||||
-rw-r--r-- | sysdeps/powerpc/fpu/math-use-builtins-sqrt.h | 9 |
3 files changed, 42 insertions, 80 deletions
diff --git a/sysdeps/powerpc/fpu/e_sqrt.c b/sysdeps/powerpc/fpu/e_sqrt.c index a47f77966f..505ae72339 100644 --- a/sysdeps/powerpc/fpu/e_sqrt.c +++ b/sysdeps/powerpc/fpu/e_sqrt.c @@ -18,22 +18,16 @@ #include <math.h> #include <math_private.h> -#include <fenv.h> #include <fenv_libc.h> -#include <inttypes.h> -#include <stdint.h> -#include <sysdep.h> -#include <ldsodefs.h> #include <libm-alias-finite.h> +#include <math-use-builtins.h> -#ifndef _ARCH_PPCSQ -static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */ -static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 }; -static const ieee_float_shape_type a_inf = {.word = 0x7f800000 }; -static const float two108 = 3.245185536584267269e+32; -static const float twom54 = 5.551115123125782702e-17; -extern const float __t_sqrt[1024]; - +double +__ieee754_sqrt (double x) +{ +#if USE_SQRT_BUILTIN + return __builtin_sqrt (x); +#else /* The method is based on a description in Computation of elementary functions on the IBM RISC System/6000 processor, P. W. Markstein, IBM J. Res. Develop, 34(1) 1990. @@ -48,10 +42,7 @@ extern const float __t_sqrt[1024]; generated guesses (which mostly runs on the integer unit, while the Newton-Raphson is running on the FPU). */ -double -__slow_ieee754_sqrt (double x) -{ - const float inf = a_inf.value; + extern const float __t_sqrt[1024]; if (x > 0) { @@ -60,7 +51,7 @@ __slow_ieee754_sqrt (double x) ieee_double_shape_type ew_u; ieee_double_shape_type iw_u; ew_u.value = (x); - if (x != inf) + if (x != INFINITY) { /* Variables named starting with 's' exist in the argument-reduced space, so that 2 > sx >= 0.5, @@ -112,7 +103,7 @@ __slow_ieee754_sqrt (double x) INSERT_WORDS (fsg, fsgi, 0); iw_u.parts.msw = fsgi; iw_u.parts.lsw = (0); - e = -__builtin_fma (sy, sg, -almost_half); + e = -__builtin_fma (sy, sg, -0x1.0000000000001p-1); sd = -__builtin_fma (sg, sg, -sx); if ((xi0 & 0x7ff00000) == 0) goto denorm; @@ -122,7 +113,7 @@ __slow_ieee754_sqrt (double x) sy2 = sy + sy; /* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */ fsg = iw_u.value; - e = -__builtin_fma (sy, sg, -almost_half); + e = -__builtin_fma (sy, sg, -0x1.0000000000001p-1); sd = -__builtin_fma (sg, sg, -sx); sy = __builtin_fma (e, sy2, sy); shx = sx * fsg; @@ -131,7 +122,7 @@ __slow_ieee754_sqrt (double x) rounded incorrectly. */ sy2 = sy + sy; g = sg * fsg; - e = -__builtin_fma (sy, sg, -almost_half); + e = -__builtin_fma (sy, sg, -0x1.0000000000001p-1); d = -__builtin_fma (g, sg, -shx); sy = __builtin_fma (e, sy2, sy); fesetenv_register (fe); @@ -140,38 +131,24 @@ __slow_ieee754_sqrt (double x) /* For denormalised numbers, we normalise, calculate the square root, and return an adjusted result. */ fesetenv_register (fe); - return __slow_ieee754_sqrt (x * two108) * twom54; + return __ieee754_sqrt (x * 0x1p+108f) * 0x1p-54f; } } else if (x < 0) { /* For some reason, some PowerPC32 processors don't implement FE_INVALID_SQRT. */ -#ifdef FE_INVALID_SQRT +# ifdef FE_INVALID_SQRT __feraiseexcept (FE_INVALID_SQRT); fenv_union_t u = { .fenv = fegetenv_register () }; if ((u.l & FE_INVALID) == 0) -#endif +# endif __feraiseexcept (FE_INVALID); - x = a_nan.value; + x = NAN; } return f_wash (x); +#endif /* USE_SQRT_BUILTIN */ } -#endif /* _ARCH_PPCSQ */ -#undef __ieee754_sqrt -double -__ieee754_sqrt (double x) -{ - double z; - -#ifdef _ARCH_PPCSQ - asm ("fsqrt %0,%1\n" :"=f" (z):"f" (x)); -#else - z = __slow_ieee754_sqrt (x); -#endif - - return z; -} libm_alias_finite (__ieee754_sqrt, __sqrt) diff --git a/sysdeps/powerpc/fpu/e_sqrtf.c b/sysdeps/powerpc/fpu/e_sqrtf.c index f119dcf5d9..ae76bb1e10 100644 --- a/sysdeps/powerpc/fpu/e_sqrtf.c +++ b/sysdeps/powerpc/fpu/e_sqrtf.c @@ -18,22 +18,16 @@ #include <math.h> #include <math_private.h> -#include <fenv.h> #include <fenv_libc.h> -#include <inttypes.h> -#include <stdint.h> -#include <sysdep.h> -#include <ldsodefs.h> #include <libm-alias-finite.h> +#include <math-use-builtins.h> -#ifndef _ARCH_PPCSQ -static const float almost_half = 0.50000006; /* 0.5 + 2^-24 */ -static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 }; -static const ieee_float_shape_type a_inf = {.word = 0x7f800000 }; -static const float two48 = 281474976710656.0; -static const float twom24 = 5.9604644775390625e-8; -extern const float __t_sqrt[1024]; - +float +__ieee754_sqrtf (float x) +{ +#if USE_SQRTF_BUILTIN + return __builtin_sqrtf (x); +#else /* The method is based on a description in Computation of elementary functions on the IBM RISC System/6000 processor, P. W. Markstein, IBM J. Res. Develop, 34(1) 1990. @@ -48,14 +42,11 @@ extern const float __t_sqrt[1024]; generated guesses (which mostly runs on the integer unit, while the Newton-Raphson is running on the FPU). */ -float -__slow_ieee754_sqrtf (float x) -{ - const float inf = a_inf.value; + extern const float __t_sqrt[1024]; if (x > 0) { - if (x != inf) + if (x != INFINITY) { /* Variables named starting with 's' exist in the argument-reduced space, so that 2 > sx >= 0.5, @@ -94,7 +85,7 @@ __slow_ieee754_sqrtf (float x) sy2 = sy + sy; sg = __builtin_fmaf (sy, sd, sg); /* 16-bit approximation to sqrt(sx). */ - e = -__builtin_fmaf (sy, sg, -almost_half); + e = -__builtin_fmaf (sy, sg, -0x1.0000020365653p-1); SET_FLOAT_WORD (fsg, fsgi); sd = -__builtin_fmaf (sg, sg, -sx); sy = __builtin_fmaf (e, sy2, sy); @@ -106,7 +97,7 @@ __slow_ieee754_sqrtf (float x) rounded incorrectly. */ sy2 = sy + sy; g = sg * fsg; - e = -__builtin_fmaf (sy, sg, -almost_half); + e = -__builtin_fmaf (sy, sg, -0x1.0000020365653p-1); d = -__builtin_fmaf (g, sg, -shx); sy = __builtin_fmaf (e, sy2, sy); fesetenv_register (fe); @@ -115,38 +106,23 @@ __slow_ieee754_sqrtf (float x) /* For denormalised numbers, we normalise, calculate the square root, and return an adjusted result. */ fesetenv_register (fe); - return __slow_ieee754_sqrtf (x * two48) * twom24; + return __ieee754_sqrtf (x * 0x1p+48) * 0x1p-24; } } else if (x < 0) { /* For some reason, some PowerPC32 processors don't implement FE_INVALID_SQRT. */ -#ifdef FE_INVALID_SQRT +# ifdef FE_INVALID_SQRT feraiseexcept (FE_INVALID_SQRT); fenv_union_t u = { .fenv = fegetenv_register () }; if ((u.l & FE_INVALID) == 0) -#endif +# endif feraiseexcept (FE_INVALID); - x = a_nan.value; + x = NAN; } return f_washf (x); -} -#endif /* _ARCH_PPCSQ */ - -#undef __ieee754_sqrtf -float -__ieee754_sqrtf (float x) -{ - float z; - -#ifdef _ARCH_PPCSQ - asm ("fsqrts %0,%1\n" :"=f" (z):"f" (x)); -#else - z = __slow_ieee754_sqrtf (x); -#endif - - return z; +#endif /* USE_SQRTF_BUILTIN */ } libm_alias_finite (__ieee754_sqrtf, __sqrtf) diff --git a/sysdeps/powerpc/fpu/math-use-builtins-sqrt.h b/sysdeps/powerpc/fpu/math-use-builtins-sqrt.h new file mode 100644 index 0000000000..653309a7e7 --- /dev/null +++ b/sysdeps/powerpc/fpu/math-use-builtins-sqrt.h @@ -0,0 +1,9 @@ +#ifdef _ARCH_PPCSQ +# define USE_SQRT_BUILTIN 1 +# define USE_SQRTF_BUILTIN 1 +#else +# define USE_SQRT_BUILTIN 0 +# define USE_SQRTF_BUILTIN 0 +#endif +#define USE_SQRTL_BUILTIN 0 +#define USE_SQRTF128_BUILTIN 0 |