diff options
author | Ulrich Drepper <drepper@redhat.com> | 1999-07-14 00:54:57 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 1999-07-14 00:54:57 +0000 |
commit | abfbdde177c3a7155070dda1b2cdc8292054cc26 (patch) | |
tree | e021306b596381fbf8311d2b7eb294e918ff17c8 /sysdeps/libm-ieee754/s_cbrtl.c | |
parent | 86421aa57ecfd70963ae66848bd6a6dd3b8e0fe6 (diff) | |
download | glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.gz glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.xz glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.zip |
Update.
Diffstat (limited to 'sysdeps/libm-ieee754/s_cbrtl.c')
-rw-r--r-- | sysdeps/libm-ieee754/s_cbrtl.c | 78 |
1 files changed, 0 insertions, 78 deletions
diff --git a/sysdeps/libm-ieee754/s_cbrtl.c b/sysdeps/libm-ieee754/s_cbrtl.c deleted file mode 100644 index 1d021b7c3c..0000000000 --- a/sysdeps/libm-ieee754/s_cbrtl.c +++ /dev/null @@ -1,78 +0,0 @@ -/* Compute cubic root of double value. - Copyright (C) 1997 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Dirk Alboth <dirka@uni-paderborn.de> and - Ulrich Drepper <drepper@cygnus.com>, 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Library General Public License as - published by the Free Software Foundation; either version 2 of the - License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Library General Public License for more details. - - You should have received a copy of the GNU Library General Public - License along with the GNU C Library; see the file COPYING.LIB. If not, - write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ - -#include "math.h" -#include "math_private.h" - - -#define CBRT2 1.2599210498948731648 /* 2^(1/3) */ -#define SQR_CBRT2 1.5874010519681994748 /* 2^(2/3) */ - -/* We don't use long double values here since U need not be computed - with full precision. */ -static const double factor[5] = -{ - 1.0 / SQR_CBRT2, - 1.0 / CBRT2, - 1.0, - CBRT2, - SQR_CBRT2 -}; - - -long double -__cbrtl (long double x) -{ - long double xm, ym, u, t2; - int xe; - - /* Reduce X. XM now is an range 1.0 to 0.5. */ - xm = __frexpl (fabs (x), &xe); - - /* If X is not finite or is null return it (with raising exceptions - if necessary. - Note: *Our* version of `frexp' sets XE to zero if the argument is - Inf or NaN. This is not portable but faster. */ - if (xe == 0 && fpclassify (x) <= FP_ZERO) - return x + x; - - u = (0.338058687610520237 - + (1.67595307700780102 - + (-2.82414939754975962 - + (4.09559907378707839 + - (-4.11151425200350531 - + (2.65298938441952296 + - (-0.988553671195413709 - + 0.161617097923756032 * xm) - * xm) - * xm) - * xm) - * xm) - * xm) - *xm); - - t2 = u * u * u; - - ym = u * (t2 + 2.0 * xm) / (2.0 * t2 + xm) * factor[2 + xe % 3]; - - return __ldexpl (x > 0.0 ? ym : -ym, xe / 3); -} -weak_alias (__cbrtl, cbrtl) |