about summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/k_rem_pio2.c
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
committerUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
commitabfbdde177c3a7155070dda1b2cdc8292054cc26 (patch)
treee021306b596381fbf8311d2b7eb294e918ff17c8 /sysdeps/libm-ieee754/k_rem_pio2.c
parent86421aa57ecfd70963ae66848bd6a6dd3b8e0fe6 (diff)
downloadglibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.gz
glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.xz
glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.zip
Update.
Diffstat (limited to 'sysdeps/libm-ieee754/k_rem_pio2.c')
-rw-r--r--sysdeps/libm-ieee754/k_rem_pio2.c320
1 files changed, 0 insertions, 320 deletions
diff --git a/sysdeps/libm-ieee754/k_rem_pio2.c b/sysdeps/libm-ieee754/k_rem_pio2.c
deleted file mode 100644
index ccf1633bd4..0000000000
--- a/sysdeps/libm-ieee754/k_rem_pio2.c
+++ /dev/null
@@ -1,320 +0,0 @@
-/* @(#)k_rem_pio2.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
-#endif
-
-/*
- * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
- * double x[],y[]; int e0,nx,prec; int ipio2[];
- *
- * __kernel_rem_pio2 return the last three digits of N with
- *		y = x - N*pi/2
- * so that |y| < pi/2.
- *
- * The method is to compute the integer (mod 8) and fraction parts of
- * (2/pi)*x without doing the full multiplication. In general we
- * skip the part of the product that are known to be a huge integer (
- * more accurately, = 0 mod 8 ). Thus the number of operations are
- * independent of the exponent of the input.
- *
- * (2/pi) is represented by an array of 24-bit integers in ipio2[].
- *
- * Input parameters:
- * 	x[]	The input value (must be positive) is broken into nx
- *		pieces of 24-bit integers in double precision format.
- *		x[i] will be the i-th 24 bit of x. The scaled exponent
- *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
- *		match x's up to 24 bits.
- *
- *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
- *			e0 = ilogb(z)-23
- *			z  = scalbn(z,-e0)
- *		for i = 0,1,2
- *			x[i] = floor(z)
- *			z    = (z-x[i])*2**24
- *
- *
- *	y[]	ouput result in an array of double precision numbers.
- *		The dimension of y[] is:
- *			24-bit  precision	1
- *			53-bit  precision	2
- *			64-bit  precision	2
- *			113-bit precision	3
- *		The actual value is the sum of them. Thus for 113-bit
- *		precision, one may have to do something like:
- *
- *		long double t,w,r_head, r_tail;
- *		t = (long double)y[2] + (long double)y[1];
- *		w = (long double)y[0];
- *		r_head = t+w;
- *		r_tail = w - (r_head - t);
- *
- *	e0	The exponent of x[0]
- *
- *	nx	dimension of x[]
- *
- *  	prec	an integer indicating the precision:
- *			0	24  bits (single)
- *			1	53  bits (double)
- *			2	64  bits (extended)
- *			3	113 bits (quad)
- *
- *	ipio2[]
- *		integer array, contains the (24*i)-th to (24*i+23)-th
- *		bit of 2/pi after binary point. The corresponding
- *		floating value is
- *
- *			ipio2[i] * 2^(-24(i+1)).
- *
- * External function:
- *	double scalbn(), floor();
- *
- *
- * Here is the description of some local variables:
- *
- * 	jk	jk+1 is the initial number of terms of ipio2[] needed
- *		in the computation. The recommended value is 2,3,4,
- *		6 for single, double, extended,and quad.
- *
- * 	jz	local integer variable indicating the number of
- *		terms of ipio2[] used.
- *
- *	jx	nx - 1
- *
- *	jv	index for pointing to the suitable ipio2[] for the
- *		computation. In general, we want
- *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
- *		is an integer. Thus
- *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
- *		Hence jv = max(0,(e0-3)/24).
- *
- *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
- *
- * 	q[]	double array with integral value, representing the
- *		24-bits chunk of the product of x and 2/pi.
- *
- *	q0	the corresponding exponent of q[0]. Note that the
- *		exponent for q[i] would be q0-24*i.
- *
- *	PIo2[]	double precision array, obtained by cutting pi/2
- *		into 24 bits chunks.
- *
- *	f[]	ipio2[] in floating point
- *
- *	iq[]	integer array by breaking up q[] in 24-bits chunk.
- *
- *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
- *
- *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
- *		it also indicates the *sign* of the result.
- *
- */
-
-
-/*
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "math.h"
-#include "math_private.h"
-
-#ifdef __STDC__
-static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
-#else
-static int init_jk[] = {2,3,4,6};
-#endif
-
-#ifdef __STDC__
-static const double PIo2[] = {
-#else
-static double PIo2[] = {
-#endif
-  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
-  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
-  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
-  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
-  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
-  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
-  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
-  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
-};
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-zero   = 0.0,
-one    = 1.0,
-two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
-twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
-
-#ifdef __STDC__
-	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
-#else
-	int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
-	double x[], y[]; int e0,nx,prec; int32_t ipio2[];
-#endif
-{
-	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
-	double z,fw,f[20],fq[20],q[20];
-
-    /* initialize jk*/
-	jk = init_jk[prec];
-	jp = jk;
-
-    /* determine jx,jv,q0, note that 3>q0 */
-	jx =  nx-1;
-	jv = (e0-3)/24; if(jv<0) jv=0;
-	q0 =  e0-24*(jv+1);
-
-    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
-	j = jv-jx; m = jx+jk;
-	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
-
-    /* compute q[0],q[1],...q[jk] */
-	for (i=0;i<=jk;i++) {
-	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
-	}
-
-	jz = jk;
-recompute:
-    /* distill q[] into iq[] reversingly */
-	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
-	    fw    =  (double)((int32_t)(twon24* z));
-	    iq[i] =  (int32_t)(z-two24*fw);
-	    z     =  q[j-1]+fw;
-	}
-
-    /* compute n */
-	z  = __scalbn(z,q0);		/* actual value of z */
-	z -= 8.0*__floor(z*0.125);		/* trim off integer >= 8 */
-	n  = (int32_t) z;
-	z -= (double)n;
-	ih = 0;
-	if(q0>0) {	/* need iq[jz-1] to determine n */
-	    i  = (iq[jz-1]>>(24-q0)); n += i;
-	    iq[jz-1] -= i<<(24-q0);
-	    ih = iq[jz-1]>>(23-q0);
-	}
-	else if(q0==0) ih = iq[jz-1]>>23;
-	else if(z>=0.5) ih=2;
-
-	if(ih>0) {	/* q > 0.5 */
-	    n += 1; carry = 0;
-	    for(i=0;i<jz ;i++) {	/* compute 1-q */
-		j = iq[i];
-		if(carry==0) {
-		    if(j!=0) {
-			carry = 1; iq[i] = 0x1000000- j;
-		    }
-		} else  iq[i] = 0xffffff - j;
-	    }
-	    if(q0>0) {		/* rare case: chance is 1 in 12 */
-	        switch(q0) {
-	        case 1:
-	    	   iq[jz-1] &= 0x7fffff; break;
-	    	case 2:
-	    	   iq[jz-1] &= 0x3fffff; break;
-	        }
-	    }
-	    if(ih==2) {
-		z = one - z;
-		if(carry!=0) z -= __scalbn(one,q0);
-	    }
-	}
-
-    /* check if recomputation is needed */
-	if(z==zero) {
-	    j = 0;
-	    for (i=jz-1;i>=jk;i--) j |= iq[i];
-	    if(j==0) { /* need recomputation */
-		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
-
-		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
-		    f[jx+i] = (double) ipio2[jv+i];
-		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
-		    q[i] = fw;
-		}
-		jz += k;
-		goto recompute;
-	    }
-	}
-
-    /* chop off zero terms */
-	if(z==0.0) {
-	    jz -= 1; q0 -= 24;
-	    while(iq[jz]==0) { jz--; q0-=24;}
-	} else { /* break z into 24-bit if necessary */
-	    z = __scalbn(z,-q0);
-	    if(z>=two24) {
-		fw = (double)((int32_t)(twon24*z));
-		iq[jz] = (int32_t)(z-two24*fw);
-		jz += 1; q0 += 24;
-		iq[jz] = (int32_t) fw;
-	    } else iq[jz] = (int32_t) z ;
-	}
-
-    /* convert integer "bit" chunk to floating-point value */
-	fw = __scalbn(one,q0);
-	for(i=jz;i>=0;i--) {
-	    q[i] = fw*(double)iq[i]; fw*=twon24;
-	}
-
-    /* compute PIo2[0,...,jp]*q[jz,...,0] */
-	for(i=jz;i>=0;i--) {
-	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
-	    fq[jz-i] = fw;
-	}
-
-    /* compress fq[] into y[] */
-	switch(prec) {
-	    case 0:
-		fw = 0.0;
-		for (i=jz;i>=0;i--) fw += fq[i];
-		y[0] = (ih==0)? fw: -fw;
-		break;
-	    case 1:
-	    case 2:
-		fw = 0.0;
-		for (i=jz;i>=0;i--) fw += fq[i];
-		y[0] = (ih==0)? fw: -fw;
-		fw = fq[0]-fw;
-		for (i=1;i<=jz;i++) fw += fq[i];
-		y[1] = (ih==0)? fw: -fw;
-		break;
-	    case 3:	/* painful */
-		for (i=jz;i>0;i--) {
-		    fw      = fq[i-1]+fq[i];
-		    fq[i]  += fq[i-1]-fw;
-		    fq[i-1] = fw;
-		}
-		for (i=jz;i>1;i--) {
-		    fw      = fq[i-1]+fq[i];
-		    fq[i]  += fq[i-1]-fw;
-		    fq[i-1] = fw;
-		}
-		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
-		if(ih==0) {
-		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
-		} else {
-		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
-		}
-	}
-	return n&7;
-}