about summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/k_rem_pio2.c
diff options
context:
space:
mode:
authorRoland McGrath <roland@gnu.org>1996-03-05 21:41:30 +0000
committerRoland McGrath <roland@gnu.org>1996-03-05 21:41:30 +0000
commitf7eac6eb504f4baf13dbb4d26717942df050ebe6 (patch)
tree95ff129c06c7f6f246a5e2bfa489ba6382659d19 /sysdeps/libm-ieee754/k_rem_pio2.c
parent1521668f2afae1dc2ef5d7ffaeb84353b36874dd (diff)
downloadglibc-f7eac6eb504f4baf13dbb4d26717942df050ebe6.tar.gz
glibc-f7eac6eb504f4baf13dbb4d26717942df050ebe6.tar.xz
glibc-f7eac6eb504f4baf13dbb4d26717942df050ebe6.zip
Mon Mar 4 20:54:40 1996 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
	* Makeconfig ($(common-objpfx)config.make): Depend on config.h.in.


Mon Mar  4 17:35:09 1996  Roland McGrath  <roland@charlie-brown.gnu.ai.mit.edu>

	* hurd/catch-signal.c (hurd_safe_memmove): New function.
	(hurd_safe_copyin, hurd_safe_copyout): New functions.
	* hurd/hurd/sigpreempt.h: Declare them.

Sun Mar  3 08:43:44 1996  Roland McGrath  <roland@charlie-brown.gnu.ai.mit.edu>

	Replace math code with fdlibm from Sun as modified for netbsd by
	JT Conklin and Ian Taylor, including x86 FPU support.
	* sysdeps/libm-ieee754, sysdeps/libm-i387: New directories.
	* math/math_private.h: New file.
	* sysdeps/i386/fpu/Implies: New file.
	* sysdeps/ieee754/Implies: New file.
	* math/machine/asm.h, math/machine/endian.h: New files.
	* math/Makefile, math/math.h: Rewritten.
	* mathcalls.h, math/mathcalls.h: New file, broken out of math.h.
	* math/finite.c: File removed.
	* sysdeps/generic/Makefile [$(subdir)=math]: Frobnication removed.

	* math/test-math.c: Include errno.h and string.h.

	* sysdeps/unix/bsd/dirstream.h: File removed.
	* sysdeps/unix/bsd/readdir.c: File removed.
Diffstat (limited to 'sysdeps/libm-ieee754/k_rem_pio2.c')
-rw-r--r--sysdeps/libm-ieee754/k_rem_pio2.c320
1 files changed, 320 insertions, 0 deletions
diff --git a/sysdeps/libm-ieee754/k_rem_pio2.c b/sysdeps/libm-ieee754/k_rem_pio2.c
new file mode 100644
index 0000000000..5e29b05312
--- /dev/null
+++ b/sysdeps/libm-ieee754/k_rem_pio2.c
@@ -0,0 +1,320 @@
+/* @(#)k_rem_pio2.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
+#endif
+
+/*
+ * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+ * double x[],y[]; int e0,nx,prec; int ipio2[];
+ * 
+ * __kernel_rem_pio2 return the last three digits of N with 
+ *		y = x - N*pi/2
+ * so that |y| < pi/2.
+ *
+ * The method is to compute the integer (mod 8) and fraction parts of 
+ * (2/pi)*x without doing the full multiplication. In general we
+ * skip the part of the product that are known to be a huge integer (
+ * more accurately, = 0 mod 8 ). Thus the number of operations are
+ * independent of the exponent of the input.
+ *
+ * (2/pi) is represented by an array of 24-bit integers in ipio2[].
+ *
+ * Input parameters:
+ * 	x[]	The input value (must be positive) is broken into nx 
+ *		pieces of 24-bit integers in double precision format.
+ *		x[i] will be the i-th 24 bit of x. The scaled exponent 
+ *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 
+ *		match x's up to 24 bits.
+ *
+ *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
+ *			e0 = ilogb(z)-23
+ *			z  = scalbn(z,-e0)
+ *		for i = 0,1,2
+ *			x[i] = floor(z)
+ *			z    = (z-x[i])*2**24
+ *
+ *
+ *	y[]	ouput result in an array of double precision numbers.
+ *		The dimension of y[] is:
+ *			24-bit  precision	1
+ *			53-bit  precision	2
+ *			64-bit  precision	2
+ *			113-bit precision	3
+ *		The actual value is the sum of them. Thus for 113-bit
+ *		precison, one may have to do something like:
+ *
+ *		long double t,w,r_head, r_tail;
+ *		t = (long double)y[2] + (long double)y[1];
+ *		w = (long double)y[0];
+ *		r_head = t+w;
+ *		r_tail = w - (r_head - t);
+ *
+ *	e0	The exponent of x[0]
+ *
+ *	nx	dimension of x[]
+ *
+ *  	prec	an integer indicating the precision:
+ *			0	24  bits (single)
+ *			1	53  bits (double)
+ *			2	64  bits (extended)
+ *			3	113 bits (quad)
+ *
+ *	ipio2[]
+ *		integer array, contains the (24*i)-th to (24*i+23)-th 
+ *		bit of 2/pi after binary point. The corresponding 
+ *		floating value is
+ *
+ *			ipio2[i] * 2^(-24(i+1)).
+ *
+ * External function:
+ *	double scalbn(), floor();
+ *
+ *
+ * Here is the description of some local variables:
+ *
+ * 	jk	jk+1 is the initial number of terms of ipio2[] needed
+ *		in the computation. The recommended value is 2,3,4,
+ *		6 for single, double, extended,and quad.
+ *
+ * 	jz	local integer variable indicating the number of 
+ *		terms of ipio2[] used. 
+ *
+ *	jx	nx - 1
+ *
+ *	jv	index for pointing to the suitable ipio2[] for the
+ *		computation. In general, we want
+ *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+ *		is an integer. Thus
+ *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+ *		Hence jv = max(0,(e0-3)/24).
+ *
+ *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
+ *
+ * 	q[]	double array with integral value, representing the
+ *		24-bits chunk of the product of x and 2/pi.
+ *
+ *	q0	the corresponding exponent of q[0]. Note that the
+ *		exponent for q[i] would be q0-24*i.
+ *
+ *	PIo2[]	double precision array, obtained by cutting pi/2
+ *		into 24 bits chunks. 
+ *
+ *	f[]	ipio2[] in floating point 
+ *
+ *	iq[]	integer array by breaking up q[] in 24-bits chunk.
+ *
+ *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
+ *
+ *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
+ *		it also indicates the *sign* of the result.
+ *
+ */
+
+
+/*
+ * Constants:
+ * The hexadecimal values are the intended ones for the following 
+ * constants. The decimal values may be used, provided that the 
+ * compiler will convert from decimal to binary accurately enough 
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
+#else
+static int init_jk[] = {2,3,4,6}; 
+#endif
+
+#ifdef __STDC__
+static const double PIo2[] = {
+#else
+static double PIo2[] = {
+#endif
+  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+};
+
+#ifdef __STDC__
+static const double			
+#else
+static double			
+#endif
+zero   = 0.0,
+one    = 1.0,
+two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
+
+#ifdef __STDC__
+	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) 
+#else
+	int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 	
+	double x[], y[]; int e0,nx,prec; int32_t ipio2[];
+#endif
+{
+	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
+	double z,fw,f[20],fq[20],q[20];
+
+    /* initialize jk*/
+	jk = init_jk[prec];
+	jp = jk;
+
+    /* determine jx,jv,q0, note that 3>q0 */
+	jx =  nx-1;
+	jv = (e0-3)/24; if(jv<0) jv=0;
+	q0 =  e0-24*(jv+1);
+
+    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+	j = jv-jx; m = jx+jk;
+	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
+
+    /* compute q[0],q[1],...q[jk] */
+	for (i=0;i<=jk;i++) {
+	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
+	}
+
+	jz = jk;
+recompute:
+    /* distill q[] into iq[] reversingly */
+	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
+	    fw    =  (double)((int32_t)(twon24* z));
+	    iq[i] =  (int32_t)(z-two24*fw);
+	    z     =  q[j-1]+fw;
+	}
+
+    /* compute n */
+	z  = __scalbn(z,q0);		/* actual value of z */
+	z -= 8.0*__floor(z*0.125);		/* trim off integer >= 8 */
+	n  = (int32_t) z;
+	z -= (double)n;
+	ih = 0;
+	if(q0>0) {	/* need iq[jz-1] to determine n */
+	    i  = (iq[jz-1]>>(24-q0)); n += i;
+	    iq[jz-1] -= i<<(24-q0);
+	    ih = iq[jz-1]>>(23-q0);
+	} 
+	else if(q0==0) ih = iq[jz-1]>>23;
+	else if(z>=0.5) ih=2;
+
+	if(ih>0) {	/* q > 0.5 */
+	    n += 1; carry = 0;
+	    for(i=0;i<jz ;i++) {	/* compute 1-q */
+		j = iq[i];
+		if(carry==0) {
+		    if(j!=0) {
+			carry = 1; iq[i] = 0x1000000- j;
+		    }
+		} else  iq[i] = 0xffffff - j;
+	    }
+	    if(q0>0) {		/* rare case: chance is 1 in 12 */
+	        switch(q0) {
+	        case 1:
+	    	   iq[jz-1] &= 0x7fffff; break;
+	    	case 2:
+	    	   iq[jz-1] &= 0x3fffff; break;
+	        }
+	    }
+	    if(ih==2) {
+		z = one - z;
+		if(carry!=0) z -= __scalbn(one,q0);
+	    }
+	}
+
+    /* check if recomputation is needed */
+	if(z==zero) {
+	    j = 0;
+	    for (i=jz-1;i>=jk;i--) j |= iq[i];
+	    if(j==0) { /* need recomputation */
+		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
+
+		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
+		    f[jx+i] = (double) ipio2[jv+i];
+		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
+		    q[i] = fw;
+		}
+		jz += k;
+		goto recompute;
+	    }
+	}
+
+    /* chop off zero terms */
+	if(z==0.0) {
+	    jz -= 1; q0 -= 24;
+	    while(iq[jz]==0) { jz--; q0-=24;}
+	} else { /* break z into 24-bit if necessary */
+	    z = __scalbn(z,-q0);
+	    if(z>=two24) { 
+		fw = (double)((int32_t)(twon24*z));
+		iq[jz] = (int32_t)(z-two24*fw);
+		jz += 1; q0 += 24;
+		iq[jz] = (int32_t) fw;
+	    } else iq[jz] = (int32_t) z ;
+	}
+
+    /* convert integer "bit" chunk to floating-point value */
+	fw = __scalbn(one,q0);
+	for(i=jz;i>=0;i--) {
+	    q[i] = fw*(double)iq[i]; fw*=twon24;
+	}
+
+    /* compute PIo2[0,...,jp]*q[jz,...,0] */
+	for(i=jz;i>=0;i--) {
+	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
+	    fq[jz-i] = fw;
+	}
+
+    /* compress fq[] into y[] */
+	switch(prec) {
+	    case 0:
+		fw = 0.0;
+		for (i=jz;i>=0;i--) fw += fq[i];
+		y[0] = (ih==0)? fw: -fw; 
+		break;
+	    case 1:
+	    case 2:
+		fw = 0.0;
+		for (i=jz;i>=0;i--) fw += fq[i]; 
+		y[0] = (ih==0)? fw: -fw; 
+		fw = fq[0]-fw;
+		for (i=1;i<=jz;i++) fw += fq[i];
+		y[1] = (ih==0)? fw: -fw; 
+		break;
+	    case 3:	/* painful */
+		for (i=jz;i>0;i--) {
+		    fw      = fq[i-1]+fq[i]; 
+		    fq[i]  += fq[i-1]-fw;
+		    fq[i-1] = fw;
+		}
+		for (i=jz;i>1;i--) {
+		    fw      = fq[i-1]+fq[i]; 
+		    fq[i]  += fq[i-1]-fw;
+		    fq[i-1] = fw;
+		}
+		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; 
+		if(ih==0) {
+		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
+		} else {
+		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
+		}
+	}
+	return n&7;
+}