about summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/e_exp.c
diff options
context:
space:
mode:
authorRoland McGrath <roland@gnu.org>1996-03-05 21:41:30 +0000
committerRoland McGrath <roland@gnu.org>1996-03-05 21:41:30 +0000
commitf7eac6eb504f4baf13dbb4d26717942df050ebe6 (patch)
tree95ff129c06c7f6f246a5e2bfa489ba6382659d19 /sysdeps/libm-ieee754/e_exp.c
parent1521668f2afae1dc2ef5d7ffaeb84353b36874dd (diff)
downloadglibc-f7eac6eb504f4baf13dbb4d26717942df050ebe6.tar.gz
glibc-f7eac6eb504f4baf13dbb4d26717942df050ebe6.tar.xz
glibc-f7eac6eb504f4baf13dbb4d26717942df050ebe6.zip
Mon Mar 4 20:54:40 1996 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
	* Makeconfig ($(common-objpfx)config.make): Depend on config.h.in.


Mon Mar  4 17:35:09 1996  Roland McGrath  <roland@charlie-brown.gnu.ai.mit.edu>

	* hurd/catch-signal.c (hurd_safe_memmove): New function.
	(hurd_safe_copyin, hurd_safe_copyout): New functions.
	* hurd/hurd/sigpreempt.h: Declare them.

Sun Mar  3 08:43:44 1996  Roland McGrath  <roland@charlie-brown.gnu.ai.mit.edu>

	Replace math code with fdlibm from Sun as modified for netbsd by
	JT Conklin and Ian Taylor, including x86 FPU support.
	* sysdeps/libm-ieee754, sysdeps/libm-i387: New directories.
	* math/math_private.h: New file.
	* sysdeps/i386/fpu/Implies: New file.
	* sysdeps/ieee754/Implies: New file.
	* math/machine/asm.h, math/machine/endian.h: New files.
	* math/Makefile, math/math.h: Rewritten.
	* mathcalls.h, math/mathcalls.h: New file, broken out of math.h.
	* math/finite.c: File removed.
	* sysdeps/generic/Makefile [$(subdir)=math]: Frobnication removed.

	* math/test-math.c: Include errno.h and string.h.

	* sysdeps/unix/bsd/dirstream.h: File removed.
	* sysdeps/unix/bsd/readdir.c: File removed.
Diffstat (limited to 'sysdeps/libm-ieee754/e_exp.c')
-rw-r--r--sysdeps/libm-ieee754/e_exp.c167
1 files changed, 167 insertions, 0 deletions
diff --git a/sysdeps/libm-ieee754/e_exp.c b/sysdeps/libm-ieee754/e_exp.c
new file mode 100644
index 0000000000..9eba853c8f
--- /dev/null
+++ b/sysdeps/libm-ieee754/e_exp.c
@@ -0,0 +1,167 @@
+/* @(#)e_exp.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_exp.c,v 1.8 1995/05/10 20:45:03 jtc Exp $";
+#endif
+
+/* __ieee754_exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ *   1. Argument reduction:
+ *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ *	Given x, find r and integer k such that
+ *
+ *               x = k*ln2 + r,  |r| <= 0.5*ln2.  
+ *
+ *      Here r will be represented as r = hi-lo for better 
+ *	accuracy.
+ *
+ *   2. Approximation of exp(r) by a special rational function on
+ *	the interval [0,0.34658]:
+ *	Write
+ *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ *      We use a special Reme algorithm on [0,0.34658] to generate 
+ * 	a polynomial of degree 5 to approximate R. The maximum error 
+ *	of this polynomial approximation is bounded by 2**-59. In
+ *	other words,
+ *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ *  	(where z=r*r, and the values of P1 to P5 are listed below)
+ *	and
+ *	    |                  5          |     -59
+ *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2 
+ *	    |                             |
+ *	The computation of exp(r) thus becomes
+ *                             2*r
+ *		exp(r) = 1 + -------
+ *		              R - r
+ *                                 r*R1(r)	
+ *		       = 1 + r + ----------- (for better accuracy)
+ *		                  2 - R1(r)
+ *	where
+ *			         2       4             10
+ *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
+ *	
+ *   3. Scale back to obtain exp(x):
+ *	From step 1, we have
+ *	   exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ *	exp(INF) is INF, exp(NaN) is NaN;
+ *	exp(-INF) is 0, and
+ *	for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ *	according to an error analysis, the error is always less than
+ *	1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ *	For IEEE double 
+ *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
+ *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following 
+ * constants. The decimal values may be used, provided that the 
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+one	= 1.0,
+halF[2]	= {0.5,-0.5,},
+huge	= 1.0e+300,
+twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
+o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
+u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
+ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
+	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
+ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
+	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
+invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
+P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
+P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
+P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
+P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
+P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+
+
+#ifdef __STDC__
+	double __ieee754_exp(double x)	/* default IEEE double exp */
+#else
+	double __ieee754_exp(x)	/* default IEEE double exp */
+	double x;
+#endif
+{
+	double y,hi,lo,c,t;
+	int32_t k,xsb;
+	u_int32_t hx;
+
+	GET_HIGH_WORD(hx,x);
+	xsb = (hx>>31)&1;		/* sign bit of x */
+	hx &= 0x7fffffff;		/* high word of |x| */
+
+    /* filter out non-finite argument */
+	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
+            if(hx>=0x7ff00000) {
+	        u_int32_t lx;
+		GET_LOW_WORD(lx,x);
+		if(((hx&0xfffff)|lx)!=0) 
+		     return x+x; 		/* NaN */
+		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
+	    }
+	    if(x > o_threshold) return huge*huge; /* overflow */
+	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
+	}
+
+    /* argument reduction */
+	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ 
+	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
+		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
+	    } else {
+		k  = invln2*x+halF[xsb];
+		t  = k;
+		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
+		lo = t*ln2LO[0];
+	    }
+	    x  = hi - lo;
+	} 
+	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
+	    if(huge+x>one) return one+x;/* trigger inexact */
+	}
+	else k = 0;
+
+    /* x is now in primary range */
+	t  = x*x;
+	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+	if(k==0) 	return one-((x*c)/(c-2.0)-x); 
+	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
+	if(k >= -1021) {
+	    u_int32_t hy;
+	    GET_HIGH_WORD(hy,y);
+	    SET_HIGH_WORD(y,hy+(k<<20));	/* add k to y's exponent */
+	    return y;
+	} else {
+	    u_int32_t hy;
+	    GET_HIGH_WORD(hy,y);
+	    SET_HIGH_WORD(y,hy+((k+1000)<<20));	/* add k to y's exponent */
+	    return y*twom1000;
+	}
+}