diff options
author | Andreas Jaeger <aj@suse.de> | 2001-05-22 08:46:19 +0000 |
---|---|---|
committer | Andreas Jaeger <aj@suse.de> | 2001-05-22 08:46:19 +0000 |
commit | 90b828e6ad6cbf4a1ac63b51b0910a9cc159b7cd (patch) | |
tree | 24ee13723e184fcae071f166d2c95e67b573188b /sysdeps/ieee754 | |
parent | 0bc93a2fb1ab0b29988199bfe85fb73a2bacbfe7 (diff) | |
download | glibc-90b828e6ad6cbf4a1ac63b51b0910a9cc159b7cd.tar.gz glibc-90b828e6ad6cbf4a1ac63b51b0910a9cc159b7cd.tar.xz glibc-90b828e6ad6cbf4a1ac63b51b0910a9cc159b7cd.zip |
Update.
2001-05-22 Andreas Jaeger <aj@suse.de> * sysdeps/ieee754/ldbl-128/s_log1pl.c: New file, contributed by Stephen L Moshier <moshier@mediaone.net>. 2001-05-22 Martin Schwidefsky <schwidefsky@de.ibm.com> * sysdeps/s390/s390-32/backtrace.c: Make backtrace return the return addresses instead of the stack pointers. * sysdeps/s390/s390-64/backtrace.c: Likewise. 2001-05-21 Jakub Jelinek <jakub@redhat.com> * sysdeps/unix/sysv/linux/ia64/sys/ucontext.h: Include bits/sigcontext.h instead of bits/sigstack.h. * sysdeps/unix/sysv/linux/ia64/bits/sigcontext.h: Add multiple-inclusion guards.
Diffstat (limited to 'sysdeps/ieee754')
-rw-r--r-- | sysdeps/ieee754/ldbl-128/s_log1pl.c | 244 |
1 files changed, 244 insertions, 0 deletions
diff --git a/sysdeps/ieee754/ldbl-128/s_log1pl.c b/sysdeps/ieee754/ldbl-128/s_log1pl.c new file mode 100644 index 0000000000..fcb6ecc8a4 --- /dev/null +++ b/sysdeps/ieee754/ldbl-128/s_log1pl.c @@ -0,0 +1,244 @@ +/* log1pl.c + * + * Relative error logarithm + * Natural logarithm of 1+x, 128-bit long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, log1pl(); + * + * y = log1pl( x ); + * + * + * + * DESCRIPTION: + * + * Returns the base e (2.718...) logarithm of 1+x. + * + * The argument 1+x is separated into its exponent and fractional + * parts. If the exponent is between -1 and +1, the logarithm + * of the fraction is approximated by + * + * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). + * + * Otherwise, setting z = 2(w-1)/(w+1), + * + * log(w) = z + z^3 P(z)/Q(z). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -1, 8 100000 1.9e-34 4.3e-35 + */ + +/* Copyright 2001 by Stephen L. Moshier */ + +#include "math.h" +#include "math_private.h" + +/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) + * 1/sqrt(2) <= 1+x < sqrt(2) + * Theoretical peak relative error = 5.3e-37, + * relative peak error spread = 2.3e-14 + */ +static long double + P12 = 1.538612243596254322971797716843006400388E-6L, + P11 = 4.998469661968096229986658302195402690910E-1L, + P10 = 2.321125933898420063925789532045674660756E1L, + P9 = 4.114517881637811823002128927449878962058E2L, + P8 = 3.824952356185897735160588078446136783779E3L, + P7 = 2.128857716871515081352991964243375186031E4L, + P6 = 7.594356839258970405033155585486712125861E4L, + P5 = 1.797628303815655343403735250238293741397E5L, + P4 = 2.854829159639697837788887080758954924001E5L, + P3 = 3.007007295140399532324943111654767187848E5L, + P2 = 2.014652742082537582487669938141683759923E5L, + P1 = 7.771154681358524243729929227226708890930E4L, + P0 = 1.313572404063446165910279910527789794488E4L, + /* Q12 = 1.000000000000000000000000000000000000000E0L, */ + Q11 = 4.839208193348159620282142911143429644326E1L, + Q10 = 9.104928120962988414618126155557301584078E2L, + Q9 = 9.147150349299596453976674231612674085381E3L, + Q8 = 5.605842085972455027590989944010492125825E4L, + Q7 = 2.248234257620569139969141618556349415120E5L, + Q6 = 6.132189329546557743179177159925690841200E5L, + Q5 = 1.158019977462989115839826904108208787040E6L, + Q4 = 1.514882452993549494932585972882995548426E6L, + Q3 = 1.347518538384329112529391120390701166528E6L, + Q2 = 7.777690340007566932935753241556479363645E5L, + Q1 = 2.626900195321832660448791748036714883242E5L, + Q0 = 3.940717212190338497730839731583397586124E4L; + +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), + * where z = 2(x-1)/(x+1) + * 1/sqrt(2) <= x < sqrt(2) + * Theoretical peak relative error = 1.1e-35, + * relative peak error spread 1.1e-9 + */ +static long double + R5 = -8.828896441624934385266096344596648080902E-1L, + R4 = 8.057002716646055371965756206836056074715E1L, + R3 = -2.024301798136027039250415126250455056397E3L, + R2 = 2.048819892795278657810231591630928516206E4L, + R1 = -8.977257995689735303686582344659576526998E4L, + R0 = 1.418134209872192732479751274970992665513E5L, + /* S6 = 1.000000000000000000000000000000000000000E0L, */ + S5 = -1.186359407982897997337150403816839480438E2L, + S4 = 3.998526750980007367835804959888064681098E3L, + S3 = -5.748542087379434595104154610899551484314E4L, + S2 = 4.001557694070773974936904547424676279307E5L, + S1 = -1.332535117259762928288745111081235577029E6L, + S0 = 1.701761051846631278975701529965589676574E6L; + +/* C1 + C2 = ln 2 */ +static long double C1 = 6.93145751953125E-1L; +static long double C2 = 1.428606820309417232121458176568075500134E-6L; + +static long double sqrth = 0.7071067811865475244008443621048490392848L; +/* ln (2^16384 * (1 - 2^-113)) */ +static long double maxlog = 1.1356523406294143949491931077970764891253E4L; +static long double big = 2e4932L; +static long double zero = 0.0L; + +#if 1 +/* Make sure these are prototyped. */ +long double frexpl (long double, int *); +long double ldexpl (long double, int); +#endif + + +long double +__log1pl (long double xm1) +{ + long double x, y, z, r, s; + ieee854_long_double_shape_type u; + int32_t ix; + int e; + + x = xm1 + 1.0L; + + /* Test for domain errors. */ + if (x > maxlog) + return (big * big); + + /* Test for NaN input. */ + u.value = xm1; + ix = u.parts32.w0 & 0x7fffffff; + if ((ix >= 0x7fff0000) + && (((ix & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) != 0)) + return x; + + if (x <= 0.0L) + { + if (x == 0.0L) + return (-big * big); + else + return (zero / zero); + } + + /* Separate mantissa from exponent. */ + + /* Use frexp used so that denormal numbers will be handled properly. */ + x = frexpl (x, &e); + + /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2), + where z = 2(x-1)/x+1). */ + if ((e > 2) || (e < -2)) + { + if (x < sqrth) + { /* 2( 2x-1 )/( 2x+1 ) */ + e -= 1; + z = x - 0.5L; + y = 0.5L * z + 0.5L; + } + else + { /* 2 (x-1)/(x+1) */ + z = x - 0.5L; + z -= 0.5L; + y = 0.5L * x + 0.5L; + } + x = z / y; + z = x * x; + r = ((((R5 * z + + R4) * z + + R3) * z + + R2) * z + + R1) * z + + R0; + s = (((((z + + S5) * z + + S4) * z + + S3) * z + + S2) * z + + S1) * z + + S0; + z = x * (z * r / s); + z = z + e * C2; + z = z + x; + z = z + e * C1; + return (z); + } + + + /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */ + + if (x < sqrth) + { + e -= 1; + if (e != 0) + x = 2.0L * x - 1.0L; /* 2x - 1 */ + else + x = xm1; + } + else + { + if (e != 0) + x = x - 1.0L; + else + x = xm1; + } + z = x * x; + r = (((((((((((P12 * x + + P11) * x + + P10) * x + + P9) * x + + P8) * x + + P7) * x + + P6) * x + + P5) * x + + P4) * x + + P3) * x + + P2) * x + + P1) * x + + P0; + s = (((((((((((x + + Q11) * x + + Q10) * x + + Q9) * x + + Q8) * x + + Q7) * x + + Q6) * x + + Q5) * x + + Q4) * x + + Q3) * x + + Q2) * x + + Q1) * x + + Q0; + y = x * (z * r / s); + y = y + e * C2; + z = y - 0.5L * z; + z = z + x; + z = z + e * C1; + return (z); +} + +weak_alias (__log1pl, log1pl) +#ifdef NO_LONG_DOUBLE +strong_alias (__log1p, __log1pl) +weak_alias (__log1p, log1pl) +#endif |