about summary refs log tree commit diff
path: root/sysdeps/ieee754
diff options
context:
space:
mode:
authorSiddhesh Poyarekar <siddhesh@redhat.com>2013-02-26 21:28:16 +0530
committerSiddhesh Poyarekar <siddhesh@redhat.com>2013-02-26 21:28:16 +0530
commit45f058844c33f670475bd02f266942746bcb332b (patch)
tree516c213f668b79a29216965086a6116f8cc6df78 /sysdeps/ieee754
parent2236d3595af6e19d57cf9ff4d93b18614fc9436a (diff)
downloadglibc-45f058844c33f670475bd02f266942746bcb332b.tar.gz
glibc-45f058844c33f670475bd02f266942746bcb332b.tar.xz
glibc-45f058844c33f670475bd02f266942746bcb332b.zip
Another tweak to the multiplication algorithm
Reduce the formula to calculate mantissa so that we reduce the net
number of multiplications performed.
Diffstat (limited to 'sysdeps/ieee754')
-rw-r--r--sysdeps/ieee754/dbl-64/mpa.c56
1 files changed, 50 insertions, 6 deletions
diff --git a/sysdeps/ieee754/dbl-64/mpa.c b/sysdeps/ieee754/dbl-64/mpa.c
index 7a6f01854b..8fc2626f76 100644
--- a/sysdeps/ieee754/dbl-64/mpa.c
+++ b/sysdeps/ieee754/dbl-64/mpa.c
@@ -43,6 +43,7 @@
 #include "endian.h"
 #include "mpa.h"
 #include <sys/param.h>
+#include <alloca.h>
 
 #ifndef SECTION
 # define SECTION
@@ -621,6 +622,7 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
   long p2 = p;
   double u, zk;
   const mp_no *a;
+  double *diag;
 
   /* Is z=0?  */
   if (__glibc_unlikely (X[0] * Y[0] == ZERO))
@@ -673,12 +675,33 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
   while (k > ip + ip2 + 1)
     Z[k--] = ZERO;
 
-  zk = Z[k] = ZERO;
+  zk = ZERO;
+
+  /* Precompute sums of diagonal elements so that we can directly use them
+     later.  See the next comment to know we why need them.  */
+  diag = alloca (k * sizeof (double));
+  double d = ZERO;
+  for (i = 1; i <= ip; i++)
+    {
+      d += X[i] * Y[i];
+      diag[i] = d;
+    }
+  while (i < k)
+    diag[i++] = d;
 
   while (k > p2)
     {
-      for (i = k - p2, j = p2; i < p2 + 1; i++, j--)
-	zk += X[i] * Y[j];
+      long lim = k / 2;
+
+      if (k % 2 == 0)
+	/* We want to add this only once, but since we subtract it in the sum
+	   of products above, we add twice.  */
+	zk += 2 * X[lim] * Y[lim];
+
+      for (i = k - p2, j = p2; i < j; i++, j--)
+	zk += (X[i] + X[j]) * (Y[i] + Y[j]);
+
+      zk -= diag[k - 1];
 
       u = (zk + CUTTER) - CUTTER;
       if (u > zk)
@@ -687,11 +710,32 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
       zk = u * RADIXI;
     }
 
-  /* The real deal.  */
+  /* The real deal.  Mantissa digit Z[k] is the sum of all X[i] * Y[j] where i
+     goes from 1 -> k - 1 and j goes the same range in reverse.  To reduce the
+     number of multiplications, we halve the range and if k is an even number,
+     add the diagonal element X[k/2]Y[k/2].  Through the half range, we compute
+     X[i] * Y[j] as (X[i] + X[j]) * (Y[i] + Y[j]) - X[i] * Y[i] - X[j] * Y[j].
+
+     This reduction tells us that we're summing two things, the first term
+     through the half range and the negative of the sum of the product of all
+     terms of X and Y in the full range.  i.e.
+
+     SUM(X[i] * Y[i]) for k terms.  This is precalculated above for each k in
+     a single loop so that it completes in O(n) time and can hence be directly
+     used in the loop below.  */
   while (k > 1)
     {
-      for (i = 1, j = k - 1; i < k; i++, j--)
-	zk += X[i] * Y[j];
+      long lim = k / 2;
+
+      if (k % 2 == 0)
+	/* We want to add this only once, but since we subtract it in the sum
+	   of products above, we add twice.  */
+        zk += 2 * X[lim] * Y[lim];
+
+      for (i = 1, j = k - 1; i < j; i++, j--)
+	zk += (X[i] + X[j]) * (Y[i] + Y[j]);
+
+      zk -= diag[k - 1];
 
       u = (zk + CUTTER) - CUTTER;
       if (u > zk)