about summary refs log tree commit diff
path: root/sysdeps/ieee754
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
committerUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
commitabfbdde177c3a7155070dda1b2cdc8292054cc26 (patch)
treee021306b596381fbf8311d2b7eb294e918ff17c8 /sysdeps/ieee754
parent86421aa57ecfd70963ae66848bd6a6dd3b8e0fe6 (diff)
downloadglibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.gz
glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.xz
glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.zip
Update.
Diffstat (limited to 'sysdeps/ieee754')
-rw-r--r--sysdeps/ieee754/Implies2
-rw-r--r--sysdeps/ieee754/dbl-64/Dist1
-rw-r--r--sysdeps/ieee754/dbl-64/dbl2mpn.c (renamed from sysdeps/ieee754/dbl2mpn.c)0
-rw-r--r--sysdeps/ieee754/dbl-64/e_acos.c144
-rw-r--r--sysdeps/ieee754/dbl-64/e_acosh.c69
-rw-r--r--sysdeps/ieee754/dbl-64/e_asin.c143
-rw-r--r--sysdeps/ieee754/dbl-64/e_atan2.c130
-rw-r--r--sysdeps/ieee754/dbl-64/e_atanh.c74
-rw-r--r--sysdeps/ieee754/dbl-64/e_cosh.c92
-rw-r--r--sysdeps/ieee754/dbl-64/e_exp.c162
-rw-r--r--sysdeps/ieee754/dbl-64/e_fmod.c140
-rw-r--r--sysdeps/ieee754/dbl-64/e_gamma_r.c51
-rw-r--r--sysdeps/ieee754/dbl-64/e_hypot.c128
-rw-r--r--sysdeps/ieee754/dbl-64/e_j0.c531
-rw-r--r--sysdeps/ieee754/dbl-64/e_j1.c532
-rw-r--r--sysdeps/ieee754/dbl-64/e_jn.c281
-rw-r--r--sysdeps/ieee754/dbl-64/e_lgamma_r.c314
-rw-r--r--sysdeps/ieee754/dbl-64/e_log.c165
-rw-r--r--sysdeps/ieee754/dbl-64/e_log10.c98
-rw-r--r--sysdeps/ieee754/dbl-64/e_pow.c352
-rw-r--r--sysdeps/ieee754/dbl-64/e_rem_pio2.c183
-rw-r--r--sysdeps/ieee754/dbl-64/e_remainder.c80
-rw-r--r--sysdeps/ieee754/dbl-64/e_sinh.c86
-rw-r--r--sysdeps/ieee754/dbl-64/e_sqrt.c452
-rw-r--r--sysdeps/ieee754/dbl-64/k_cos.c107
-rw-r--r--sysdeps/ieee754/dbl-64/k_rem_pio2.c320
-rw-r--r--sysdeps/ieee754/dbl-64/k_sin.c91
-rw-r--r--sysdeps/ieee754/dbl-64/k_tan.c145
-rw-r--r--sysdeps/ieee754/dbl-64/mpn2dbl.c (renamed from sysdeps/ieee754/mpn2dbl.c)0
-rw-r--r--sysdeps/ieee754/dbl-64/s_asinh.c70
-rw-r--r--sysdeps/ieee754/dbl-64/s_atan.c163
-rw-r--r--sysdeps/ieee754/dbl-64/s_cbrt.c76
-rw-r--r--sysdeps/ieee754/dbl-64/s_ceil.c85
-rw-r--r--sysdeps/ieee754/dbl-64/s_copysign.c43
-rw-r--r--sysdeps/ieee754/dbl-64/s_cos.c87
-rw-r--r--sysdeps/ieee754/dbl-64/s_erf.c431
-rw-r--r--sysdeps/ieee754/dbl-64/s_exp2.c129
-rw-r--r--sysdeps/ieee754/dbl-64/s_expm1.c243
-rw-r--r--sysdeps/ieee754/dbl-64/s_fabs.c40
-rw-r--r--sysdeps/ieee754/dbl-64/s_finite.c40
-rw-r--r--sysdeps/ieee754/dbl-64/s_floor.c86
-rw-r--r--sysdeps/ieee754/dbl-64/s_fpclassify.c43
-rw-r--r--sysdeps/ieee754/dbl-64/s_frexp.c64
-rw-r--r--sysdeps/ieee754/dbl-64/s_ilogb.c56
-rw-r--r--sysdeps/ieee754/dbl-64/s_isinf.c32
-rw-r--r--sysdeps/ieee754/dbl-64/s_isnan.c43
-rw-r--r--sysdeps/ieee754/dbl-64/s_llrint.c95
-rw-r--r--sysdeps/ieee754/dbl-64/s_llround.c81
-rw-r--r--sysdeps/ieee754/dbl-64/s_log1p.c191
-rw-r--r--sysdeps/ieee754/dbl-64/s_log2.c136
-rw-r--r--sysdeps/ieee754/dbl-64/s_logb.c47
-rw-r--r--sysdeps/ieee754/dbl-64/s_lrint.c95
-rw-r--r--sysdeps/ieee754/dbl-64/s_lround.c78
-rw-r--r--sysdeps/ieee754/dbl-64/s_modf.c85
-rw-r--r--sysdeps/ieee754/dbl-64/s_nearbyint.c98
-rw-r--r--sysdeps/ieee754/dbl-64/s_nexttoward.c1
-rw-r--r--sysdeps/ieee754/dbl-64/s_remquo.c113
-rw-r--r--sysdeps/ieee754/dbl-64/s_rint.c91
-rw-r--r--sysdeps/ieee754/dbl-64/s_round.c97
-rw-r--r--sysdeps/ieee754/dbl-64/s_scalbln.c70
-rw-r--r--sysdeps/ieee754/dbl-64/s_scalbn.c70
-rw-r--r--sysdeps/ieee754/dbl-64/s_signbit.c32
-rw-r--r--sysdeps/ieee754/dbl-64/s_sin.c87
-rw-r--r--sysdeps/ieee754/dbl-64/s_sincos.c78
-rw-r--r--sysdeps/ieee754/dbl-64/s_tan.c81
-rw-r--r--sysdeps/ieee754/dbl-64/s_tanh.c93
-rw-r--r--sysdeps/ieee754/dbl-64/s_trunc.c61
-rw-r--r--sysdeps/ieee754/dbl-64/t_exp.c436
-rw-r--r--sysdeps/ieee754/dbl-64/t_exp2.h585
-rw-r--r--sysdeps/ieee754/dbl-64/w_exp.c58
-rw-r--r--sysdeps/ieee754/flt-32/Dist1
-rw-r--r--sysdeps/ieee754/flt-32/e_acosf.c89
-rw-r--r--sysdeps/ieee754/flt-32/e_acoshf.c57
-rw-r--r--sysdeps/ieee754/flt-32/e_asinf.c93
-rw-r--r--sysdeps/ieee754/flt-32/e_atan2f.c105
-rw-r--r--sysdeps/ieee754/flt-32/e_atanhf.c58
-rw-r--r--sysdeps/ieee754/flt-32/e_coshf.c72
-rw-r--r--sysdeps/ieee754/flt-32/e_expf.c140
-rw-r--r--sysdeps/ieee754/flt-32/e_fmodf.c113
-rw-r--r--sysdeps/ieee754/flt-32/e_gammaf_r.c50
-rw-r--r--sysdeps/ieee754/flt-32/e_hypotf.c87
-rw-r--r--sysdeps/ieee754/flt-32/e_j0f.c444
-rw-r--r--sysdeps/ieee754/flt-32/e_j1f.c444
-rw-r--r--sysdeps/ieee754/flt-32/e_jnf.c213
-rw-r--r--sysdeps/ieee754/flt-32/e_lgammaf_r.c250
-rw-r--r--sysdeps/ieee754/flt-32/e_log10f.c67
-rw-r--r--sysdeps/ieee754/flt-32/e_logf.c99
-rw-r--r--sysdeps/ieee754/flt-32/e_powf.c253
-rw-r--r--sysdeps/ieee754/flt-32/e_rem_pio2f.c196
-rw-r--r--sysdeps/ieee754/flt-32/e_remainderf.c73
-rw-r--r--sysdeps/ieee754/flt-32/e_sinhf.c68
-rw-r--r--sysdeps/ieee754/flt-32/e_sqrtf.c97
-rw-r--r--sysdeps/ieee754/flt-32/k_cosf.c64
-rw-r--r--sysdeps/ieee754/flt-32/k_rem_pio2f.c213
-rw-r--r--sysdeps/ieee754/flt-32/k_sinf.c54
-rw-r--r--sysdeps/ieee754/flt-32/k_tanf.c101
-rw-r--r--sysdeps/ieee754/flt-32/mpn2flt.c (renamed from sysdeps/ieee754/mpn2flt.c)0
-rw-r--r--sysdeps/ieee754/flt-32/s_asinhf.c58
-rw-r--r--sysdeps/ieee754/flt-32/s_atanf.c120
-rw-r--r--sysdeps/ieee754/flt-32/s_cbrtf.c64
-rw-r--r--sysdeps/ieee754/flt-32/s_ceilf.c62
-rw-r--r--sysdeps/ieee754/flt-32/s_copysignf.c42
-rw-r--r--sysdeps/ieee754/flt-32/s_cosf.c60
-rw-r--r--sysdeps/ieee754/flt-32/s_erff.c225
-rw-r--r--sysdeps/ieee754/flt-32/s_exp2f.c127
-rw-r--r--sysdeps/ieee754/flt-32/s_expm1f.c135
-rw-r--r--sysdeps/ieee754/flt-32/s_fabsf.c39
-rw-r--r--sysdeps/ieee754/flt-32/s_finitef.c39
-rw-r--r--sysdeps/ieee754/flt-32/s_floorf.c71
-rw-r--r--sysdeps/ieee754/flt-32/s_fpclassifyf.c42
-rw-r--r--sysdeps/ieee754/flt-32/s_frexpf.c53
-rw-r--r--sysdeps/ieee754/flt-32/s_ilogbf.c44
-rw-r--r--sysdeps/ieee754/flt-32/s_isinff.c28
-rw-r--r--sysdeps/ieee754/flt-32/s_isnanf.c41
-rw-r--r--sysdeps/ieee754/flt-32/s_llrintf.c78
-rw-r--r--sysdeps/ieee754/flt-32/s_llroundf.c63
-rw-r--r--sysdeps/ieee754/flt-32/s_log1pf.c115
-rw-r--r--sysdeps/ieee754/flt-32/s_log2f.c91
-rw-r--r--sysdeps/ieee754/flt-32/s_logbf.c40
-rw-r--r--sysdeps/ieee754/flt-32/s_lrintf.c78
-rw-r--r--sysdeps/ieee754/flt-32/s_lroundf.c63
-rw-r--r--sysdeps/ieee754/flt-32/s_modff.c66
-rw-r--r--sysdeps/ieee754/flt-32/s_nearbyintf.c77
-rw-r--r--sysdeps/ieee754/flt-32/s_nextafterf.c71
-rw-r--r--sysdeps/ieee754/flt-32/s_remquof.c108
-rw-r--r--sysdeps/ieee754/flt-32/s_rintf.c72
-rw-r--r--sysdeps/ieee754/flt-32/s_roundf.c73
-rw-r--r--sysdeps/ieee754/flt-32/s_scalblnf.c63
-rw-r--r--sysdeps/ieee754/flt-32/s_scalbnf.c63
-rw-r--r--sysdeps/ieee754/flt-32/s_signbitf.c32
-rw-r--r--sysdeps/ieee754/flt-32/s_sincosf.c74
-rw-r--r--sysdeps/ieee754/flt-32/s_sinf.c54
-rw-r--r--sysdeps/ieee754/flt-32/s_tanf.c49
-rw-r--r--sysdeps/ieee754/flt-32/s_tanhf.c67
-rw-r--r--sysdeps/ieee754/flt-32/s_truncf.c52
-rw-r--r--sysdeps/ieee754/flt-32/t_exp2f.h352
-rw-r--r--sysdeps/ieee754/flt-32/w_expf.c59
-rw-r--r--sysdeps/ieee754/k_standard.c943
-rw-r--r--sysdeps/ieee754/ldbl-128/e_acoshl.c68
-rw-r--r--sysdeps/ieee754/ldbl-128/e_atan2l.c129
-rw-r--r--sysdeps/ieee754/ldbl-128/e_fmodl.c138
-rw-r--r--sysdeps/ieee754/ldbl-128/e_gammal_r.c52
-rw-r--r--sysdeps/ieee754/ldbl-128/e_remainderl.c78
-rw-r--r--sysdeps/ieee754/ldbl-128/ieee754.h171
-rw-r--r--sysdeps/ieee754/ldbl-128/ldbl2mpn.c137
-rw-r--r--sysdeps/ieee754/ldbl-128/math_ldbl.h82
-rw-r--r--sysdeps/ieee754/ldbl-128/mpn2ldbl.c51
-rw-r--r--sysdeps/ieee754/ldbl-128/printf_fphex.c84
-rw-r--r--sysdeps/ieee754/ldbl-128/s_ceill.c84
-rw-r--r--sysdeps/ieee754/ldbl-128/s_copysignl.c43
-rw-r--r--sysdeps/ieee754/ldbl-128/s_cosl.c83
-rw-r--r--sysdeps/ieee754/ldbl-128/s_fabsl.c39
-rw-r--r--sysdeps/ieee754/ldbl-128/s_finitel.c40
-rw-r--r--sysdeps/ieee754/ldbl-128/s_floorl.c85
-rw-r--r--sysdeps/ieee754/ldbl-128/s_fpclassifyl.c44
-rw-r--r--sysdeps/ieee754/ldbl-128/s_frexpl.c63
-rw-r--r--sysdeps/ieee754/ldbl-128/s_ilogbl.c55
-rw-r--r--sysdeps/ieee754/ldbl-128/s_isinfl.c28
-rw-r--r--sysdeps/ieee754/ldbl-128/s_isnanl.c42
-rw-r--r--sysdeps/ieee754/ldbl-128/s_llrintl.c75
-rw-r--r--sysdeps/ieee754/ldbl-128/s_llroundl.c74
-rw-r--r--sysdeps/ieee754/ldbl-128/s_logbl.c46
-rw-r--r--sysdeps/ieee754/ldbl-128/s_lrintl.c91
-rw-r--r--sysdeps/ieee754/ldbl-128/s_lroundl.c74
-rw-r--r--sysdeps/ieee754/ldbl-128/s_modfl.c88
-rw-r--r--sysdeps/ieee754/ldbl-128/s_nearbyintl.c93
-rw-r--r--sysdeps/ieee754/ldbl-128/s_nextafterl.c85
-rw-r--r--sysdeps/ieee754/ldbl-128/s_nexttoward.c97
-rw-r--r--sysdeps/ieee754/ldbl-128/s_nexttowardf.c81
-rw-r--r--sysdeps/ieee754/ldbl-128/s_remquol.c110
-rw-r--r--sysdeps/ieee754/ldbl-128/s_rintl.c90
-rw-r--r--sysdeps/ieee754/ldbl-128/s_roundl.c94
-rw-r--r--sysdeps/ieee754/ldbl-128/s_scalblnl.c70
-rw-r--r--sysdeps/ieee754/ldbl-128/s_scalbnl.c70
-rw-r--r--sysdeps/ieee754/ldbl-128/s_signbitl.c32
-rw-r--r--sysdeps/ieee754/ldbl-128/s_sincosl.c77
-rw-r--r--sysdeps/ieee754/ldbl-128/s_sinl.c83
-rw-r--r--sysdeps/ieee754/ldbl-128/s_tanl.c77
-rw-r--r--sysdeps/ieee754/ldbl-128/s_truncl.c57
-rw-r--r--sysdeps/ieee754/ldbl-128/strtold.c42
-rw-r--r--sysdeps/ieee754/ldbl-96/e_acoshl.c72
-rw-r--r--sysdeps/ieee754/ldbl-96/e_atan2l.c136
-rw-r--r--sysdeps/ieee754/ldbl-96/e_atanhl.c79
-rw-r--r--sysdeps/ieee754/ldbl-96/e_coshl.c94
-rw-r--r--sysdeps/ieee754/ldbl-96/e_gammal_r.c50
-rw-r--r--sysdeps/ieee754/ldbl-96/e_hypotl.c133
-rw-r--r--sysdeps/ieee754/ldbl-96/e_remainderl.c83
-rw-r--r--sysdeps/ieee754/ldbl-96/e_sinhl.c91
-rw-r--r--sysdeps/ieee754/ldbl-96/ldbl2mpn.c (renamed from sysdeps/ieee754/ldbl2mpn.c)4
-rw-r--r--sysdeps/ieee754/ldbl-96/math_ldbl.h98
-rw-r--r--sysdeps/ieee754/ldbl-96/mpn2ldbl.c (renamed from sysdeps/ieee754/mpn2ldbl.c)4
-rw-r--r--sysdeps/ieee754/ldbl-96/printf_fphex.c61
-rw-r--r--sysdeps/ieee754/ldbl-96/s_asinhl.c70
-rw-r--r--sysdeps/ieee754/ldbl-96/s_cbrtl.c78
-rw-r--r--sysdeps/ieee754/ldbl-96/s_ceill.c89
-rw-r--r--sysdeps/ieee754/ldbl-96/s_copysignl.c43
-rw-r--r--sysdeps/ieee754/ldbl-96/s_cosl.c88
-rw-r--r--sysdeps/ieee754/ldbl-96/s_fabsl.c40
-rw-r--r--sysdeps/ieee754/ldbl-96/s_finitel.c40
-rw-r--r--sysdeps/ieee754/ldbl-96/s_floorl.c90
-rw-r--r--sysdeps/ieee754/ldbl-96/s_fpclassifyl.c44
-rw-r--r--sysdeps/ieee754/ldbl-96/s_frexpl.c69
-rw-r--r--sysdeps/ieee754/ldbl-96/s_ilogbl.c56
-rw-r--r--sysdeps/ieee754/ldbl-96/s_isinfl.c29
-rw-r--r--sysdeps/ieee754/ldbl-96/s_isnanl.c44
-rw-r--r--sysdeps/ieee754/ldbl-96/s_llrintl.c77
-rw-r--r--sysdeps/ieee754/ldbl-96/s_llroundl.c81
-rw-r--r--sysdeps/ieee754/ldbl-96/s_logbl.c47
-rw-r--r--sysdeps/ieee754/ldbl-96/s_lrintl.c86
-rw-r--r--sysdeps/ieee754/ldbl-96/s_lroundl.c78
-rw-r--r--sysdeps/ieee754/ldbl-96/s_modfl.c85
-rw-r--r--sysdeps/ieee754/ldbl-96/s_nearbyintl.c95
-rw-r--r--sysdeps/ieee754/ldbl-96/s_nextafterl.c101
-rw-r--r--sysdeps/ieee754/ldbl-96/s_nexttoward.c98
-rw-r--r--sysdeps/ieee754/ldbl-96/s_nexttowardf.c78
-rw-r--r--sysdeps/ieee754/ldbl-96/s_remquol.c109
-rw-r--r--sysdeps/ieee754/ldbl-96/s_rintl.c91
-rw-r--r--sysdeps/ieee754/ldbl-96/s_roundl.c106
-rw-r--r--sysdeps/ieee754/ldbl-96/s_scalblnl.c71
-rw-r--r--sysdeps/ieee754/ldbl-96/s_scalbnl.c71
-rw-r--r--sysdeps/ieee754/ldbl-96/s_signbitl.c32
-rw-r--r--sysdeps/ieee754/ldbl-96/s_sincosl.c74
-rw-r--r--sysdeps/ieee754/ldbl-96/s_sinl.c88
-rw-r--r--sysdeps/ieee754/ldbl-96/s_tanhl.c95
-rw-r--r--sysdeps/ieee754/ldbl-96/s_tanl.c81
-rw-r--r--sysdeps/ieee754/ldbl-96/s_truncl.c57
-rw-r--r--sysdeps/ieee754/ldbl-96/strtold.c42
-rw-r--r--sysdeps/ieee754/ldbl-96/w_expl.c60
-rw-r--r--sysdeps/ieee754/s_lib_version.c40
-rw-r--r--sysdeps/ieee754/s_matherr.c35
-rw-r--r--sysdeps/ieee754/s_signgam.c3
231 files changed, 23775 insertions, 10 deletions
diff --git a/sysdeps/ieee754/Implies b/sysdeps/ieee754/Implies
deleted file mode 100644
index 5c9e98b7ae..0000000000
--- a/sysdeps/ieee754/Implies
+++ /dev/null
@@ -1,2 +0,0 @@
-# For all IEEE machines, use Sun's fdlibm code.
-libm-ieee754
diff --git a/sysdeps/ieee754/dbl-64/Dist b/sysdeps/ieee754/dbl-64/Dist
new file mode 100644
index 0000000000..1bb7be3537
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/Dist
@@ -0,0 +1 @@
+t_exp2.h
diff --git a/sysdeps/ieee754/dbl2mpn.c b/sysdeps/ieee754/dbl-64/dbl2mpn.c
index f7dead4936..f7dead4936 100644
--- a/sysdeps/ieee754/dbl2mpn.c
+++ b/sysdeps/ieee754/dbl-64/dbl2mpn.c
diff --git a/sysdeps/ieee754/dbl-64/e_acos.c b/sysdeps/ieee754/dbl-64/e_acos.c
new file mode 100644
index 0000000000..eb4080a8b8
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_acos.c
@@ -0,0 +1,144 @@
+/* @(#)e_acos.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_acos.c,v 1.9 1995/05/12 04:57:13 jtc Exp $";
+#endif
+
+/* __ieee754_acos(x)
+ * Method :
+ *	acos(x)  = pi/2 - asin(x)
+ *	acos(-x) = pi/2 + asin(x)
+ * For |x|<=0.5
+ *	acos(x) = pi/2 - (x + x*x^2*R(x^2))	(see asin.c)
+ * For x>0.5
+ * 	acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
+ *		= 2asin(sqrt((1-x)/2))
+ *		= 2s + 2s*z*R(z) 	...z=(1-x)/2, s=sqrt(z)
+ *		= 2f + (2c + 2s*z*R(z))
+ *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
+ *     for f so that f+c ~ sqrt(z).
+ * For x<-0.5
+ *	acos(x) = pi - 2asin(sqrt((1-|x|)/2))
+ *		= pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
+ *
+ * Special cases:
+ *	if x is NaN, return x itself;
+ *	if |x|>1, return NaN with invalid signal.
+ *
+ * Function needed: __ieee754_sqrt
+ */
+
+#include "math.h"
+#include "math_private.h"
+#define one qS[0]
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+pi =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
+pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
+pS[] =  {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
+ -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
+  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
+ -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
+  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
+  3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
+qS[] ={1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
+  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
+ -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
+  7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
+
+#ifdef __STDC__
+	double __ieee754_acos(double x)
+#else
+	double __ieee754_acos(x)
+	double x;
+#endif
+{
+	double z,p,q,r,w,s,c,df,p1,p2,p3,q1,q2,z2,z4,z6;
+	int32_t hx,ix;
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x3ff00000) {	/* |x| >= 1 */
+	    u_int32_t lx;
+	    GET_LOW_WORD(lx,x);
+	    if(((ix-0x3ff00000)|lx)==0) {	/* |x|==1 */
+		if(hx>0) return 0.0;		/* acos(1) = 0  */
+		else return pi+2.0*pio2_lo;	/* acos(-1)= pi */
+	    }
+	    return (x-x)/(x-x);		/* acos(|x|>1) is NaN */
+	}
+	if(ix<0x3fe00000) {	/* |x| < 0.5 */
+	    if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
+	    z = x*x;
+#ifdef DO_NOT_USE_THIS
+	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+#else
+ 	    p1 = z*pS[0]; z2=z*z;
+ 	    p2 = pS[1]+z*pS[2]; z4=z2*z2;
+ 	    p3 = pS[3]+z*pS[4]; z6=z4*z2;
+ 	    q1 = one+z*qS[1];
+ 	    q2 = qS[2]+z*qS[3];
+ 	    p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+ 	    q = q1 + z2*q2 + z4*qS[4];
+#endif
+	    r = p/q;
+	    return pio2_hi - (x - (pio2_lo-x*r));
+	} else  if (hx<0) {		/* x < -0.5 */
+	    z = (one+x)*0.5;
+#ifdef DO_NOT_USE_THIS
+	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+#else
+	    p1 = z*pS[0]; z2=z*z;
+	    p2 = pS[1]+z*pS[2]; z4=z2*z2;
+	    p3 = pS[3]+z*pS[4]; z6=z4*z2;
+	    q1 = one+z*qS[1];
+	    q2 = qS[2]+z*qS[3];
+	    p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+	    q = q1 + z2*q2 + z4*qS[4];
+#endif
+	    s = __ieee754_sqrt(z);
+	    r = p/q;
+	    w = r*s-pio2_lo;
+	    return pi - 2.0*(s+w);
+	} else {			/* x > 0.5 */
+	    z = (one-x)*0.5;
+	    s = __ieee754_sqrt(z);
+	    df = s;
+	    SET_LOW_WORD(df,0);
+	    c  = (z-df*df)/(s+df);
+#ifdef DO_NOT_USE_THIS
+	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+#else
+	    p1 = z*pS[0]; z2=z*z;
+	    p2 = pS[1]+z*pS[2]; z4=z2*z2;
+	    p3 = pS[3]+z*pS[4]; z6=z4*z2;
+	    q1 = one+z*qS[1];
+	    q2 = qS[2]+z*qS[3];
+	    p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+	    q = q1 + z2*q2 + z4*qS[4];
+#endif
+	    r = p/q;
+	    w = r*s+c;
+	    return 2.0*(df+w);
+	}
+}
diff --git a/sysdeps/ieee754/dbl-64/e_acosh.c b/sysdeps/ieee754/dbl-64/e_acosh.c
new file mode 100644
index 0000000000..27c29cd8c9
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_acosh.c
@@ -0,0 +1,69 @@
+/* @(#)e_acosh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_acosh.c,v 1.9 1995/05/12 04:57:18 jtc Exp $";
+#endif
+
+/* __ieee754_acosh(x)
+ * Method :
+ *	Based on 
+ *		acosh(x) = log [ x + sqrt(x*x-1) ]
+ *	we have
+ *		acosh(x) := log(x)+ln2,	if x is large; else
+ *		acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
+ *		acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
+ *
+ * Special cases:
+ *	acosh(x) is NaN with signal if x<1.
+ *	acosh(NaN) is NaN without signal.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double 
+#else
+static double 
+#endif
+one	= 1.0,
+ln2	= 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */
+
+#ifdef __STDC__
+	double __ieee754_acosh(double x)
+#else
+	double __ieee754_acosh(x)
+	double x;
+#endif
+{	
+	double t;
+	int32_t hx;
+	u_int32_t lx;
+	EXTRACT_WORDS(hx,lx,x);
+	if(hx<0x3ff00000) {		/* x < 1 */
+	    return (x-x)/(x-x);
+	} else if(hx >=0x41b00000) {	/* x > 2**28 */
+	    if(hx >=0x7ff00000) {	/* x is inf of NaN */
+	        return x+x;
+	    } else 
+		return __ieee754_log(x)+ln2;	/* acosh(huge)=log(2x) */
+	} else if(((hx-0x3ff00000)|lx)==0) {
+	    return 0.0;			/* acosh(1) = 0 */
+	} else if (hx > 0x40000000) {	/* 2**28 > x > 2 */
+	    t=x*x;
+	    return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));
+	} else {			/* 1<x<2 */
+	    t = x-one;
+	    return __log1p(t+__sqrt(2.0*t+t*t));
+	}
+}
diff --git a/sysdeps/ieee754/dbl-64/e_asin.c b/sysdeps/ieee754/dbl-64/e_asin.c
new file mode 100644
index 0000000000..aa19598848
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_asin.c
@@ -0,0 +1,143 @@
+/* @(#)e_asin.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $";
+#endif
+
+/* __ieee754_asin(x)
+ * Method :
+ *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
+ *	we approximate asin(x) on [0,0.5] by
+ *		asin(x) = x + x*x^2*R(x^2)
+ *	where
+ *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
+ *	and its remez error is bounded by
+ *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
+ *
+ *	For x in [0.5,1]
+ *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
+ *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
+ *	then for x>0.98
+ *		asin(x) = pi/2 - 2*(s+s*z*R(z))
+ *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
+ *	For x<=0.98, let pio4_hi = pio2_hi/2, then
+ *		f = hi part of s;
+ *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
+ *	and
+ *		asin(x) = pi/2 - 2*(s+s*z*R(z))
+ *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
+ *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
+ *
+ * Special cases:
+ *	if x is NaN, return x itself;
+ *	if |x|>1, return NaN with invalid signal.
+ *
+ */
+
+
+#include "math.h"
+#include "math_private.h"
+#define one qS[0]
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+huge =  1.000e+300,
+pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
+pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
+	/* coefficient for R(x^2) */
+pS[] =  {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
+ -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
+  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
+ -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
+  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
+  3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
+qS[] = {1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
+  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
+ -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
+  7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
+
+#ifdef __STDC__
+	double __ieee754_asin(double x)
+#else
+	double __ieee754_asin(x)
+	double x;
+#endif
+{
+	double t,w,p,q,c,r,s,p1,p2,p3,q1,q2,z2,z4,z6;
+	int32_t hx,ix;
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>= 0x3ff00000) {		/* |x|>= 1 */
+	    u_int32_t lx;
+	    GET_LOW_WORD(lx,x);
+	    if(((ix-0x3ff00000)|lx)==0)
+		    /* asin(1)=+-pi/2 with inexact */
+		return x*pio2_hi+x*pio2_lo;
+	    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */
+	} else if (ix<0x3fe00000) {	/* |x|<0.5 */
+	    if(ix<0x3e400000) {		/* if |x| < 2**-27 */
+		if(huge+x>one) return x;/* return x with inexact if x!=0*/
+	    } else {
+		t = x*x;
+#ifdef DO_NOT_USE_THIS
+		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+#else
+		p1 = t*pS[0]; z2=t*t;
+		p2 = pS[1]+t*pS[2]; z4=z2*z2;
+		p3 = pS[3]+t*pS[4]; z6=z4*z2;
+		q1 = one+t*qS[1];
+		q2 = qS[2]+t*qS[3];
+		p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+		q = q1 + z2*q2 + z4*qS[4];
+#endif
+		w = p/q;
+		return x+x*w;
+	    }
+	}
+	/* 1> |x|>= 0.5 */
+	w = one-fabs(x);
+	t = w*0.5;
+#ifdef DO_NOT_USE_THIS
+	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+#else
+	p1 = t*pS[0]; z2=t*t;
+	p2 = pS[1]+t*pS[2]; z4=z2*z2;
+	p3 = pS[3]+t*pS[4]; z6=z4*z2;
+	q1 = one+t*qS[1];
+	q2 = qS[2]+t*qS[3];
+	p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+	q = q1 + z2*q2 + z4*qS[4];
+#endif
+	s = __ieee754_sqrt(t);
+	if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */
+	    w = p/q;
+	    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
+	} else {
+	    w  = s;
+	    SET_LOW_WORD(w,0);
+	    c  = (t-w*w)/(s+w);
+	    r  = p/q;
+	    p  = 2.0*s*r-(pio2_lo-2.0*c);
+	    q  = pio4_hi-2.0*w;
+	    t  = pio4_hi-(p-q);
+	}
+	if(hx>0) return t; else return -t;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_atan2.c b/sysdeps/ieee754/dbl-64/e_atan2.c
new file mode 100644
index 0000000000..ae7d759a9f
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_atan2.c
@@ -0,0 +1,130 @@
+/* @(#)e_atan2.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_atan2.c,v 1.8 1995/05/10 20:44:51 jtc Exp $";
+#endif
+
+/* __ieee754_atan2(y,x)
+ * Method :
+ *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
+ *	2. Reduce x to positive by (if x and y are unexceptional): 
+ *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
+ *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
+ *
+ * Special cases:
+ *
+ *	ATAN2((anything), NaN ) is NaN;
+ *	ATAN2(NAN , (anything) ) is NaN;
+ *	ATAN2(+-0, +(anything but NaN)) is +-0  ;
+ *	ATAN2(+-0, -(anything but NaN)) is +-pi ;
+ *	ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
+ *	ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
+ *	ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
+ *	ATAN2(+-INF,+INF ) is +-pi/4 ;
+ *	ATAN2(+-INF,-INF ) is +-3pi/4;
+ *	ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following 
+ * constants. The decimal values may be used, provided that the 
+ * compiler will convert from decimal to binary accurately enough 
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double 
+#else
+static double 
+#endif
+tiny  = 1.0e-300,
+zero  = 0.0,
+pi_o_4  = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
+pi_o_2  = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
+pi      = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
+pi_lo   = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
+
+#ifdef __STDC__
+	double __ieee754_atan2(double y, double x)
+#else
+	double __ieee754_atan2(y,x)
+	double  y,x;
+#endif
+{  
+	double z;
+	int32_t k,m,hx,hy,ix,iy;
+	u_int32_t lx,ly;
+
+	EXTRACT_WORDS(hx,lx,x);
+	ix = hx&0x7fffffff;
+	EXTRACT_WORDS(hy,ly,y);
+	iy = hy&0x7fffffff;
+	if(((ix|((lx|-lx)>>31))>0x7ff00000)||
+	   ((iy|((ly|-ly)>>31))>0x7ff00000))	/* x or y is NaN */
+	   return x+y;
+	if(((hx-0x3ff00000)|lx)==0) return __atan(y);   /* x=1.0 */
+	m = ((hy>>31)&1)|((hx>>30)&2);	/* 2*sign(x)+sign(y) */
+
+    /* when y = 0 */
+	if((iy|ly)==0) {
+	    switch(m) {
+		case 0: 
+		case 1: return y; 	/* atan(+-0,+anything)=+-0 */
+		case 2: return  pi+tiny;/* atan(+0,-anything) = pi */
+		case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
+	    }
+	}
+    /* when x = 0 */
+	if((ix|lx)==0) return (hy<0)?  -pi_o_2-tiny: pi_o_2+tiny;
+	    
+    /* when x is INF */
+	if(ix==0x7ff00000) {
+	    if(iy==0x7ff00000) {
+		switch(m) {
+		    case 0: return  pi_o_4+tiny;/* atan(+INF,+INF) */
+		    case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
+		    case 2: return  3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
+		    case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
+		}
+	    } else {
+		switch(m) {
+		    case 0: return  zero  ;	/* atan(+...,+INF) */
+		    case 1: return -zero  ;	/* atan(-...,+INF) */
+		    case 2: return  pi+tiny  ;	/* atan(+...,-INF) */
+		    case 3: return -pi-tiny  ;	/* atan(-...,-INF) */
+		}
+	    }
+	}
+    /* when y is INF */
+	if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
+
+    /* compute y/x */
+	k = (iy-ix)>>20;
+	if(k > 60) z=pi_o_2+0.5*pi_lo; 	/* |y/x| >  2**60 */
+	else if(hx<0&&k<-60) z=0.0; 	/* |y|/x < -2**60 */
+	else z=__atan(fabs(y/x));	/* safe to do y/x */
+	switch (m) {
+	    case 0: return       z  ;	/* atan(+,+) */
+	    case 1: {
+	    	      u_int32_t zh;
+		      GET_HIGH_WORD(zh,z);
+		      SET_HIGH_WORD(z,zh ^ 0x80000000);
+		    }
+		    return       z  ;	/* atan(-,+) */
+	    case 2: return  pi-(z-pi_lo);/* atan(+,-) */
+	    default: /* case 3 */
+	    	    return  (z-pi_lo)-pi;/* atan(-,-) */
+	}
+}
diff --git a/sysdeps/ieee754/dbl-64/e_atanh.c b/sysdeps/ieee754/dbl-64/e_atanh.c
new file mode 100644
index 0000000000..fa4fe675c9
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_atanh.c
@@ -0,0 +1,74 @@
+/* @(#)e_atanh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_atanh.c,v 1.8 1995/05/10 20:44:55 jtc Exp $";
+#endif
+
+/* __ieee754_atanh(x)
+ * Method :
+ *    1.Reduced x to positive by atanh(-x) = -atanh(x)
+ *    2.For x>=0.5
+ *                  1              2x                          x
+ *	atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
+ *                  2             1 - x                      1 - x
+ *	
+ * 	For x<0.5
+ *	atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
+ *
+ * Special cases:
+ *	atanh(x) is NaN if |x| > 1 with signal;
+ *	atanh(NaN) is that NaN with no signal;
+ *	atanh(+-1) is +-INF with signal.
+ *
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0, huge = 1e300;
+#else
+static double one = 1.0, huge = 1e300;
+#endif
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+	double __ieee754_atanh(double x)
+#else
+	double __ieee754_atanh(x)
+	double x;
+#endif
+{
+	double t;
+	int32_t hx,ix;
+	u_int32_t lx;
+	EXTRACT_WORDS(hx,lx,x);
+	ix = hx&0x7fffffff;
+	if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
+	    return (x-x)/(x-x);
+	if(ix==0x3ff00000) 
+	    return x/zero;
+	if(ix<0x3e300000&&(huge+x)>zero) return x;	/* x<2**-28 */
+	SET_HIGH_WORD(x,ix);
+	if(ix<0x3fe00000) {		/* x < 0.5 */
+	    t = x+x;
+	    t = 0.5*__log1p(t+t*x/(one-x));
+	} else 
+	    t = 0.5*__log1p((x+x)/(one-x));
+	if(hx>=0) return t; else return -t;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_cosh.c b/sysdeps/ieee754/dbl-64/e_cosh.c
new file mode 100644
index 0000000000..65106b9989
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_cosh.c
@@ -0,0 +1,92 @@
+/* @(#)e_cosh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_cosh.c,v 1.7 1995/05/10 20:44:58 jtc Exp $";
+#endif
+
+/* __ieee754_cosh(x)
+ * Method : 
+ * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
+ *	1. Replace x by |x| (cosh(x) = cosh(-x)). 
+ *	2. 
+ *		                                        [ exp(x) - 1 ]^2 
+ *	    0        <= x <= ln2/2  :  cosh(x) := 1 + -------------------
+ *			       			           2*exp(x)
+ *
+ *		                                  exp(x) +  1/exp(x)
+ *	    ln2/2    <= x <= 22     :  cosh(x) := -------------------
+ *			       			          2
+ *	    22       <= x <= lnovft :  cosh(x) := exp(x)/2 
+ *	    lnovft   <= x <= ln2ovft:  cosh(x) := exp(x/2)/2 * exp(x/2)
+ *	    ln2ovft  <  x	    :  cosh(x) := huge*huge (overflow)
+ *
+ * Special cases:
+ *	cosh(x) is |x| if x is +INF, -INF, or NaN.
+ *	only cosh(0)=1 is exact for finite x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0, half=0.5, huge = 1.0e300;
+#else
+static double one = 1.0, half=0.5, huge = 1.0e300;
+#endif
+
+#ifdef __STDC__
+	double __ieee754_cosh(double x)
+#else
+	double __ieee754_cosh(x)
+	double x;
+#endif
+{	
+	double t,w;
+	int32_t ix;
+	u_int32_t lx;
+
+    /* High word of |x|. */
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;
+
+    /* x is INF or NaN */
+	if(ix>=0x7ff00000) return x*x;	
+
+    /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
+	if(ix<0x3fd62e43) {
+	    t = __expm1(fabs(x));
+	    w = one+t;
+	    if (ix<0x3c800000) return w;	/* cosh(tiny) = 1 */
+	    return one+(t*t)/(w+w);
+	}
+
+    /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
+	if (ix < 0x40360000) {
+		t = __ieee754_exp(fabs(x));
+		return half*t+half/t;
+	}
+
+    /* |x| in [22, log(maxdouble)] return half*exp(|x|) */
+	if (ix < 0x40862e42)  return half*__ieee754_exp(fabs(x));
+
+    /* |x| in [log(maxdouble), overflowthresold] */
+	GET_LOW_WORD(lx,x);
+	if (ix<0x408633ce || ((ix==0x408633ce)&&(lx<=(u_int32_t)0x8fb9f87d))) {
+	    w = __ieee754_exp(half*fabs(x));
+	    t = half*w;
+	    return t*w;
+	}
+
+    /* |x| > overflowthresold, cosh(x) overflow */
+	return huge*huge;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_exp.c b/sysdeps/ieee754/dbl-64/e_exp.c
new file mode 100644
index 0000000000..ee0b22f6ae
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_exp.c
@@ -0,0 +1,162 @@
+/* Double-precision floating point e^x.
+   Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* How this works:
+   The basic design here is from
+   Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
+   Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
+   17 (1), March 1991, pp. 26-45.
+
+   The input value, x, is written as
+
+   x = n * ln(2)_0 + t/512 + delta[t] + x + n * ln(2)_1
+
+   where:
+   - n is an integer, 1024 >= n >= -1075;
+   - ln(2)_0 is the first 43 bits of ln(2), and ln(2)_1 is the remainder, so
+     that |ln(2)_1| < 2^-32;
+   - t is an integer, 177 >= t >= -177
+   - delta is based on a table entry, delta[t] < 2^-28
+   - x is whatever is left, |x| < 2^-10
+
+   Then e^x is approximated as
+
+   e^x = 2^n_1 ( 2^n_0 e^(t/512 + delta[t])
+               + ( 2^n_0 e^(t/512 + delta[t])
+                   * ( p(x + n * ln(2)_1)
+                       - n*ln(2)_1
+                       - n*ln(2)_1 * p(x + n * ln(2)_1) ) ) )
+
+   where
+   - p(x) is a polynomial approximating e(x)-1;
+   - e^(t/512 + delta[t]) is obtained from a table;
+   - n_1 + n_0 = n, so that |n_0| < DBL_MIN_EXP-1.
+
+   If it happens that n_1 == 0 (this is the usual case), that multiplication
+   is omitted.
+   */
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+#include <float.h>
+#include <ieee754.h>
+#include <math.h>
+#include <fenv.h>
+#include <inttypes.h>
+#include <math_private.h>
+
+extern const float __exp_deltatable[178];
+extern const double __exp_atable[355] /* __attribute__((mode(DF))) */;
+
+static const volatile double TWO1023 = 8.988465674311579539e+307;
+static const volatile double TWOM1000 = 9.3326361850321887899e-302;
+
+double
+__ieee754_exp (double x)
+{
+  static const double himark = 709.7827128933840868;
+  static const double lomark = -745.1332191019412221;
+  /* Check for usual case.  */
+  if (isless (x, himark) && isgreater (x, lomark))
+    {
+      static const double THREEp42 = 13194139533312.0;
+      static const double THREEp51 = 6755399441055744.0;
+      /* 1/ln(2).  */
+      static const double M_1_LN2 = 1.442695040888963387;
+      /* ln(2), part 1 */
+      static const double M_LN2_0 = .6931471805598903302;
+      /* ln(2), part 2 */
+      static const double M_LN2_1 = 5.497923018708371155e-14;
+
+      int tval, unsafe, n_i;
+      double x22, n, t, dely, result;
+      union ieee754_double ex2_u, scale_u;
+      fenv_t oldenv;
+
+      feholdexcept (&oldenv);
+#ifdef FE_TONEAREST
+      fesetround (FE_TONEAREST);
+#endif
+
+      /* Calculate n.  */
+      n = x * M_1_LN2 + THREEp51;
+      n -= THREEp51;
+      x = x - n*M_LN2_0;
+
+      /* Calculate t/512.  */
+      t = x + THREEp42;
+      t -= THREEp42;
+      x -= t;
+
+      /* Compute tval = t.  */
+      tval = (int) (t * 512.0);
+
+      if (t >= 0)
+	x -= __exp_deltatable[tval];
+      else
+	x += __exp_deltatable[-tval];
+
+      /* Now, the variable x contains x + n*ln(2)_1.  */
+      dely = n*M_LN2_1;
+
+      /* Compute ex2 = 2^n_0 e^(t/512+delta[t]).  */
+      ex2_u.d = __exp_atable[tval+177];
+      n_i = (int)n;
+      /* 'unsafe' is 1 iff n_1 != 0.  */
+      unsafe = abs(n_i) >= -DBL_MIN_EXP - 1;
+      ex2_u.ieee.exponent += n_i >> unsafe;
+
+      /* Compute scale = 2^n_1.  */
+      scale_u.d = 1.0;
+      scale_u.ieee.exponent += n_i - (n_i >> unsafe);
+
+      /* Approximate e^x2 - 1, using a fourth-degree polynomial,
+	 with maximum error in [-2^-10-2^-28,2^-10+2^-28]
+	 less than 4.9e-19.  */
+      x22 = (((0.04166666898464281565
+	       * x + 0.1666666766008501610)
+	      * x + 0.499999999999990008)
+	     * x + 0.9999999999999976685) * x;
+      /* Allow for impact of dely.  */
+      x22 -= dely + dely*x22;
+
+      /* Return result.  */
+      fesetenv (&oldenv);
+
+      result = x22 * ex2_u.d + ex2_u.d;
+      if (!unsafe)
+	return result;
+      else
+	return result * scale_u.d;
+    }
+  /* Exceptional cases:  */
+  else if (isless (x, himark))
+    {
+      if (__isinf (x))
+	/* e^-inf == 0, with no error.  */
+	return 0;
+      else
+	/* Underflow */
+	return TWOM1000 * TWOM1000;
+    }
+  else
+    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
+    return TWO1023*x;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_fmod.c b/sysdeps/ieee754/dbl-64/e_fmod.c
new file mode 100644
index 0000000000..2ce613574a
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_fmod.c
@@ -0,0 +1,140 @@
+/* @(#)e_fmod.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_fmod.c,v 1.8 1995/05/10 20:45:07 jtc Exp $";
+#endif
+
+/* 
+ * __ieee754_fmod(x,y)
+ * Return x mod y in exact arithmetic
+ * Method: shift and subtract
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0, Zero[] = {0.0, -0.0,};
+#else
+static double one = 1.0, Zero[] = {0.0, -0.0,};
+#endif
+
+#ifdef __STDC__
+	double __ieee754_fmod(double x, double y)
+#else
+	double __ieee754_fmod(x,y)
+	double x,y ;
+#endif
+{
+	int32_t n,hx,hy,hz,ix,iy,sx,i;
+	u_int32_t lx,ly,lz;
+
+	EXTRACT_WORDS(hx,lx,x);
+	EXTRACT_WORDS(hy,ly,y);
+	sx = hx&0x80000000;		/* sign of x */
+	hx ^=sx;		/* |x| */
+	hy &= 0x7fffffff;	/* |y| */
+
+    /* purge off exception values */
+	if((hy|ly)==0||(hx>=0x7ff00000)||	/* y=0,or x not finite */
+	  ((hy|((ly|-ly)>>31))>0x7ff00000))	/* or y is NaN */
+	    return (x*y)/(x*y);
+	if(hx<=hy) {
+	    if((hx<hy)||(lx<ly)) return x;	/* |x|<|y| return x */
+	    if(lx==ly) 
+		return Zero[(u_int32_t)sx>>31];	/* |x|=|y| return x*0*/
+	}
+
+    /* determine ix = ilogb(x) */
+	if(hx<0x00100000) {	/* subnormal x */
+	    if(hx==0) {
+		for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
+	    } else {
+		for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
+	    }
+	} else ix = (hx>>20)-1023;
+
+    /* determine iy = ilogb(y) */
+	if(hy<0x00100000) {	/* subnormal y */
+	    if(hy==0) {
+		for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
+	    } else {
+		for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
+	    }
+	} else iy = (hy>>20)-1023;
+
+    /* set up {hx,lx}, {hy,ly} and align y to x */
+	if(ix >= -1022) 
+	    hx = 0x00100000|(0x000fffff&hx);
+	else {		/* subnormal x, shift x to normal */
+	    n = -1022-ix;
+	    if(n<=31) {
+	        hx = (hx<<n)|(lx>>(32-n));
+	        lx <<= n;
+	    } else {
+		hx = lx<<(n-32);
+		lx = 0;
+	    }
+	}
+	if(iy >= -1022) 
+	    hy = 0x00100000|(0x000fffff&hy);
+	else {		/* subnormal y, shift y to normal */
+	    n = -1022-iy;
+	    if(n<=31) {
+	        hy = (hy<<n)|(ly>>(32-n));
+	        ly <<= n;
+	    } else {
+		hy = ly<<(n-32);
+		ly = 0;
+	    }
+	}
+
+    /* fix point fmod */
+	n = ix - iy;
+	while(n--) {
+	    hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+	    if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
+	    else {
+	    	if((hz|lz)==0) 		/* return sign(x)*0 */
+		    return Zero[(u_int32_t)sx>>31];
+	    	hx = hz+hz+(lz>>31); lx = lz+lz;
+	    }
+	}
+	hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+	if(hz>=0) {hx=hz;lx=lz;}
+
+    /* convert back to floating value and restore the sign */
+	if((hx|lx)==0) 			/* return sign(x)*0 */
+	    return Zero[(u_int32_t)sx>>31];	
+	while(hx<0x00100000) {		/* normalize x */
+	    hx = hx+hx+(lx>>31); lx = lx+lx;
+	    iy -= 1;
+	}
+	if(iy>= -1022) {	/* normalize output */
+	    hx = ((hx-0x00100000)|((iy+1023)<<20));
+	    INSERT_WORDS(x,hx|sx,lx);
+	} else {		/* subnormal output */
+	    n = -1022 - iy;
+	    if(n<=20) {
+		lx = (lx>>n)|((u_int32_t)hx<<(32-n));
+		hx >>= n;
+	    } else if (n<=31) {
+		lx = (hx<<(32-n))|(lx>>n); hx = sx;
+	    } else {
+		lx = hx>>(n-32); hx = sx;
+	    }
+	    INSERT_WORDS(x,hx|sx,lx);
+	    x *= one;		/* create necessary signal */
+	}
+	return x;		/* exact output */
+}
diff --git a/sysdeps/ieee754/dbl-64/e_gamma_r.c b/sysdeps/ieee754/dbl-64/e_gamma_r.c
new file mode 100644
index 0000000000..bd802c24f1
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_gamma_r.c
@@ -0,0 +1,51 @@
+/* Implementation of gamma function according to ISO C.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+#include <math_private.h>
+
+
+double
+__ieee754_gamma_r (double x, int *signgamp)
+{
+  /* We don't have a real gamma implementation now.  We'll use lgamma
+     and the exp function.  But due to the required boundary
+     conditions we must check some values separately.  */
+  int32_t hx;
+  u_int32_t lx;
+
+  EXTRACT_WORDS (hx, lx, x);
+
+  if (((hx & 0x7fffffff) | lx) == 0)
+    {
+      /* Return value for x == 0 is NaN with invalid exception.  */
+      *signgamp = 0;
+      return x / x;
+    }
+  if (hx < 0 && (u_int32_t) hx < 0xfff00000 && __rint (x) == x)
+    {
+      /* Return value for integer x < 0 is NaN with invalid exception.  */
+      *signgamp = 0;
+      return (x - x) / (x - x);
+    }
+
+  /* XXX FIXME.  */
+  return __ieee754_exp (__ieee754_lgamma_r (x, signgamp));
+}
diff --git a/sysdeps/ieee754/dbl-64/e_hypot.c b/sysdeps/ieee754/dbl-64/e_hypot.c
new file mode 100644
index 0000000000..76a77ec33a
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_hypot.c
@@ -0,0 +1,128 @@
+/* @(#)e_hypot.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_hypot.c,v 1.9 1995/05/12 04:57:27 jtc Exp $";
+#endif
+
+/* __ieee754_hypot(x,y)
+ *
+ * Method :
+ *	If (assume round-to-nearest) z=x*x+y*y
+ *	has error less than sqrt(2)/2 ulp, than
+ *	sqrt(z) has error less than 1 ulp (exercise).
+ *
+ *	So, compute sqrt(x*x+y*y) with some care as
+ *	follows to get the error below 1 ulp:
+ *
+ *	Assume x>y>0;
+ *	(if possible, set rounding to round-to-nearest)
+ *	1. if x > 2y  use
+ *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
+ *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
+ *	2. if x <= 2y use
+ *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
+ *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
+ *	y1= y with lower 32 bits chopped, y2 = y-y1.
+ *
+ *	NOTE: scaling may be necessary if some argument is too
+ *	      large or too tiny
+ *
+ * Special cases:
+ *	hypot(x,y) is INF if x or y is +INF or -INF; else
+ *	hypot(x,y) is NAN if x or y is NAN.
+ *
+ * Accuracy:
+ * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
+ * 	than 1 ulps (units in the last place)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	double __ieee754_hypot(double x, double y)
+#else
+	double __ieee754_hypot(x,y)
+	double x, y;
+#endif
+{
+	double a,b,t1,t2,y1,y2,w;
+	int32_t j,k,ha,hb;
+
+	GET_HIGH_WORD(ha,x);
+	ha &= 0x7fffffff;
+	GET_HIGH_WORD(hb,y);
+	hb &= 0x7fffffff;
+	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
+	SET_HIGH_WORD(a,ha);	/* a <- |a| */
+	SET_HIGH_WORD(b,hb);	/* b <- |b| */
+	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
+	k=0;
+	if(ha > 0x5f300000) {	/* a>2**500 */
+	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
+	       u_int32_t low;
+	       w = a+b;			/* for sNaN */
+	       GET_LOW_WORD(low,a);
+	       if(((ha&0xfffff)|low)==0) w = a;
+	       GET_LOW_WORD(low,b);
+	       if(((hb^0x7ff00000)|low)==0) w = b;
+	       return w;
+	   }
+	   /* scale a and b by 2**-600 */
+	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
+	   SET_HIGH_WORD(a,ha);
+	   SET_HIGH_WORD(b,hb);
+	}
+	if(hb < 0x20b00000) {	/* b < 2**-500 */
+	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
+	        u_int32_t low;
+		GET_LOW_WORD(low,b);
+		if((hb|low)==0) return a;
+		t1=0;
+		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
+		b *= t1;
+		a *= t1;
+		k -= 1022;
+	    } else {		/* scale a and b by 2^600 */
+	        ha += 0x25800000; 	/* a *= 2^600 */
+		hb += 0x25800000;	/* b *= 2^600 */
+		k -= 600;
+		SET_HIGH_WORD(a,ha);
+		SET_HIGH_WORD(b,hb);
+	    }
+	}
+    /* medium size a and b */
+	w = a-b;
+	if (w>b) {
+	    t1 = 0;
+	    SET_HIGH_WORD(t1,ha);
+	    t2 = a-t1;
+	    w  = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
+	} else {
+	    a  = a+a;
+	    y1 = 0;
+	    SET_HIGH_WORD(y1,hb);
+	    y2 = b - y1;
+	    t1 = 0;
+	    SET_HIGH_WORD(t1,ha+0x00100000);
+	    t2 = a - t1;
+	    w  = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
+	}
+	if(k!=0) {
+	    u_int32_t high;
+	    t1 = 1.0;
+	    GET_HIGH_WORD(high,t1);
+	    SET_HIGH_WORD(t1,high+(k<<20));
+	    return t1*w;
+	} else return w;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_j0.c b/sysdeps/ieee754/dbl-64/e_j0.c
new file mode 100644
index 0000000000..55e8294bb9
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_j0.c
@@ -0,0 +1,531 @@
+/* @(#)e_j0.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_j0.c,v 1.8 1995/05/10 20:45:23 jtc Exp $";
+#endif
+
+/* __ieee754_j0(x), __ieee754_y0(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j0(x):
+ *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
+ *	2. Reduce x to |x| since j0(x)=j0(-x),  and
+ *	   for x in (0,2)
+ *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
+ *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
+ *	   for x in (2,inf)
+ * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
+ * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ *	   as follow:
+ *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ *			= 1/sqrt(2) * (cos(x) + sin(x))
+ *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
+ *			= 1/sqrt(2) * (sin(x) - cos(x))
+ * 	   (To avoid cancellation, use
+ *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * 	    to compute the worse one.)
+ *
+ *	3 Special cases
+ *		j0(nan)= nan
+ *		j0(0) = 1
+ *		j0(inf) = 0
+ *
+ * Method -- y0(x):
+ *	1. For x<2.
+ *	   Since
+ *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
+ *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
+ *	   We use the following function to approximate y0,
+ *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
+ *	   where
+ *		U(z) = u00 + u01*z + ... + u06*z^6
+ *		V(z) = 1  + v01*z + ... + v04*z^4
+ *	   with absolute approximation error bounded by 2**-72.
+ *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
+ *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
+ *	2. For x>=2.
+ * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
+ * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ *	   by the method mentioned above.
+ *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static double pzero(double), qzero(double);
+#else
+static double pzero(), qzero();
+#endif
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+huge 	= 1e300,
+one	= 1.0,
+invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+ 		/* R0/S0 on [0, 2.00] */
+R[]  =  {0.0, 0.0, 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
+ -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
+  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
+ -4.61832688532103189199e-09}, /* 0xBE33D5E7, 0x73D63FCE */
+S[]  =  {0.0, 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
+  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
+  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
+  1.16614003333790000205e-09}; /* 0x3E1408BC, 0xF4745D8F */
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+	double __ieee754_j0(double x)
+#else
+	double __ieee754_j0(x)
+	double x;
+#endif
+{
+	double z, s,c,ss,cc,r,u,v,r1,r2,s1,s2,z2,z4;
+	int32_t hx,ix;
+
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7ff00000) return one/(x*x);
+	x = fabs(x);
+	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
+		s = __sin(x);
+		c = __cos(x);
+		ss = s-c;
+		cc = s+c;
+		if(ix<0x7fe00000) {  /* make sure x+x not overflow */
+		    z = -__cos(x+x);
+		    if ((s*c)<zero) cc = z/ss;
+		    else 	    ss = z/cc;
+		}
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+		if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(x);
+		else {
+		    u = pzero(x); v = qzero(x);
+		    z = invsqrtpi*(u*cc-v*ss)/__sqrt(x);
+		}
+		return z;
+	}
+	if(ix<0x3f200000) {	/* |x| < 2**-13 */
+	    if(huge+x>one) {	/* raise inexact if x != 0 */
+	        if(ix<0x3e400000) return one;	/* |x|<2**-27 */
+	        else 	      return one - 0.25*x*x;
+	    }
+	}
+	z = x*x;
+#ifdef DO_NOT_USE_THIS
+	r =  z*(R02+z*(R03+z*(R04+z*R05)));
+	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
+#else
+	r1 = z*R[2]; z2=z*z;
+	r2 = R[3]+z*R[4]; z4=z2*z2;
+	r  = r1 + z2*r2 + z4*R[5];
+	s1 = one+z*S[1];
+	s2 = S[2]+z*S[3];
+	s = s1 + z2*s2 + z4*S[4];
+#endif
+	if(ix < 0x3FF00000) {	/* |x| < 1.00 */
+	    return one + z*(-0.25+(r/s));
+	} else {
+	    u = 0.5*x;
+	    return((one+u)*(one-u)+z*(r/s));
+	}
+}
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+U[]  = {-7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
+  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
+ -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
+  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
+ -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
+  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
+ -3.98205194132103398453e-11}, /* 0xBDC5E43D, 0x693FB3C8 */
+V[]  =  {1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
+  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
+  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
+  4.41110311332675467403e-10}; /* 0x3DFE5018, 0x3BD6D9EF */
+
+#ifdef __STDC__
+	double __ieee754_y0(double x)
+#else
+	double __ieee754_y0(x)
+	double x;
+#endif
+{
+	double z, s,c,ss,cc,u,v,z2,z4,z6,u1,u2,u3,v1,v2;
+	int32_t hx,ix,lx;
+
+	EXTRACT_WORDS(hx,lx,x);
+        ix = 0x7fffffff&hx;
+    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
+	if(ix>=0x7ff00000) return  one/(x+x*x);
+        if((ix|lx)==0) return -one/zero;
+        if(hx<0) return zero/zero;
+        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
+        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
+         * where x0 = x-pi/4
+         *      Better formula:
+         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+         *                      =  1/sqrt(2) * (sin(x) + cos(x))
+         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+         *                      =  1/sqrt(2) * (sin(x) - cos(x))
+         * To avoid cancellation, use
+         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+         * to compute the worse one.
+         */
+                s = __sin(x);
+                c = __cos(x);
+                ss = s-c;
+                cc = s+c;
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+                if(ix<0x7fe00000) {  /* make sure x+x not overflow */
+                    z = -__cos(x+x);
+                    if ((s*c)<zero) cc = z/ss;
+                    else            ss = z/cc;
+                }
+                if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
+                else {
+                    u = pzero(x); v = qzero(x);
+                    z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
+                }
+                return z;
+	}
+	if(ix<=0x3e400000) {	/* x < 2**-27 */
+	    return(U[0] + tpi*__ieee754_log(x));
+	}
+	z = x*x;
+#ifdef DO_NOT_USE_THIS
+	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
+#else
+	u1 = U[0]+z*U[1]; z2=z*z;
+	u2 = U[2]+z*U[3]; z4=z2*z2;
+	u3 = U[4]+z*U[5]; z6=z4*z2;
+	u = u1 + z2*u2 + z4*u3 + z6*U[6];
+	v1 = one+z*V[0];
+	v2 = V[1]+z*V[2];
+	v = v1 + z2*v2 + z4*V[3];
+#endif
+	return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
+}
+
+/* The asymptotic expansions of pzero is
+ *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * 	pzero(x) = 1 + (R/S)
+ * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
+ */
+#ifdef __STDC__
+static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
+ -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
+ -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
+ -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
+ -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
+};
+#ifdef __STDC__
+static const double pS8[5] = {
+#else
+static double pS8[5] = {
+#endif
+  1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
+  3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
+  4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
+  1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
+  4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
+};
+
+#ifdef __STDC__
+static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
+ -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
+ -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
+ -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
+ -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
+ -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
+};
+#ifdef __STDC__
+static const double pS5[5] = {
+#else
+static double pS5[5] = {
+#endif
+  6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
+  1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
+  5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
+  9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
+  2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
+};
+
+#ifdef __STDC__
+static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#else
+static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
+ -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
+ -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
+ -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
+ -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
+ -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
+};
+#ifdef __STDC__
+static const double pS3[5] = {
+#else
+static double pS3[5] = {
+#endif
+  3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
+  3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
+  1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
+  1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
+  1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
+};
+
+#ifdef __STDC__
+static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
+ -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
+ -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
+ -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
+ -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
+ -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
+};
+#ifdef __STDC__
+static const double pS2[5] = {
+#else
+static double pS2[5] = {
+#endif
+  2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
+  1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
+  2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
+  1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
+  1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
+};
+
+#ifdef __STDC__
+	static double pzero(double x)
+#else
+	static double pzero(x)
+	double x;
+#endif
+{
+#ifdef __STDC__
+	const double *p,*q;
+#else
+	double *p,*q;
+#endif
+	double z,r,s,z2,z4,r1,r2,r3,s1,s2,s3;
+	int32_t ix;
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x40200000)     {p = pR8; q= pS8;}
+	else if(ix>=0x40122E8B){p = pR5; q= pS5;}
+	else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
+	else if(ix>=0x40000000){p = pR2; q= pS2;}
+	z = one/(x*x);
+#ifdef DO_NOT_USE_THIS
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+#else
+	r1 = p[0]+z*p[1]; z2=z*z;
+	r2 = p[2]+z*p[3]; z4=z2*z2;
+	r3 = p[4]+z*p[5];
+	r = r1 + z2*r2 + z4*r3;
+	s1 = one+z*q[0];
+	s2 = q[1]+z*q[2];
+	s3 = q[3]+z*q[4];
+	s = s1 + z2*s2 + z4*s3;
+#endif
+	return one+ r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * 	qzero(x) = s*(-1.25 + (R/S))
+ * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
+ */
+#ifdef __STDC__
+static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+  7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
+  1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
+  5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
+  8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
+  3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
+};
+#ifdef __STDC__
+static const double qS8[6] = {
+#else
+static double qS8[6] = {
+#endif
+  1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
+  8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
+  1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
+  8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
+  8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
+ -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
+};
+
+#ifdef __STDC__
+static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+  1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
+  7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
+  5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
+  1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
+  1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
+  1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
+};
+#ifdef __STDC__
+static const double qS5[6] = {
+#else
+static double qS5[6] = {
+#endif
+  8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
+  2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
+  1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
+  5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
+  3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
+ -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
+};
+
+#ifdef __STDC__
+static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#else
+static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+  4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
+  7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
+  3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
+  4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
+  1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
+  1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
+};
+#ifdef __STDC__
+static const double qS3[6] = {
+#else
+static double qS3[6] = {
+#endif
+  4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
+  7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
+  3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
+  6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
+  2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
+ -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
+};
+
+#ifdef __STDC__
+static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+  1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
+  7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
+  1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
+  1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
+  3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
+  1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
+};
+#ifdef __STDC__
+static const double qS2[6] = {
+#else
+static double qS2[6] = {
+#endif
+  3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
+  2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
+  8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
+  8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
+  2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
+ -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
+};
+
+#ifdef __STDC__
+	static double qzero(double x)
+#else
+	static double qzero(x)
+	double x;
+#endif
+{
+#ifdef __STDC__
+	const double *p,*q;
+#else
+	double *p,*q;
+#endif
+	double s,r,z,z2,z4,z6,r1,r2,r3,s1,s2,s3;
+	int32_t ix;
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x40200000)     {p = qR8; q= qS8;}
+	else if(ix>=0x40122E8B){p = qR5; q= qS5;}
+	else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
+	else if(ix>=0x40000000){p = qR2; q= qS2;}
+	z = one/(x*x);
+#ifdef DO_NOT_USE_THIS
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+#else
+	r1 = p[0]+z*p[1]; z2=z*z;
+	r2 = p[2]+z*p[3]; z4=z2*z2;
+	r3 = p[4]+z*p[5]; z6=z4*z2;
+	r= r1 + z2*r2 + z4*r3;
+	s1 = one+z*q[0];
+	s2 = q[1]+z*q[2];
+	s3 = q[3]+z*q[4];
+	s = s1 + z2*s2 + z4*s3 +z6*q[5];
+#endif
+	return (-.125 + r/s)/x;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_j1.c b/sysdeps/ieee754/dbl-64/e_j1.c
new file mode 100644
index 0000000000..daf025fdb7
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_j1.c
@@ -0,0 +1,532 @@
+/* @(#)e_j1.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $";
+#endif
+
+/* __ieee754_j1(x), __ieee754_y1(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j1(x):
+ *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
+ *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
+ *	   for x in (0,2)
+ *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
+ *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
+ *	   for x in (2,inf)
+ * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
+ * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ *	   as follow:
+ *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ *			=  1/sqrt(2) * (sin(x) - cos(x))
+ *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ *			= -1/sqrt(2) * (sin(x) + cos(x))
+ * 	   (To avoid cancellation, use
+ *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * 	    to compute the worse one.)
+ *
+ *	3 Special cases
+ *		j1(nan)= nan
+ *		j1(0) = 0
+ *		j1(inf) = 0
+ *
+ * Method -- y1(x):
+ *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
+ *	2. For x<2.
+ *	   Since
+ *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
+ *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
+ *	   We use the following function to approximate y1,
+ *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
+ *	   where for x in [0,2] (abs err less than 2**-65.89)
+ *		U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
+ *		V(z) = 1  + v0[0]*z + ... + v0[4]*z^5
+ *	   Note: For tiny x, 1/x dominate y1 and hence
+ *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
+ *	3. For x>=2.
+ * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ *	   by method mentioned above.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static double pone(double), qone(double);
+#else
+static double pone(), qone();
+#endif
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+huge    = 1e300,
+one	= 1.0,
+invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+	/* R0/S0 on [0,2] */
+R[]  = {-6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
+  1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
+ -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
+  4.96727999609584448412e-08}, /* 0x3E6AAAFA, 0x46CA0BD9 */
+S[]  =  {0.0, 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
+  1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
+  1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
+  5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
+  1.23542274426137913908e-11}; /* 0x3DAB2ACF, 0xCFB97ED8 */
+
+#ifdef __STDC__
+static const double zero    = 0.0;
+#else
+static double zero    = 0.0;
+#endif
+
+#ifdef __STDC__
+	double __ieee754_j1(double x)
+#else
+	double __ieee754_j1(x)
+	double x;
+#endif
+{
+	double z, s,c,ss,cc,r,u,v,y,r1,r2,s1,s2,s3,z2,z4;
+	int32_t hx,ix;
+
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7ff00000) return one/x;
+	y = fabs(x);
+	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
+		s = __sin(y);
+		c = __cos(y);
+		ss = -s-c;
+		cc = s-c;
+		if(ix<0x7fe00000) {  /* make sure y+y not overflow */
+		    z = __cos(y+y);
+		    if ((s*c)>zero) cc = z/ss;
+		    else 	    ss = z/cc;
+		}
+	/*
+	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
+	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
+	 */
+		if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(y);
+		else {
+		    u = pone(y); v = qone(y);
+		    z = invsqrtpi*(u*cc-v*ss)/__sqrt(y);
+		}
+		if(hx<0) return -z;
+		else  	 return  z;
+	}
+	if(ix<0x3e400000) {	/* |x|<2**-27 */
+	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
+	}
+	z = x*x;
+#ifdef DO_NOT_USE_THIS
+	r =  z*(r00+z*(r01+z*(r02+z*r03)));
+	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
+	r *= x;
+#else
+	r1 = z*R[0]; z2=z*z;
+	r2 = R[1]+z*R[2]; z4=z2*z2;
+	r = r1 + z2*r2 + z4*R[3];
+  	r *= x;
+	s1 = one+z*S[1];
+	s2 = S[2]+z*S[3];
+	s3 = S[4]+z*S[5];
+	s = s1 + z2*s2 + z4*s3;
+#endif
+	return(x*0.5+r/s);
+}
+
+#ifdef __STDC__
+static const double U0[5] = {
+#else
+static double U0[5] = {
+#endif
+ -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
+  5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
+ -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
+  2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
+ -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
+};
+#ifdef __STDC__
+static const double V0[5] = {
+#else
+static double V0[5] = {
+#endif
+  1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
+  2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
+  1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
+  6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
+  1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
+};
+
+#ifdef __STDC__
+	double __ieee754_y1(double x)
+#else
+	double __ieee754_y1(x)
+	double x;
+#endif
+{
+	double z, s,c,ss,cc,u,v,u1,u2,v1,v2,v3,z2,z4;
+	int32_t hx,ix,lx;
+
+	EXTRACT_WORDS(hx,lx,x);
+        ix = 0x7fffffff&hx;
+    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
+	if(ix>=0x7ff00000) return  one/(x+x*x);
+        if((ix|lx)==0) return -one/zero;
+        if(hx<0) return zero/zero;
+        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
+                s = __sin(x);
+                c = __cos(x);
+                ss = -s-c;
+                cc = s-c;
+                if(ix<0x7fe00000) {  /* make sure x+x not overflow */
+                    z = __cos(x+x);
+                    if ((s*c)>zero) cc = z/ss;
+                    else            ss = z/cc;
+                }
+        /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
+         * where x0 = x-3pi/4
+         *      Better formula:
+         *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+         *                      =  1/sqrt(2) * (sin(x) - cos(x))
+         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+         *                      = -1/sqrt(2) * (cos(x) + sin(x))
+         * To avoid cancellation, use
+         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+         * to compute the worse one.
+         */
+                if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
+                else {
+                    u = pone(x); v = qone(x);
+                    z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
+                }
+                return z;
+        }
+        if(ix<=0x3c900000) {    /* x < 2**-54 */
+            return(-tpi/x);
+        }
+        z = x*x;
+#ifdef DO_NOT_USE_THIS
+        u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
+        v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
+#else
+	u1 = U0[0]+z*U0[1];z2=z*z;
+	u2 = U0[2]+z*U0[3];z4=z2*z2;
+	u  = u1 + z2*u2 + z4*U0[4];
+	v1 = one+z*V0[0];
+	v2 = V0[1]+z*V0[2];
+	v3 = V0[3]+z*V0[4];
+	v = v1 + z2*v2 + z4*v3;
+#endif
+        return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
+ * We approximate pone by
+ * 	pone(x) = 1 + (R/S)
+ * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
+ */
+
+#ifdef __STDC__
+static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+  1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
+  1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
+  4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
+  3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
+  7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
+};
+#ifdef __STDC__
+static const double ps8[5] = {
+#else
+static double ps8[5] = {
+#endif
+  1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
+  3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
+  3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
+  9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
+  3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
+};
+
+#ifdef __STDC__
+static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+  1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
+  1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
+  6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
+  1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
+  5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
+  5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
+};
+#ifdef __STDC__
+static const double ps5[5] = {
+#else
+static double ps5[5] = {
+#endif
+  5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
+  9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
+  5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
+  7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
+  1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
+};
+
+#ifdef __STDC__
+static const double pr3[6] = {
+#else
+static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+  3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
+  1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
+  3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
+  3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
+  9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
+  4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
+};
+#ifdef __STDC__
+static const double ps3[5] = {
+#else
+static double ps3[5] = {
+#endif
+  3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
+  3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
+  1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
+  8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
+  1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
+};
+
+#ifdef __STDC__
+static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+  1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
+  1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
+  2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
+  1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
+  1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
+  5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
+};
+#ifdef __STDC__
+static const double ps2[5] = {
+#else
+static double ps2[5] = {
+#endif
+  2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
+  1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
+  2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
+  1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
+  8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
+};
+
+#ifdef __STDC__
+	static double pone(double x)
+#else
+	static double pone(x)
+	double x;
+#endif
+{
+#ifdef __STDC__
+	const double *p,*q;
+#else
+	double *p,*q;
+#endif
+	double z,r,s,r1,r2,r3,s1,s2,s3,z2,z4;
+        int32_t ix;
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;
+        if(ix>=0x40200000)     {p = pr8; q= ps8;}
+        else if(ix>=0x40122E8B){p = pr5; q= ps5;}
+        else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
+        else if(ix>=0x40000000){p = pr2; q= ps2;}
+        z = one/(x*x);
+#ifdef DO_NOT_USE_THIS
+        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+#else
+	r1 = p[0]+z*p[1]; z2=z*z;
+	r2 = p[2]+z*p[3]; z4=z2*z2;
+	r3 = p[4]+z*p[5];
+	r = r1 + z2*r2 + z4*r3;
+	s1 = one+z*q[0];
+	s2 = q[1]+z*q[2];
+	s3 = q[3]+z*q[4];
+	s = s1 + z2*s2 + z4*s3;
+#endif
+        return one+ r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qone is
+ *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ * 	qone(x) = s*(0.375 + (R/S))
+ * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
+ */
+
+#ifdef __STDC__
+static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
+ -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
+ -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
+ -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
+ -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
+};
+#ifdef __STDC__
+static const double qs8[6] = {
+#else
+static double qs8[6] = {
+#endif
+  1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
+  7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
+  1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
+  7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
+  6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
+ -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
+};
+
+#ifdef __STDC__
+static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
+ -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
+ -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
+ -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
+ -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
+ -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
+};
+#ifdef __STDC__
+static const double qs5[6] = {
+#else
+static double qs5[6] = {
+#endif
+  8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
+  1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
+  1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
+  4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
+  2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
+ -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
+};
+
+#ifdef __STDC__
+static const double qr3[6] = {
+#else
+static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
+ -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
+ -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
+ -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
+ -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
+ -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
+};
+#ifdef __STDC__
+static const double qs3[6] = {
+#else
+static double qs3[6] = {
+#endif
+  4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
+  6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
+  3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
+  5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
+  1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
+ -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
+};
+
+#ifdef __STDC__
+static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
+ -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
+ -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
+ -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
+ -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
+ -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
+};
+#ifdef __STDC__
+static const double qs2[6] = {
+#else
+static double qs2[6] = {
+#endif
+  2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
+  2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
+  7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
+  7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
+  1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
+ -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
+};
+
+#ifdef __STDC__
+	static double qone(double x)
+#else
+	static double qone(x)
+	double x;
+#endif
+{
+#ifdef __STDC__
+	const double *p,*q;
+#else
+	double *p,*q;
+#endif
+	double  s,r,z,r1,r2,r3,s1,s2,s3,z2,z4,z6;
+	int32_t ix;
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x40200000)     {p = qr8; q= qs8;}
+	else if(ix>=0x40122E8B){p = qr5; q= qs5;}
+	else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
+	else if(ix>=0x40000000){p = qr2; q= qs2;}
+	z = one/(x*x);
+#ifdef DO_NOT_USE_THIS
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+#else
+	r1 = p[0]+z*p[1]; z2=z*z;
+	r2 = p[2]+z*p[3]; z4=z2*z2;
+	r3 = p[4]+z*p[5]; z6=z4*z2;
+	r = r1 + z2*r2 + z4*r3;
+	s1 = one+z*q[0];
+	s2 = q[1]+z*q[2];
+	s3 = q[3]+z*q[4];
+	s = s1 + z2*s2 + z4*s3 + z6*q[5];
+#endif
+	return (.375 + r/s)/x;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_jn.c b/sysdeps/ieee754/dbl-64/e_jn.c
new file mode 100644
index 0000000000..d63d7688a3
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_jn.c
@@ -0,0 +1,281 @@
+/* @(#)e_jn.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
+#endif
+
+/*
+ * __ieee754_jn(n, x), __ieee754_yn(n, x)
+ * floating point Bessel's function of the 1st and 2nd kind
+ * of order n
+ *          
+ * Special cases:
+ *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+ *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+ * Note 2. About jn(n,x), yn(n,x)
+ *	For n=0, j0(x) is called,
+ *	for n=1, j1(x) is called,
+ *	for n<x, forward recursion us used starting
+ *	from values of j0(x) and j1(x).
+ *	for n>x, a continued fraction approximation to
+ *	j(n,x)/j(n-1,x) is evaluated and then backward
+ *	recursion is used starting from a supposed value
+ *	for j(n,x). The resulting value of j(0,x) is
+ *	compared with the actual value to correct the
+ *	supposed value of j(n,x).
+ *
+ *	yn(n,x) is similar in all respects, except
+ *	that forward recursion is used for all
+ *	values of n>1.
+ *	
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
+one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
+
+#ifdef __STDC__
+static const double zero  =  0.00000000000000000000e+00;
+#else
+static double zero  =  0.00000000000000000000e+00;
+#endif
+
+#ifdef __STDC__
+	double __ieee754_jn(int n, double x)
+#else
+	double __ieee754_jn(n,x)
+	int n; double x;
+#endif
+{
+	int32_t i,hx,ix,lx, sgn;
+	double a, b, temp, di;
+	double z, w;
+
+    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+     * Thus, J(-n,x) = J(n,-x)
+     */
+	EXTRACT_WORDS(hx,lx,x);
+	ix = 0x7fffffff&hx;
+    /* if J(n,NaN) is NaN */
+	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
+	if(n<0){		
+		n = -n;
+		x = -x;
+		hx ^= 0x80000000;
+	}
+	if(n==0) return(__ieee754_j0(x));
+	if(n==1) return(__ieee754_j1(x));
+	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
+	x = fabs(x);
+	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
+	    b = zero;
+	else if((double)n<=x) {   
+		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+	    if(ix>=0x52D00000) { /* x > 2**302 */
+    /* (x >> n**2) 
+     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+     *	    Let s=sin(x), c=cos(x), 
+     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+     *
+     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
+     *		----------------------------------
+     *		   0	 s-c		 c+s
+     *		   1	-s-c 		-c+s
+     *		   2	-s+c		-c-s
+     *		   3	 s+c		 c-s
+     */
+		switch(n&3) {
+		    case 0: temp =  __cos(x)+__sin(x); break;
+		    case 1: temp = -__cos(x)+__sin(x); break;
+		    case 2: temp = -__cos(x)-__sin(x); break;
+		    case 3: temp =  __cos(x)-__sin(x); break;
+		}
+		b = invsqrtpi*temp/__sqrt(x);
+	    } else {	
+	        a = __ieee754_j0(x);
+	        b = __ieee754_j1(x);
+	        for(i=1;i<n;i++){
+		    temp = b;
+		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
+		    a = temp;
+	        }
+	    }
+	} else {
+	    if(ix<0x3e100000) {	/* x < 2**-29 */
+    /* x is tiny, return the first Taylor expansion of J(n,x) 
+     * J(n,x) = 1/n!*(x/2)^n  - ...
+     */
+		if(n>33)	/* underflow */
+		    b = zero;
+		else {
+		    temp = x*0.5; b = temp;
+		    for (a=one,i=2;i<=n;i++) {
+			a *= (double)i;		/* a = n! */
+			b *= temp;		/* b = (x/2)^n */
+		    }
+		    b = b/a;
+		}
+	    } else {
+		/* use backward recurrence */
+		/* 			x      x^2      x^2       
+		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+		 *			2n  - 2(n+1) - 2(n+2)
+		 *
+		 * 			1      1        1       
+		 *  (for large x)   =  ----  ------   ------   .....
+		 *			2n   2(n+1)   2(n+2)
+		 *			-- - ------ - ------ - 
+		 *			 x     x         x
+		 *
+		 * Let w = 2n/x and h=2/x, then the above quotient
+		 * is equal to the continued fraction:
+		 *		    1
+		 *	= -----------------------
+		 *		       1
+		 *	   w - -----------------
+		 *			  1
+		 * 	        w+h - ---------
+		 *		       w+2h - ...
+		 *
+		 * To determine how many terms needed, let
+		 * Q(0) = w, Q(1) = w(w+h) - 1,
+		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+		 * When Q(k) > 1e4	good for single 
+		 * When Q(k) > 1e9	good for double 
+		 * When Q(k) > 1e17	good for quadruple 
+		 */
+	    /* determine k */
+		double t,v;
+		double q0,q1,h,tmp; int32_t k,m;
+		w  = (n+n)/(double)x; h = 2.0/(double)x;
+		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
+		while(q1<1.0e9) {
+			k += 1; z += h;
+			tmp = z*q1 - q0;
+			q0 = q1;
+			q1 = tmp;
+		}
+		m = n+n;
+		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
+		a = t;
+		b = one;
+		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+		 *  Hence, if n*(log(2n/x)) > ...
+		 *  single 8.8722839355e+01
+		 *  double 7.09782712893383973096e+02
+		 *  long double 1.1356523406294143949491931077970765006170e+04
+		 *  then recurrent value may overflow and the result is 
+		 *  likely underflow to zero
+		 */
+		tmp = n;
+		v = two/x;
+		tmp = tmp*__ieee754_log(fabs(v*tmp));
+		if(tmp<7.09782712893383973096e+02) {
+	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
+		        temp = b;
+			b *= di;
+			b  = b/x - a;
+		        a = temp;
+			di -= two;
+	     	    }
+		} else {
+	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
+		        temp = b;
+			b *= di;
+			b  = b/x - a;
+		        a = temp;
+			di -= two;
+		    /* scale b to avoid spurious overflow */
+			if(b>1e100) {
+			    a /= b;
+			    t /= b;
+			    b  = one;
+			}
+	     	    }
+		}
+	    	b = (t*__ieee754_j0(x)/b);
+	    }
+	}
+	if(sgn==1) return -b; else return b;
+}
+
+#ifdef __STDC__
+	double __ieee754_yn(int n, double x) 
+#else
+	double __ieee754_yn(n,x) 
+	int n; double x;
+#endif
+{
+	int32_t i,hx,ix,lx;
+	int32_t sign;
+	double a, b, temp;
+
+	EXTRACT_WORDS(hx,lx,x);
+	ix = 0x7fffffff&hx;
+    /* if Y(n,NaN) is NaN */
+	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
+	if((ix|lx)==0) return -one/zero;
+	if(hx<0) return zero/zero;
+	sign = 1;
+	if(n<0){
+		n = -n;
+		sign = 1 - ((n&1)<<1);
+	}
+	if(n==0) return(__ieee754_y0(x));
+	if(n==1) return(sign*__ieee754_y1(x));
+	if(ix==0x7ff00000) return zero;
+	if(ix>=0x52D00000) { /* x > 2**302 */
+    /* (x >> n**2) 
+     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+     *	    Let s=sin(x), c=cos(x), 
+     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+     *
+     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
+     *		----------------------------------
+     *		   0	 s-c		 c+s
+     *		   1	-s-c 		-c+s
+     *		   2	-s+c		-c-s
+     *		   3	 s+c		 c-s
+     */
+		switch(n&3) {
+		    case 0: temp =  __sin(x)-__cos(x); break;
+		    case 1: temp = -__sin(x)-__cos(x); break;
+		    case 2: temp = -__sin(x)+__cos(x); break;
+		    case 3: temp =  __sin(x)+__cos(x); break;
+		}
+		b = invsqrtpi*temp/__sqrt(x);
+	} else {
+	    u_int32_t high;
+	    a = __ieee754_y0(x);
+	    b = __ieee754_y1(x);
+	/* quit if b is -inf */
+	    GET_HIGH_WORD(high,b);
+	    for(i=1;i<n&&high!=0xfff00000;i++){ 
+		temp = b;
+		b = ((double)(i+i)/x)*b - a;
+		GET_HIGH_WORD(high,b);
+		a = temp;
+	    }
+	}
+	if(sign>0) return b; else return -b;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_lgamma_r.c b/sysdeps/ieee754/dbl-64/e_lgamma_r.c
new file mode 100644
index 0000000000..92e9556568
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_lgamma_r.c
@@ -0,0 +1,314 @@
+/* @(#)er_lgamma.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_lgamma_r.c,v 1.7 1995/05/10 20:45:42 jtc Exp $";
+#endif
+
+/* __ieee754_lgamma_r(x, signgamp)
+ * Reentrant version of the logarithm of the Gamma function
+ * with user provide pointer for the sign of Gamma(x).
+ *
+ * Method:
+ *   1. Argument Reduction for 0 < x <= 8
+ * 	Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
+ * 	reduce x to a number in [1.5,2.5] by
+ * 		lgamma(1+s) = log(s) + lgamma(s)
+ *	for example,
+ *		lgamma(7.3) = log(6.3) + lgamma(6.3)
+ *			    = log(6.3*5.3) + lgamma(5.3)
+ *			    = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
+ *   2. Polynomial approximation of lgamma around its
+ *	minimun ymin=1.461632144968362245 to maintain monotonicity.
+ *	On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
+ *		Let z = x-ymin;
+ *		lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
+ *	where
+ *		poly(z) is a 14 degree polynomial.
+ *   2. Rational approximation in the primary interval [2,3]
+ *	We use the following approximation:
+ *		s = x-2.0;
+ *		lgamma(x) = 0.5*s + s*P(s)/Q(s)
+ *	with accuracy
+ *		|P/Q - (lgamma(x)-0.5s)| < 2**-61.71
+ *	Our algorithms are based on the following observation
+ *
+ *                             zeta(2)-1    2    zeta(3)-1    3
+ * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
+ *                                 2                 3
+ *
+ *	where Euler = 0.5771... is the Euler constant, which is very
+ *	close to 0.5.
+ *
+ *   3. For x>=8, we have
+ *	lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
+ *	(better formula:
+ *	   lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
+ *	Let z = 1/x, then we approximation
+ *		f(z) = lgamma(x) - (x-0.5)(log(x)-1)
+ *	by
+ *	  			    3       5             11
+ *		w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
+ *	where
+ *		|w - f(z)| < 2**-58.74
+ *
+ *   4. For negative x, since (G is gamma function)
+ *		-x*G(-x)*G(x) = pi/sin(pi*x),
+ * 	we have
+ * 		G(x) = pi/(sin(pi*x)*(-x)*G(-x))
+ *	since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
+ *	Hence, for x<0, signgam = sign(sin(pi*x)) and
+ *		lgamma(x) = log(|Gamma(x)|)
+ *			  = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
+ *	Note: one should avoid compute pi*(-x) directly in the
+ *	      computation of sin(pi*(-x)).
+ *
+ *   5. Special Cases
+ *		lgamma(2+s) ~ s*(1-Euler) for tiny s
+ *		lgamma(1)=lgamma(2)=0
+ *		lgamma(x) ~ -log(x) for tiny x
+ *		lgamma(0) = lgamma(inf) = inf
+ *	 	lgamma(-integer) = +-inf
+ *
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
+a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
+a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
+a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
+a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
+a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
+a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
+a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
+a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
+a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
+a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
+a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
+a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
+tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
+tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
+/* tt = -(tail of tf) */
+tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
+t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
+t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
+t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
+t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
+t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
+t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
+t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
+t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
+t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
+t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
+t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
+t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
+t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
+t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
+t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
+u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
+u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
+u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
+u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
+u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
+u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
+v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
+v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
+v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
+v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
+v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
+s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
+s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
+s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
+s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
+s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
+s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
+s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
+r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
+r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
+r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
+r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
+r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
+r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
+w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
+w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
+w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
+w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
+w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
+w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
+w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
+
+#ifdef __STDC__
+static const double zero=  0.00000000000000000000e+00;
+#else
+static double zero=  0.00000000000000000000e+00;
+#endif
+
+#ifdef __STDC__
+	static double sin_pi(double x)
+#else
+	static double sin_pi(x)
+	double x;
+#endif
+{
+	double y,z;
+	int n,ix;
+
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;
+
+	if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
+	y = -x;		/* x is assume negative */
+
+    /*
+     * argument reduction, make sure inexact flag not raised if input
+     * is an integer
+     */
+	z = __floor(y);
+	if(z!=y) {				/* inexact anyway */
+	    y  *= 0.5;
+	    y   = 2.0*(y - __floor(y));		/* y = |x| mod 2.0 */
+	    n   = (int) (y*4.0);
+	} else {
+            if(ix>=0x43400000) {
+                y = zero; n = 0;                 /* y must be even */
+            } else {
+                if(ix<0x43300000) z = y+two52;	/* exact */
+		GET_LOW_WORD(n,z);
+		n &= 1;
+                y  = n;
+                n<<= 2;
+            }
+        }
+	switch (n) {
+	    case 0:   y =  __kernel_sin(pi*y,zero,0); break;
+	    case 1:
+	    case 2:   y =  __kernel_cos(pi*(0.5-y),zero); break;
+	    case 3:
+	    case 4:   y =  __kernel_sin(pi*(one-y),zero,0); break;
+	    case 5:
+	    case 6:   y = -__kernel_cos(pi*(y-1.5),zero); break;
+	    default:  y =  __kernel_sin(pi*(y-2.0),zero,0); break;
+	    }
+	return -y;
+}
+
+
+#ifdef __STDC__
+	double __ieee754_lgamma_r(double x, int *signgamp)
+#else
+	double __ieee754_lgamma_r(x,signgamp)
+	double x; int *signgamp;
+#endif
+{
+	double t,y,z,nadj,p,p1,p2,p3,q,r,w;
+	int i,hx,lx,ix;
+
+	EXTRACT_WORDS(hx,lx,x);
+
+    /* purge off +-inf, NaN, +-0, and negative arguments */
+	*signgamp = 1;
+	if ((unsigned int) hx==0xfff00000&&lx==0)
+	  return x-x;
+	ix = hx&0x7fffffff;
+	if(ix>=0x7ff00000) return x*x;
+	if((ix|lx)==0) return one/fabs(x);
+	if(ix<0x3b900000) {	/* |x|<2**-70, return -log(|x|) */
+	    if(hx<0) {
+	        *signgamp = -1;
+	        return -__ieee754_log(-x);
+	    } else return -__ieee754_log(x);
+	}
+	if(hx<0) {
+	    if(ix>=0x43300000) 	/* |x|>=2**52, must be -integer */
+		return x/zero;
+	    t = sin_pi(x);
+	    if(t==zero) return one/fabsf(t); /* -integer */
+	    nadj = __ieee754_log(pi/fabs(t*x));
+	    if(t<zero) *signgamp = -1;
+	    x = -x;
+	}
+
+    /* purge off 1 and 2 */
+	if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
+    /* for x < 2.0 */
+	else if(ix<0x40000000) {
+	    if(ix<=0x3feccccc) { 	/* lgamma(x) = lgamma(x+1)-log(x) */
+		r = -__ieee754_log(x);
+		if(ix>=0x3FE76944) {y = one-x; i= 0;}
+		else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
+	  	else {y = x; i=2;}
+	    } else {
+	  	r = zero;
+	        if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
+	        else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
+		else {y=x-one;i=2;}
+	    }
+	    switch(i) {
+	      case 0:
+		z = y*y;
+		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
+		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
+		p  = y*p1+p2;
+		r  += (p-0.5*y); break;
+	      case 1:
+		z = y*y;
+		w = z*y;
+		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */
+		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
+		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
+		p  = z*p1-(tt-w*(p2+y*p3));
+		r += (tf + p); break;
+	      case 2:
+		p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
+		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
+		r += (-0.5*y + p1/p2);
+	    }
+	}
+	else if(ix<0x40200000) { 			/* x < 8.0 */
+	    i = (int)x;
+	    t = zero;
+	    y = x-(double)i;
+	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
+	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
+	    r = half*y+p/q;
+	    z = one;	/* lgamma(1+s) = log(s) + lgamma(s) */
+	    switch(i) {
+	    case 7: z *= (y+6.0);	/* FALLTHRU */
+	    case 6: z *= (y+5.0);	/* FALLTHRU */
+	    case 5: z *= (y+4.0);	/* FALLTHRU */
+	    case 4: z *= (y+3.0);	/* FALLTHRU */
+	    case 3: z *= (y+2.0);	/* FALLTHRU */
+		    r += __ieee754_log(z); break;
+	    }
+    /* 8.0 <= x < 2**58 */
+	} else if (ix < 0x43900000) {
+	    t = __ieee754_log(x);
+	    z = one/x;
+	    y = z*z;
+	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
+	    r = (x-half)*(t-one)+w;
+	} else
+    /* 2**58 <= x <= inf */
+	    r =  x*(__ieee754_log(x)-one);
+	if(hx<0) r = nadj - r;
+	return r;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c
new file mode 100644
index 0000000000..851bd30198
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_log.c
@@ -0,0 +1,165 @@
+/* @(#)e_log.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
+#endif
+
+/* __ieee754_log(x)
+ * Return the logarithm of x
+ *
+ * Method :
+ *   1. Argument Reduction: find k and f such that
+ *			x = 2^k * (1+f),
+ *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ *   2. Approximation of log(1+f).
+ *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ *	     	 = 2s + s*R
+ *      We use a special Reme algorithm on [0,0.1716] to generate
+ * 	a polynomial of degree 14 to approximate R The maximum error
+ *	of this polynomial approximation is bounded by 2**-58.45. In
+ *	other words,
+ *		        2      4      6      8      10      12      14
+ *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
+ *  	(the values of Lg1 to Lg7 are listed in the program)
+ *	and
+ *	    |      2          14          |     -58.45
+ *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
+ *	    |                             |
+ *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ *	In order to guarantee error in log below 1ulp, we compute log
+ *	by
+ *		log(1+f) = f - s*(f - R)	(if f is not too large)
+ *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
+ *
+ *	3. Finally,  log(x) = k*ln2 + log(1+f).
+ *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ *	   Here ln2 is split into two floating point number:
+ *			ln2_hi + ln2_lo,
+ *	   where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ *	log(x) is NaN with signal if x < 0 (including -INF) ;
+ *	log(+INF) is +INF; log(0) is -INF with signal;
+ *	log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ *	according to an error analysis, the error is always less than
+ *	1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+#define half Lg[8]
+#define two Lg[9]
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
+ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
+two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
+ Lg[] = {0.0,
+ 6.666666666666735130e-01,  /* 3FE55555 55555593 */
+ 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
+ 2.857142874366239149e-01,  /* 3FD24924 94229359 */
+ 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
+ 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
+ 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
+ 1.479819860511658591e-01,  /* 3FC2F112 DF3E5244 */
+ 0.5,
+ 2.0};
+#ifdef __STDC__
+static const double zero   =  0.0;
+#else
+static double zero   =  0.0;
+#endif
+
+#ifdef __STDC__
+	double __ieee754_log(double x)
+#else
+	double __ieee754_log(x)
+	double x;
+#endif
+{
+	double hfsq,f,s,z,R,w,dk,t11,t12,t21,t22,w2,zw2;
+#ifdef DO_NOT_USE_THIS
+	double t1,t2;
+#endif
+	int32_t k,hx,i,j;
+	u_int32_t lx;
+
+	EXTRACT_WORDS(hx,lx,x);
+
+	k=0;
+	if (hx < 0x00100000) {			/* x < 2**-1022  */
+	    if (((hx&0x7fffffff)|lx)==0)
+		return -two54/(x-x);		/* log(+-0)=-inf */
+	    if (hx<0) return (x-x)/(x-x);	/* log(-#) = NaN */
+	    k -= 54; x *= two54; /* subnormal number, scale up x */
+	    GET_HIGH_WORD(hx,x);
+	}
+	if (hx >= 0x7ff00000) return x+x;
+	k += (hx>>20)-1023;
+	hx &= 0x000fffff;
+	i = (hx+0x95f64)&0x100000;
+	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
+	k += (i>>20);
+	f = x-1.0;
+	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
+	    if(f==zero) {
+	      if(k==0) return zero;  else {dk=(double)k;
+					   return dk*ln2_hi+dk*ln2_lo;}
+	    }
+	    R = f*f*(half-0.33333333333333333*f);
+	    if(k==0) return f-R; else {dk=(double)k;
+	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
+	}
+ 	s = f/(two+f);
+	dk = (double)k;
+	z = s*s;
+	i = hx-0x6147a;
+	w = z*z;
+	j = 0x6b851-hx;
+#ifdef DO_NOT_USE_THIS
+	t1= w*(Lg2+w*(Lg4+w*Lg6));
+	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+	R = t2+t1;
+#else
+	t21 = Lg[5]+w*Lg[7]; w2=w*w;
+	t22 = Lg[1]+w*Lg[3]; zw2=z*w2;
+	t11 = Lg[4]+w*Lg[6];
+	t12 = w*Lg[2];
+	R = t12 + w2*t11 + z*t22 + zw2*t21;
+#endif
+	i |= j;
+	if(i>0) {
+	    hfsq=0.5*f*f;
+	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
+		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
+	} else {
+	    if(k==0) return f-s*(f-R); else
+		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
+	}
+}
diff --git a/sysdeps/ieee754/dbl-64/e_log10.c b/sysdeps/ieee754/dbl-64/e_log10.c
new file mode 100644
index 0000000000..e8a3278eaf
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_log10.c
@@ -0,0 +1,98 @@
+/* @(#)e_log10.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_log10.c,v 1.9 1995/05/10 20:45:51 jtc Exp $";
+#endif
+
+/* __ieee754_log10(x)
+ * Return the base 10 logarithm of x
+ *
+ * Method :
+ *	Let log10_2hi = leading 40 bits of log10(2) and
+ *	    log10_2lo = log10(2) - log10_2hi,
+ *	    ivln10   = 1/log(10) rounded.
+ *	Then
+ *		n = ilogb(x),
+ *		if(n<0)  n = n+1;
+ *		x = scalbn(x,-n);
+ *		log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
+ *
+ * Note 1:
+ *	To guarantee log10(10**n)=n, where 10**n is normal, the rounding
+ *	mode must set to Round-to-Nearest.
+ * Note 2:
+ *	[1/log(10)] rounded to 53 bits has error  .198   ulps;
+ *	log10 is monotonic at all binary break points.
+ *
+ * Special cases:
+ *	log10(x) is NaN with signal if x < 0;
+ *	log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
+ *	log10(NaN) is that NaN with no signal;
+ *	log10(10**N) = N  for N=0,1,...,22.
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two54      =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
+ivln10     =  4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
+log10_2hi  =  3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
+log10_2lo  =  3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
+
+#ifdef __STDC__
+static const double zero   =  0.0;
+#else
+static double zero   =  0.0;
+#endif
+
+#ifdef __STDC__
+	double __ieee754_log10(double x)
+#else
+	double __ieee754_log10(x)
+	double x;
+#endif
+{
+	double y,z;
+	int32_t i,k,hx;
+	u_int32_t lx;
+
+	EXTRACT_WORDS(hx,lx,x);
+
+        k=0;
+        if (hx < 0x00100000) {			/* x < 2**-1022  */
+            if (((hx&0x7fffffff)|lx)==0)
+                return -two54/(x-x);		/* log(+-0)=-inf */
+            if (hx<0) return (x-x)/(x-x);	/* log(-#) = NaN */
+            k -= 54; x *= two54; /* subnormal number, scale up x */
+	    GET_HIGH_WORD(hx,x);
+        }
+	if (hx >= 0x7ff00000) return x+x;
+	k += (hx>>20)-1023;
+	i  = ((u_int32_t)k&0x80000000)>>31;
+        hx = (hx&0x000fffff)|((0x3ff-i)<<20);
+        y  = (double)(k+i);
+	SET_HIGH_WORD(x,hx);
+	z  = y*log10_2lo + ivln10*__ieee754_log(x);
+	return  z+y*log10_2hi;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_pow.c b/sysdeps/ieee754/dbl-64/e_pow.c
new file mode 100644
index 0000000000..1e1496f00d
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_pow.c
@@ -0,0 +1,352 @@
+/* @(#)e_pow.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
+#endif
+
+/* __ieee754_pow(x,y) return x**y
+ *
+ *		      n
+ * Method:  Let x =  2   * (1+f)
+ *	1. Compute and return log2(x) in two pieces:
+ *		log2(x) = w1 + w2,
+ *	   where w1 has 53-24 = 29 bit trailing zeros.
+ *	2. Perform y*log2(x) = n+y' by simulating muti-precision
+ *	   arithmetic, where |y'|<=0.5.
+ *	3. Return x**y = 2**n*exp(y'*log2)
+ *
+ * Special cases:
+ *	1.  (anything) ** 0  is 1
+ *	2.  (anything) ** 1  is itself
+ *	3.  (anything) ** NAN is NAN
+ *	4.  NAN ** (anything except 0) is NAN
+ *	5.  +-(|x| > 1) **  +INF is +INF
+ *	6.  +-(|x| > 1) **  -INF is +0
+ *	7.  +-(|x| < 1) **  +INF is +0
+ *	8.  +-(|x| < 1) **  -INF is +INF
+ *	9.  +-1         ** +-INF is NAN
+ *	10. +0 ** (+anything except 0, NAN)               is +0
+ *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
+ *	12. +0 ** (-anything except 0, NAN)               is +INF
+ *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
+ *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
+ *	15. +INF ** (+anything except 0,NAN) is +INF
+ *	16. +INF ** (-anything except 0,NAN) is +0
+ *	17. -INF ** (anything)  = -0 ** (-anything)
+ *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+ *	19. (-anything except 0 and inf) ** (non-integer) is NAN
+ *
+ * Accuracy:
+ *	pow(x,y) returns x**y nearly rounded. In particular
+ *			pow(integer,integer)
+ *	always returns the correct integer provided it is
+ *	representable.
+ *
+ * Constants :
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+#define zero      C[0]
+#define one	  C[1]
+#define two	  C[2]
+#define two53	  C[3]
+#define huge	  C[4]
+#define tiny      C[5]
+#define L1        C[6]
+#define L2        C[7]
+#define L3        C[8]
+#define L4        C[9]
+#define L5        C[10]
+#define L6        C[11]
+#define P1        C[12]
+#define P2        C[13]
+#define P3        C[14]
+#define P4        C[15]
+#define P5        C[16]
+#define lg2       C[17]
+#define lg2_h     C[18]
+#define lg2_l     C[19]
+#define ovt       C[20]
+#define cp        C[21]
+#define cp_h      C[22]
+#define cp_l      C[23]
+#define ivln2     C[24]
+#define ivln2_h   C[25]
+#define ivln2_l   C[26]
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+bp[] = {1.0, 1.5,},
+dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
+dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
+C[] = {
+0.0,
+1.0,
+2.0,
+9007199254740992.0	,
+1.0e300,
+1.0e-300,
+5.99999999999994648725e-01 ,
+4.28571428578550184252e-01 ,
+3.33333329818377432918e-01 ,
+2.72728123808534006489e-01 ,
+2.30660745775561754067e-01 ,
+2.06975017800338417784e-01 ,
+1.66666666666666019037e-01 ,
+-2.77777777770155933842e-03 ,
+6.61375632143793436117e-05 ,
+-1.65339022054652515390e-06 ,
+4.13813679705723846039e-08 ,
+6.93147180559945286227e-01 ,
+6.93147182464599609375e-01 ,
+-1.90465429995776804525e-09 ,
+8.0085662595372944372e-0017 ,
+9.61796693925975554329e-01 ,
+9.61796700954437255859e-01 ,
+-7.02846165095275826516e-09 ,
+1.44269504088896338700e+00 ,
+1.44269502162933349609e+00 ,
+1.92596299112661746887e-08 };
+
+#ifdef __STDC__
+	double __ieee754_pow(double x, double y)
+#else
+	double __ieee754_pow(x,y)
+	double x, y;
+#endif
+{
+	double z,ax,z_h,z_l,p_h,p_l;
+	double y1,t1,t2,r,s,t,u,v,w, t12,t14,r_1,r_2,r_3;
+	int32_t i,j,k,yisint,n;
+	int32_t hx,hy,ix,iy;
+	u_int32_t lx,ly;
+
+	EXTRACT_WORDS(hx,lx,x);
+	EXTRACT_WORDS(hy,ly,y);
+	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
+
+    /* y==zero: x**0 = 1 */
+	if((iy|ly)==0) return C[1];
+
+    /* +-NaN return x+y */
+	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
+	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
+		return x+y;
+
+    /* determine if y is an odd int when x < 0
+     * yisint = 0	... y is not an integer
+     * yisint = 1	... y is an odd int
+     * yisint = 2	... y is an even int
+     */
+	yisint  = 0;
+	if(hx<0) {
+	    if(iy>=0x43400000) yisint = 2; /* even integer y */
+	    else if(iy>=0x3ff00000) {
+		k = (iy>>20)-0x3ff;	   /* exponent */
+		if(k>20) {
+		    j = ly>>(52-k);
+		    if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
+		} else if(ly==0) {
+		    j = iy>>(20-k);
+		    if((int32_t)(j<<(20-k))==iy) yisint = 2-(j&1);
+		}
+	    }
+	}
+
+    /* special value of y */
+	if(ly==0) {
+	    if (iy==0x7ff00000) {	/* y is +-inf */
+	        if(((ix-0x3ff00000)|lx)==0)
+		    return  y - y;	/* inf**+-1 is NaN */
+	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
+		    return (hy>=0)? y: C[0];
+	        else			/* (|x|<1)**-,+inf = inf,0 */
+		    return (hy<0)?-y: C[0];
+	    }
+	    if(iy==0x3ff00000) {	/* y is  +-1 */
+		if(hy<0) return C[1]/x; else return x;
+	    }
+	    if(hy==0x40000000) return x*x; /* y is  2 */
+	    if(hy==0x3fe00000) {	/* y is  0.5 */
+		if(hx>=0)	/* x >= +0 */
+		return __ieee754_sqrt(x);
+	    }
+	}
+
+	ax   = fabs(x);
+    /* special value of x */
+	if(lx==0) {
+	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
+		z = ax;			/*x is +-0,+-inf,+-1*/
+		if(hy<0) z = C[1]/z;	/* z = (1/|x|) */
+		if(hx<0) {
+		    if(((ix-0x3ff00000)|yisint)==0) {
+			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
+		    } else if(yisint==1)
+			z = -z;		/* (x<0)**odd = -(|x|**odd) */
+		}
+		return z;
+	    }
+	}
+
+    /* (x<0)**(non-int) is NaN */
+	if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
+
+    /* |y| is huge */
+	if(iy>0x41e00000) { /* if |y| > 2**31 */
+	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
+		if(ix<=0x3fefffff) return (hy<0)? C[4]*C[4]:C[5]*C[5];
+		if(ix>=0x3ff00000) return (hy>0)? C[4]*C[4]:C[5]*C[5];
+	    }
+	/* over/underflow if x is not close to one */
+	    if(ix<0x3fefffff) return (hy<0)? C[4]*C[4]:C[5]*C[5];
+	    if(ix>0x3ff00000) return (hy>0)? C[4]*C[4]:C[5]*C[5];
+	/* now |1-x| is tiny <= 2**-20, suffice to compute
+	   log(x) by x-x^2/2+x^3/3-x^4/4 */
+	    t = x-1;		/* t has 20 trailing zeros */
+	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
+	    u = C[25]*t;	/* ivln2_h has 21 sig. bits */
+	    v = t*C[26]-w*C[24];
+	    t1 = u+v;
+	    SET_LOW_WORD(t1,0);
+	    t2 = v-(t1-u);
+	} else {
+	    double s2,s_h,s_l,t_h,t_l,s22,s24,s26,r1,r2,r3;
+	    n = 0;
+	/* take care subnormal number */
+	    if(ix<0x00100000)
+		{ax *= C[3]; n -= 53; GET_HIGH_WORD(ix,ax); }
+	    n  += ((ix)>>20)-0x3ff;
+	    j  = ix&0x000fffff;
+	/* determine interval */
+	    ix = j|0x3ff00000;		/* normalize ix */
+	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */
+	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */
+	    else {k=0;n+=1;ix -= 0x00100000;}
+	    SET_HIGH_WORD(ax,ix);
+
+	/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
+	    v = C[1]/(ax+bp[k]);
+	    s = u*v;
+	    s_h = s;
+	    SET_LOW_WORD(s_h,0);
+	/* t_h=ax+bp[k] High */
+	    t_h = C[0];
+	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
+	    t_l = ax - (t_h-bp[k]);
+	    s_l = v*((u-s_h*t_h)-s_h*t_l);
+	/* compute log(ax) */
+	    s2 = s*s;
+#ifdef DO_NOT_USE_THIS
+	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
+#else
+	    r1 = C[10]+s2*C[11]; s22=s2*s2;
+	    r2 = C[8]+s2*C[9]; s24=s22*s22;
+	    r3 = C[6]+s2*C[7]; s26=s24*s22;
+            r = r3*s22 + r2*s24 + r1*s26;
+#endif
+	    r += s_l*(s_h+s);
+	    s2  = s_h*s_h;
+	    t_h = 3.0+s2+r;
+	    SET_LOW_WORD(t_h,0);
+	    t_l = r-((t_h-3.0)-s2);
+	/* u+v = s*(1+...) */
+	    u = s_h*t_h;
+	    v = s_l*t_h+t_l*s;
+	/* 2/(3log2)*(s+...) */
+	    p_h = u+v;
+	    SET_LOW_WORD(p_h,0);
+	    p_l = v-(p_h-u);
+	    z_h = C[22]*p_h;		/* cp_h+cp_l = 2/(3*log2) */
+	    z_l = C[23]*p_h+p_l*C[21]+dp_l[k];
+	/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+	    t = (double)n;
+	    t1 = (((z_h+z_l)+dp_h[k])+t);
+	    SET_LOW_WORD(t1,0);
+	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
+	}
+
+	s = C[1]; /* s (sign of result -ve**odd) = -1 else = 1 */
+	if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
+	    s = -C[1];/* (-ve)**(odd int) */
+
+    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+	y1  = y;
+	SET_LOW_WORD(y1,0);
+	p_l = (y-y1)*t1+y*t2;
+	p_h = y1*t1;
+	z = p_l+p_h;
+	EXTRACT_WORDS(j,i,z);
+	if (j>=0x40900000) {				/* z >= 1024 */
+	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
+		return s*C[4]*C[4];			/* overflow */
+	    else {
+		if(p_l+C[20]>z-p_h) return s*C[4]*C[4];	/* overflow */
+	    }
+	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
+	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
+		return s*C[5]*C[5];		/* underflow */
+	    else {
+		if(p_l<=z-p_h) return s*C[5]*C[5];	/* underflow */
+	    }
+	}
+    /*
+     * compute 2**(p_h+p_l)
+     */
+	i = j&0x7fffffff;
+	k = (i>>20)-0x3ff;
+	n = 0;
+	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
+	    n = j+(0x00100000>>(k+1));
+	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
+	    t = C[0];
+	    SET_HIGH_WORD(t,n&~(0x000fffff>>k));
+	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
+	    if(j<0) n = -n;
+	    p_h -= t;
+	}
+	t = p_l+p_h;
+	SET_LOW_WORD(t,0);
+	u = t*C[18];
+	v = (p_l-(t-p_h))*C[17]+t*C[19];
+	z = u+v;
+	w = v-(z-u);
+	t  = z*z;
+#ifdef DO_NOT_USE_THIS
+	t1  = z - t*(C[12]+t*(C[13]+t*(C[14]+t*(C[15]+t*C[16]))));
+#else
+	r_1 = C[15]+t*C[16]; t12 = t*t;
+	r_2 = C[13]+t*C[14]; t14 = t12*t12;
+	r_3 = t*C[12];
+	t1 = z - r_3 - t12*r_2 - t14*r_1;
+#endif
+	r  = (z*t1)/(t1-C[2])-(w+z*w);
+	z  = C[1]-(r-z);
+	GET_HIGH_WORD(j,z);
+	j += (n<<20);
+	if((j>>20)<=0) z = __scalbn(z,n);	/* subnormal output */
+	else SET_HIGH_WORD(z,j);
+	return s*z;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_rem_pio2.c b/sysdeps/ieee754/dbl-64/e_rem_pio2.c
new file mode 100644
index 0000000000..a8a8cdb2b2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_rem_pio2.c
@@ -0,0 +1,183 @@
+/* @(#)e_rem_pio2.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_rem_pio2.c,v 1.8 1995/05/10 20:46:02 jtc Exp $";
+#endif
+
+/* __ieee754_rem_pio2(x,y)
+ * 
+ * return the remainder of x rem pi/2 in y[0]+y[1] 
+ * use __kernel_rem_pio2()
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+/*
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi 
+ */
+#ifdef __STDC__
+static const int32_t two_over_pi[] = {
+#else
+static int32_t two_over_pi[] = {
+#endif
+0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 
+0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 
+0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 
+0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 
+0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 
+0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 
+0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 
+0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 
+0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 
+0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 
+0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, 
+};
+
+#ifdef __STDC__
+static const int32_t npio2_hw[] = {
+#else
+static int32_t npio2_hw[] = {
+#endif
+0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
+0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
+0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
+0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
+0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
+0x404858EB, 0x404921FB,
+};
+
+/*
+ * invpio2:  53 bits of 2/pi
+ * pio2_1:   first  33 bit of pi/2
+ * pio2_1t:  pi/2 - pio2_1
+ * pio2_2:   second 33 bit of pi/2
+ * pio2_2t:  pi/2 - (pio2_1+pio2_2)
+ * pio2_3:   third  33 bit of pi/2
+ * pio2_3t:  pi/2 - (pio2_1+pio2_2+pio2_3)
+ */
+
+#ifdef __STDC__
+static const double 
+#else
+static double 
+#endif
+zero =  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+half =  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+two24 =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+invpio2 =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+pio2_1  =  1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
+pio2_1t =  6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
+pio2_2  =  6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
+pio2_2t =  2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
+pio2_3  =  2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
+pio2_3t =  8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
+
+#ifdef __STDC__
+	int32_t __ieee754_rem_pio2(double x, double *y)
+#else
+	int32_t __ieee754_rem_pio2(x,y)
+	double x,y[];
+#endif
+{
+	double z,w,t,r,fn;
+	double tx[3];
+	int32_t e0,i,j,nx,n,ix,hx;
+	u_int32_t low;
+
+	GET_HIGH_WORD(hx,x);		/* high word of x */
+	ix = hx&0x7fffffff;
+	if(ix<=0x3fe921fb)   /* |x| ~<= pi/4 , no need for reduction */
+	    {y[0] = x; y[1] = 0; return 0;}
+	if(ix<0x4002d97c) {  /* |x| < 3pi/4, special case with n=+-1 */
+	    if(hx>0) { 
+		z = x - pio2_1;
+		if(ix!=0x3ff921fb) { 	/* 33+53 bit pi is good enough */
+		    y[0] = z - pio2_1t;
+		    y[1] = (z-y[0])-pio2_1t;
+		} else {		/* near pi/2, use 33+33+53 bit pi */
+		    z -= pio2_2;
+		    y[0] = z - pio2_2t;
+		    y[1] = (z-y[0])-pio2_2t;
+		}
+		return 1;
+	    } else {	/* negative x */
+		z = x + pio2_1;
+		if(ix!=0x3ff921fb) { 	/* 33+53 bit pi is good enough */
+		    y[0] = z + pio2_1t;
+		    y[1] = (z-y[0])+pio2_1t;
+		} else {		/* near pi/2, use 33+33+53 bit pi */
+		    z += pio2_2;
+		    y[0] = z + pio2_2t;
+		    y[1] = (z-y[0])+pio2_2t;
+		}
+		return -1;
+	    }
+	}
+	if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
+	    t  = fabs(x);
+	    n  = (int32_t) (t*invpio2+half);
+	    fn = (double)n;
+	    r  = t-fn*pio2_1;
+	    w  = fn*pio2_1t;	/* 1st round good to 85 bit */
+	    if(n<32&&ix!=npio2_hw[n-1]) {	
+		y[0] = r-w;	/* quick check no cancellation */
+	    } else {
+	        u_int32_t high;
+	        j  = ix>>20;
+	        y[0] = r-w; 
+		GET_HIGH_WORD(high,y[0]);
+	        i = j-((high>>20)&0x7ff);
+	        if(i>16) {  /* 2nd iteration needed, good to 118 */
+		    t  = r;
+		    w  = fn*pio2_2;	
+		    r  = t-w;
+		    w  = fn*pio2_2t-((t-r)-w);	
+		    y[0] = r-w;
+		    GET_HIGH_WORD(high,y[0]);
+		    i = j-((high>>20)&0x7ff);
+		    if(i>49)  {	/* 3rd iteration need, 151 bits acc */
+		    	t  = r;	/* will cover all possible cases */
+		    	w  = fn*pio2_3;	
+		    	r  = t-w;
+		    	w  = fn*pio2_3t-((t-r)-w);	
+		    	y[0] = r-w;
+		    }
+		}
+	    }
+	    y[1] = (r-y[0])-w;
+	    if(hx<0) 	{y[0] = -y[0]; y[1] = -y[1]; return -n;}
+	    else	 return n;
+	}
+    /* 
+     * all other (large) arguments
+     */
+	if(ix>=0x7ff00000) {		/* x is inf or NaN */
+	    y[0]=y[1]=x-x; return 0;
+	}
+    /* set z = scalbn(|x|,ilogb(x)-23) */
+	GET_LOW_WORD(low,x);
+	SET_LOW_WORD(z,low);
+	e0 	= (ix>>20)-1046;	/* e0 = ilogb(z)-23; */
+	SET_HIGH_WORD(z, ix - ((int32_t)(e0<<20)));
+	for(i=0;i<2;i++) {
+		tx[i] = (double)((int32_t)(z));
+		z     = (z-tx[i])*two24;
+	}
+	tx[2] = z;
+	nx = 3;
+	while(tx[nx-1]==zero) nx--;	/* skip zero term */
+	n  =  __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
+	if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+	return n;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_remainder.c b/sysdeps/ieee754/dbl-64/e_remainder.c
new file mode 100644
index 0000000000..6418081182
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_remainder.c
@@ -0,0 +1,80 @@
+/* @(#)e_remainder.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_remainder.c,v 1.8 1995/05/10 20:46:05 jtc Exp $";
+#endif
+
+/* __ieee754_remainder(x,p)
+ * Return :                  
+ * 	returns  x REM p  =  x - [x/p]*p as if in infinite 
+ * 	precise arithmetic, where [x/p] is the (infinite bit) 
+ *	integer nearest x/p (in half way case choose the even one).
+ * Method : 
+ *	Based on fmod() return x-[x/p]chopped*p exactlp.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+
+#ifdef __STDC__
+	double __ieee754_remainder(double x, double p)
+#else
+	double __ieee754_remainder(x,p)
+	double x,p;
+#endif
+{
+	int32_t hx,hp;
+	u_int32_t sx,lx,lp;
+	double p_half;
+
+	EXTRACT_WORDS(hx,lx,x);
+	EXTRACT_WORDS(hp,lp,p);
+	sx = hx&0x80000000;
+	hp &= 0x7fffffff;
+	hx &= 0x7fffffff;
+
+    /* purge off exception values */
+	if((hp|lp)==0) return (x*p)/(x*p); 	/* p = 0 */
+	if((hx>=0x7ff00000)||			/* x not finite */
+	  ((hp>=0x7ff00000)&&			/* p is NaN */
+	  (((hp-0x7ff00000)|lp)!=0)))
+	    return (x*p)/(x*p);
+
+
+	if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p);	/* now x < 2p */
+	if (((hx-hp)|(lx-lp))==0) return zero*x;
+	x  = fabs(x);
+	p  = fabs(p);
+	if (hp<0x00200000) {
+	    if(x+x>p) {
+		x-=p;
+		if(x+x>=p) x -= p;
+	    }
+	} else {
+	    p_half = 0.5*p;
+	    if(x>p_half) {
+		x-=p;
+		if(x>=p_half) x -= p;
+	    }
+	}
+	GET_HIGH_WORD(hx,x);
+	SET_HIGH_WORD(x,hx^sx);
+	return x;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_sinh.c b/sysdeps/ieee754/dbl-64/e_sinh.c
new file mode 100644
index 0000000000..1701b9bb67
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_sinh.c
@@ -0,0 +1,86 @@
+/* @(#)e_sinh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_sinh.c,v 1.7 1995/05/10 20:46:13 jtc Exp $";
+#endif
+
+/* __ieee754_sinh(x)
+ * Method : 
+ * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
+ *	1. Replace x by |x| (sinh(-x) = -sinh(x)). 
+ *	2. 
+ *		                                    E + E/(E+1)
+ *	    0        <= x <= 22     :  sinh(x) := --------------, E=expm1(x)
+ *			       			        2
+ *
+ *	    22       <= x <= lnovft :  sinh(x) := exp(x)/2 
+ *	    lnovft   <= x <= ln2ovft:  sinh(x) := exp(x/2)/2 * exp(x/2)
+ *	    ln2ovft  <  x	    :  sinh(x) := x*shuge (overflow)
+ *
+ * Special cases:
+ *	sinh(x) is |x| if x is +INF, -INF, or NaN.
+ *	only sinh(0)=0 is exact for finite x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0, shuge = 1.0e307;
+#else
+static double one = 1.0, shuge = 1.0e307;
+#endif
+
+#ifdef __STDC__
+	double __ieee754_sinh(double x)
+#else
+	double __ieee754_sinh(x)
+	double x;
+#endif
+{	
+	double t,w,h;
+	int32_t ix,jx;
+	u_int32_t lx;
+
+    /* High word of |x|. */
+	GET_HIGH_WORD(jx,x);
+	ix = jx&0x7fffffff;
+
+    /* x is INF or NaN */
+	if(ix>=0x7ff00000) return x+x;	
+
+	h = 0.5;
+	if (jx<0) h = -h;
+    /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
+	if (ix < 0x40360000) {		/* |x|<22 */
+	    if (ix<0x3e300000) 		/* |x|<2**-28 */
+		if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
+	    t = __expm1(fabs(x));
+	    if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
+	    return h*(t+t/(t+one));
+	}
+
+    /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
+	if (ix < 0x40862e42)  return h*__ieee754_exp(fabs(x));
+
+    /* |x| in [log(maxdouble), overflowthresold] */
+	GET_LOW_WORD(lx,x);
+	if (ix<0x408633ce || ((ix==0x408633ce)&&(lx<=(u_int32_t)0x8fb9f87d))) {
+	    w = __ieee754_exp(0.5*fabs(x));
+	    t = h*w;
+	    return t*w;
+	}
+
+    /* |x| > overflowthresold, sinh(x) overflow */
+	return x*shuge;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_sqrt.c b/sysdeps/ieee754/dbl-64/e_sqrt.c
new file mode 100644
index 0000000000..67da5455f9
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_sqrt.c
@@ -0,0 +1,452 @@
+/* @(#)e_sqrt.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_sqrt.c,v 1.8 1995/05/10 20:46:17 jtc Exp $";
+#endif
+
+/* __ieee754_sqrt(x)
+ * Return correctly rounded sqrt.
+ *           ------------------------------------------
+ *	     |  Use the hardware sqrt if you have one |
+ *           ------------------------------------------
+ * Method:
+ *   Bit by bit method using integer arithmetic. (Slow, but portable)
+ *   1. Normalization
+ *	Scale x to y in [1,4) with even powers of 2:
+ *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
+ *		sqrt(x) = 2^k * sqrt(y)
+ *   2. Bit by bit computation
+ *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
+ *	     i							 0
+ *                                     i+1         2
+ *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
+ *	     i      i            i                 i
+ *
+ *	To compute q    from q , one checks whether
+ *		    i+1       i
+ *
+ *			      -(i+1) 2
+ *			(q + 2      ) <= y.			(2)
+ *     			  i
+ *							      -(i+1)
+ *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
+ *		 	       i+1   i             i+1   i
+ *
+ *	With some algebraic manipulation, it is not difficult to see
+ *	that (2) is equivalent to
+ *                             -(i+1)
+ *			s  +  2       <= y			(3)
+ *			 i                i
+ *
+ *	The advantage of (3) is that s  and y  can be computed by
+ *				      i      i
+ *	the following recurrence formula:
+ *	    if (3) is false
+ *
+ *	    s     =  s  ,	y    = y   ;			(4)
+ *	     i+1      i		 i+1    i
+ *
+ *	    otherwise,
+ *                         -i                     -(i+1)
+ *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
+ *           i+1      i          i+1    i     i
+ *
+ *	One may easily use induction to prove (4) and (5).
+ *	Note. Since the left hand side of (3) contain only i+2 bits,
+ *	      it does not necessary to do a full (53-bit) comparison
+ *	      in (3).
+ *   3. Final rounding
+ *	After generating the 53 bits result, we compute one more bit.
+ *	Together with the remainder, we can decide whether the
+ *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
+ *	(it will never equal to 1/2ulp).
+ *	The rounding mode can be detected by checking whether
+ *	huge + tiny is equal to huge, and whether huge - tiny is
+ *	equal to huge for some floating point number "huge" and "tiny".
+ *
+ * Special cases:
+ *	sqrt(+-0) = +-0 	... exact
+ *	sqrt(inf) = inf
+ *	sqrt(-ve) = NaN		... with invalid signal
+ *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
+ *
+ * Other methods : see the appended file at the end of the program below.
+ *---------------
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static	const double	one	= 1.0, tiny=1.0e-300;
+#else
+static	double	one	= 1.0, tiny=1.0e-300;
+#endif
+
+#ifdef __STDC__
+	double __ieee754_sqrt(double x)
+#else
+	double __ieee754_sqrt(x)
+	double x;
+#endif
+{
+	double z;
+	int32_t sign = (int)0x80000000;
+	int32_t ix0,s0,q,m,t,i;
+	u_int32_t r,t1,s1,ix1,q1;
+
+	EXTRACT_WORDS(ix0,ix1,x);
+
+    /* take care of Inf and NaN */
+	if((ix0&0x7ff00000)==0x7ff00000) {
+	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
+					   sqrt(-inf)=sNaN */
+	}
+    /* take care of zero */
+	if(ix0<=0) {
+	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
+	    else if(ix0<0)
+		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
+	}
+    /* normalize x */
+	m = (ix0>>20);
+	if(m==0) {				/* subnormal x */
+	    while(ix0==0) {
+		m -= 21;
+		ix0 |= (ix1>>11); ix1 <<= 21;
+	    }
+	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
+	    m -= i-1;
+	    ix0 |= (ix1>>(32-i));
+	    ix1 <<= i;
+	}
+	m -= 1023;	/* unbias exponent */
+	ix0 = (ix0&0x000fffff)|0x00100000;
+	if(m&1){	/* odd m, double x to make it even */
+	    ix0 += ix0 + ((ix1&sign)>>31);
+	    ix1 += ix1;
+	}
+	m >>= 1;	/* m = [m/2] */
+
+    /* generate sqrt(x) bit by bit */
+	ix0 += ix0 + ((ix1&sign)>>31);
+	ix1 += ix1;
+	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
+	r = 0x00200000;		/* r = moving bit from right to left */
+
+	while(r!=0) {
+	    t = s0+r;
+	    if(t<=ix0) {
+		s0   = t+r;
+		ix0 -= t;
+		q   += r;
+	    }
+	    ix0 += ix0 + ((ix1&sign)>>31);
+	    ix1 += ix1;
+	    r>>=1;
+	}
+
+	r = sign;
+	while(r!=0) {
+	    t1 = s1+r;
+	    t  = s0;
+	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
+		s1  = t1+r;
+		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
+		ix0 -= t;
+		if (ix1 < t1) ix0 -= 1;
+		ix1 -= t1;
+		q1  += r;
+	    }
+	    ix0 += ix0 + ((ix1&sign)>>31);
+	    ix1 += ix1;
+	    r>>=1;
+	}
+
+    /* use floating add to find out rounding direction */
+	if((ix0|ix1)!=0) {
+	    z = one-tiny; /* trigger inexact flag */
+	    if (z>=one) {
+	        z = one+tiny;
+	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
+		else if (z>one) {
+		    if (q1==(u_int32_t)0xfffffffe) q+=1;
+		    q1+=2;
+		} else
+	            q1 += (q1&1);
+	    }
+	}
+	ix0 = (q>>1)+0x3fe00000;
+	ix1 =  q1>>1;
+	if ((q&1)==1) ix1 |= sign;
+	ix0 += (m <<20);
+	INSERT_WORDS(z,ix0,ix1);
+	return z;
+}
+
+/*
+Other methods  (use floating-point arithmetic)
+-------------
+(This is a copy of a drafted paper by Prof W. Kahan
+and K.C. Ng, written in May, 1986)
+
+	Two algorithms are given here to implement sqrt(x)
+	(IEEE double precision arithmetic) in software.
+	Both supply sqrt(x) correctly rounded. The first algorithm (in
+	Section A) uses newton iterations and involves four divisions.
+	The second one uses reciproot iterations to avoid division, but
+	requires more multiplications. Both algorithms need the ability
+	to chop results of arithmetic operations instead of round them,
+	and the INEXACT flag to indicate when an arithmetic operation
+	is executed exactly with no roundoff error, all part of the
+	standard (IEEE 754-1985). The ability to perform shift, add,
+	subtract and logical AND operations upon 32-bit words is needed
+	too, though not part of the standard.
+
+A.  sqrt(x) by Newton Iteration
+
+   (1)	Initial approximation
+
+	Let x0 and x1 be the leading and the trailing 32-bit words of
+	a floating point number x (in IEEE double format) respectively
+
+	    1    11		     52				  ...widths
+	   ------------------------------------------------------
+	x: |s|	  e     |	      f				|
+	   ------------------------------------------------------
+	      msb    lsb  msb				      lsb ...order
+
+
+	     ------------------------  	     ------------------------
+	x0:  |s|   e    |    f1     |	 x1: |          f2           |
+	     ------------------------  	     ------------------------
+
+	By performing shifts and subtracts on x0 and x1 (both regarded
+	as integers), we obtain an 8-bit approximation of sqrt(x) as
+	follows.
+
+		k  := (x0>>1) + 0x1ff80000;
+		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
+	Here k is a 32-bit integer and T1[] is an integer array containing
+	correction terms. Now magically the floating value of y (y's
+	leading 32-bit word is y0, the value of its trailing word is 0)
+	approximates sqrt(x) to almost 8-bit.
+
+	Value of T1:
+	static int T1[32]= {
+	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
+	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
+	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
+	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
+
+    (2)	Iterative refinement
+
+	Apply Heron's rule three times to y, we have y approximates
+	sqrt(x) to within 1 ulp (Unit in the Last Place):
+
+		y := (y+x/y)/2		... almost 17 sig. bits
+		y := (y+x/y)/2		... almost 35 sig. bits
+		y := y-(y-x/y)/2	... within 1 ulp
+
+
+	Remark 1.
+	    Another way to improve y to within 1 ulp is:
+
+		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
+		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
+
+				2
+			    (x-y )*y
+		y := y + 2* ----------	...within 1 ulp
+			       2
+			     3y  + x
+
+
+	This formula has one division fewer than the one above; however,
+	it requires more multiplications and additions. Also x must be
+	scaled in advance to avoid spurious overflow in evaluating the
+	expression 3y*y+x. Hence it is not recommended uless division
+	is slow. If division is very slow, then one should use the
+	reciproot algorithm given in section B.
+
+    (3) Final adjustment
+
+	By twiddling y's last bit it is possible to force y to be
+	correctly rounded according to the prevailing rounding mode
+	as follows. Let r and i be copies of the rounding mode and
+	inexact flag before entering the square root program. Also we
+	use the expression y+-ulp for the next representable floating
+	numbers (up and down) of y. Note that y+-ulp = either fixed
+	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
+	mode.
+
+		I := FALSE;	... reset INEXACT flag I
+		R := RZ;	... set rounding mode to round-toward-zero
+		z := x/y;	... chopped quotient, possibly inexact
+		If(not I) then {	... if the quotient is exact
+		    if(z=y) {
+		        I := i;	 ... restore inexact flag
+		        R := r;  ... restore rounded mode
+		        return sqrt(x):=y.
+		    } else {
+			z := z - ulp;	... special rounding
+		    }
+		}
+		i := TRUE;		... sqrt(x) is inexact
+		If (r=RN) then z=z+ulp	... rounded-to-nearest
+		If (r=RP) then {	... round-toward-+inf
+		    y = y+ulp; z=z+ulp;
+		}
+		y := y+z;		... chopped sum
+		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
+	        I := i;	 		... restore inexact flag
+	        R := r;  		... restore rounded mode
+	        return sqrt(x):=y.
+
+    (4)	Special cases
+
+	Square root of +inf, +-0, or NaN is itself;
+	Square root of a negative number is NaN with invalid signal.
+
+
+B.  sqrt(x) by Reciproot Iteration
+
+   (1)	Initial approximation
+
+	Let x0 and x1 be the leading and the trailing 32-bit words of
+	a floating point number x (in IEEE double format) respectively
+	(see section A). By performing shifs and subtracts on x0 and y0,
+	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
+
+	    k := 0x5fe80000 - (x0>>1);
+	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
+
+	Here k is a 32-bit integer and T2[] is an integer array
+	containing correction terms. Now magically the floating
+	value of y (y's leading 32-bit word is y0, the value of
+	its trailing word y1 is set to zero) approximates 1/sqrt(x)
+	to almost 7.8-bit.
+
+	Value of T2:
+	static int T2[64]= {
+	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
+	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
+	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
+	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
+	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
+	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
+	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
+	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
+
+    (2)	Iterative refinement
+
+	Apply Reciproot iteration three times to y and multiply the
+	result by x to get an approximation z that matches sqrt(x)
+	to about 1 ulp. To be exact, we will have
+		-1ulp < sqrt(x)-z<1.0625ulp.
+
+	... set rounding mode to Round-to-nearest
+	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
+	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
+	... special arrangement for better accuracy
+	   z := x*y			... 29 bits to sqrt(x), with z*y<1
+	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
+
+	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
+	(a) the term z*y in the final iteration is always less than 1;
+	(b) the error in the final result is biased upward so that
+		-1 ulp < sqrt(x) - z < 1.0625 ulp
+	    instead of |sqrt(x)-z|<1.03125ulp.
+
+    (3)	Final adjustment
+
+	By twiddling y's last bit it is possible to force y to be
+	correctly rounded according to the prevailing rounding mode
+	as follows. Let r and i be copies of the rounding mode and
+	inexact flag before entering the square root program. Also we
+	use the expression y+-ulp for the next representable floating
+	numbers (up and down) of y. Note that y+-ulp = either fixed
+	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
+	mode.
+
+	R := RZ;		... set rounding mode to round-toward-zero
+	switch(r) {
+	    case RN:		... round-to-nearest
+	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
+	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
+	       break;
+	    case RZ:case RM:	... round-to-zero or round-to--inf
+	       R:=RP;		... reset rounding mod to round-to-+inf
+	       if(x<z*z ... rounded up) z = z - ulp; else
+	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
+	       break;
+	    case RP:		... round-to-+inf
+	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
+	       if(x>z*z ...chopped) z = z+ulp;
+	       break;
+	}
+
+	Remark 3. The above comparisons can be done in fixed point. For
+	example, to compare x and w=z*z chopped, it suffices to compare
+	x1 and w1 (the trailing parts of x and w), regarding them as
+	two's complement integers.
+
+	...Is z an exact square root?
+	To determine whether z is an exact square root of x, let z1 be the
+	trailing part of z, and also let x0 and x1 be the leading and
+	trailing parts of x.
+
+	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
+	    I := 1;		... Raise Inexact flag: z is not exact
+	else {
+	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
+	    k := z1 >> 26;		... get z's 25-th and 26-th
+					    fraction bits
+	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
+	}
+	R:= r		... restore rounded mode
+	return sqrt(x):=z.
+
+	If multiplication is cheaper then the foregoing red tape, the
+	Inexact flag can be evaluated by
+
+	    I := i;
+	    I := (z*z!=x) or I.
+
+	Note that z*z can overwrite I; this value must be sensed if it is
+	True.
+
+	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
+	zero.
+
+		    --------------------
+		z1: |        f2        |
+		    --------------------
+		bit 31		   bit 0
+
+	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
+	or even of logb(x) have the following relations:
+
+	-------------------------------------------------
+	bit 27,26 of z1		bit 1,0 of x1	logb(x)
+	-------------------------------------------------
+	00			00		odd and even
+	01			01		even
+	10			10		odd
+	10			00		even
+	11			01		even
+	-------------------------------------------------
+
+    (4)	Special cases (see (4) of Section A).
+
+ */
diff --git a/sysdeps/ieee754/dbl-64/k_cos.c b/sysdeps/ieee754/dbl-64/k_cos.c
new file mode 100644
index 0000000000..7e38ef7915
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/k_cos.c
@@ -0,0 +1,107 @@
+/* @(#)k_cos.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $";
+#endif
+
+/*
+ * __kernel_cos( x,  y )
+ * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ *
+ * Algorithm
+ *	1. Since cos(-x) = cos(x), we need only to consider positive x.
+ *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
+ *	3. cos(x) is approximated by a polynomial of degree 14 on
+ *	   [0,pi/4]
+ *		  	                 4            14
+ *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+ *	   where the remez error is
+ *
+ * 	|              2     4     6     8     10    12     14 |     -58
+ * 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
+ * 	|    					               |
+ *
+ * 	               4     6     8     10    12     14
+ *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
+ *	       cos(x) = 1 - x*x/2 + r
+ *	   since cos(x+y) ~ cos(x) - sin(x)*y
+ *			  ~ cos(x) - x*y,
+ *	   a correction term is necessary in cos(x) and hence
+ *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
+ *	   For better accuracy when x > 0.3, let qx = |x|/4 with
+ *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
+ *	   Then
+ *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
+ *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
+ *	   magnitude of the latter is at least a quarter of x*x/2,
+ *	   thus, reducing the rounding error in the subtraction.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+C[] = {
+  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
+ -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
+  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
+ -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
+  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
+ -1.13596475577881948265e-11}; /* 0xBDA8FAE9, 0xBE8838D4 */
+
+#ifdef __STDC__
+	double __kernel_cos(double x, double y)
+#else
+	double __kernel_cos(x, y)
+	double x,y;
+#endif
+{
+	double a,hz,z,r,qx,r1,r2,r3,z1,z2,z3;
+	int32_t ix;
+	z  = x*x;
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;			/* ix = |x|'s high word*/
+	if(ix<0x3e400000) {			/* if x < 2**27 */
+	    if(((int)x)==0) return C[0];	/* generate inexact */
+	}
+#ifdef DO_NOT_USE_THIS
+	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
+#else
+	r1=z*C[6];r1=r1+C[5];z1=z*z;
+	r2=z*C[4];r2=r2+C[3];z2=z1*z;
+	r3=z*C[2];r3=r3+C[1];z3=z2*z1;
+	r=z3*r1+z2*r2+z*r3;
+#endif
+	if(ix < 0x3FD33333) 			/* if |x| < 0.3 */
+	    return C[0] - (0.5*z - (z*r - x*y));
+	else {
+	    if(ix > 0x3fe90000) {		/* x > 0.78125 */
+		qx = 0.28125;
+	    } else {
+	        INSERT_WORDS(qx,ix-0x00200000,0);	/* x/4 */
+	    }
+	    hz = 0.5*z-qx;
+	    a  = C[0]-qx;
+	    return a - (hz - (z*r-x*y));
+	}
+}
diff --git a/sysdeps/ieee754/dbl-64/k_rem_pio2.c b/sysdeps/ieee754/dbl-64/k_rem_pio2.c
new file mode 100644
index 0000000000..ccf1633bd4
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/k_rem_pio2.c
@@ -0,0 +1,320 @@
+/* @(#)k_rem_pio2.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
+#endif
+
+/*
+ * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+ * double x[],y[]; int e0,nx,prec; int ipio2[];
+ *
+ * __kernel_rem_pio2 return the last three digits of N with
+ *		y = x - N*pi/2
+ * so that |y| < pi/2.
+ *
+ * The method is to compute the integer (mod 8) and fraction parts of
+ * (2/pi)*x without doing the full multiplication. In general we
+ * skip the part of the product that are known to be a huge integer (
+ * more accurately, = 0 mod 8 ). Thus the number of operations are
+ * independent of the exponent of the input.
+ *
+ * (2/pi) is represented by an array of 24-bit integers in ipio2[].
+ *
+ * Input parameters:
+ * 	x[]	The input value (must be positive) is broken into nx
+ *		pieces of 24-bit integers in double precision format.
+ *		x[i] will be the i-th 24 bit of x. The scaled exponent
+ *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+ *		match x's up to 24 bits.
+ *
+ *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
+ *			e0 = ilogb(z)-23
+ *			z  = scalbn(z,-e0)
+ *		for i = 0,1,2
+ *			x[i] = floor(z)
+ *			z    = (z-x[i])*2**24
+ *
+ *
+ *	y[]	ouput result in an array of double precision numbers.
+ *		The dimension of y[] is:
+ *			24-bit  precision	1
+ *			53-bit  precision	2
+ *			64-bit  precision	2
+ *			113-bit precision	3
+ *		The actual value is the sum of them. Thus for 113-bit
+ *		precision, one may have to do something like:
+ *
+ *		long double t,w,r_head, r_tail;
+ *		t = (long double)y[2] + (long double)y[1];
+ *		w = (long double)y[0];
+ *		r_head = t+w;
+ *		r_tail = w - (r_head - t);
+ *
+ *	e0	The exponent of x[0]
+ *
+ *	nx	dimension of x[]
+ *
+ *  	prec	an integer indicating the precision:
+ *			0	24  bits (single)
+ *			1	53  bits (double)
+ *			2	64  bits (extended)
+ *			3	113 bits (quad)
+ *
+ *	ipio2[]
+ *		integer array, contains the (24*i)-th to (24*i+23)-th
+ *		bit of 2/pi after binary point. The corresponding
+ *		floating value is
+ *
+ *			ipio2[i] * 2^(-24(i+1)).
+ *
+ * External function:
+ *	double scalbn(), floor();
+ *
+ *
+ * Here is the description of some local variables:
+ *
+ * 	jk	jk+1 is the initial number of terms of ipio2[] needed
+ *		in the computation. The recommended value is 2,3,4,
+ *		6 for single, double, extended,and quad.
+ *
+ * 	jz	local integer variable indicating the number of
+ *		terms of ipio2[] used.
+ *
+ *	jx	nx - 1
+ *
+ *	jv	index for pointing to the suitable ipio2[] for the
+ *		computation. In general, we want
+ *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+ *		is an integer. Thus
+ *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+ *		Hence jv = max(0,(e0-3)/24).
+ *
+ *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
+ *
+ * 	q[]	double array with integral value, representing the
+ *		24-bits chunk of the product of x and 2/pi.
+ *
+ *	q0	the corresponding exponent of q[0]. Note that the
+ *		exponent for q[i] would be q0-24*i.
+ *
+ *	PIo2[]	double precision array, obtained by cutting pi/2
+ *		into 24 bits chunks.
+ *
+ *	f[]	ipio2[] in floating point
+ *
+ *	iq[]	integer array by breaking up q[] in 24-bits chunk.
+ *
+ *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
+ *
+ *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
+ *		it also indicates the *sign* of the result.
+ *
+ */
+
+
+/*
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
+#else
+static int init_jk[] = {2,3,4,6};
+#endif
+
+#ifdef __STDC__
+static const double PIo2[] = {
+#else
+static double PIo2[] = {
+#endif
+  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+};
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+zero   = 0.0,
+one    = 1.0,
+two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
+
+#ifdef __STDC__
+	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
+#else
+	int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+	double x[], y[]; int e0,nx,prec; int32_t ipio2[];
+#endif
+{
+	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
+	double z,fw,f[20],fq[20],q[20];
+
+    /* initialize jk*/
+	jk = init_jk[prec];
+	jp = jk;
+
+    /* determine jx,jv,q0, note that 3>q0 */
+	jx =  nx-1;
+	jv = (e0-3)/24; if(jv<0) jv=0;
+	q0 =  e0-24*(jv+1);
+
+    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+	j = jv-jx; m = jx+jk;
+	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
+
+    /* compute q[0],q[1],...q[jk] */
+	for (i=0;i<=jk;i++) {
+	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
+	}
+
+	jz = jk;
+recompute:
+    /* distill q[] into iq[] reversingly */
+	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
+	    fw    =  (double)((int32_t)(twon24* z));
+	    iq[i] =  (int32_t)(z-two24*fw);
+	    z     =  q[j-1]+fw;
+	}
+
+    /* compute n */
+	z  = __scalbn(z,q0);		/* actual value of z */
+	z -= 8.0*__floor(z*0.125);		/* trim off integer >= 8 */
+	n  = (int32_t) z;
+	z -= (double)n;
+	ih = 0;
+	if(q0>0) {	/* need iq[jz-1] to determine n */
+	    i  = (iq[jz-1]>>(24-q0)); n += i;
+	    iq[jz-1] -= i<<(24-q0);
+	    ih = iq[jz-1]>>(23-q0);
+	}
+	else if(q0==0) ih = iq[jz-1]>>23;
+	else if(z>=0.5) ih=2;
+
+	if(ih>0) {	/* q > 0.5 */
+	    n += 1; carry = 0;
+	    for(i=0;i<jz ;i++) {	/* compute 1-q */
+		j = iq[i];
+		if(carry==0) {
+		    if(j!=0) {
+			carry = 1; iq[i] = 0x1000000- j;
+		    }
+		} else  iq[i] = 0xffffff - j;
+	    }
+	    if(q0>0) {		/* rare case: chance is 1 in 12 */
+	        switch(q0) {
+	        case 1:
+	    	   iq[jz-1] &= 0x7fffff; break;
+	    	case 2:
+	    	   iq[jz-1] &= 0x3fffff; break;
+	        }
+	    }
+	    if(ih==2) {
+		z = one - z;
+		if(carry!=0) z -= __scalbn(one,q0);
+	    }
+	}
+
+    /* check if recomputation is needed */
+	if(z==zero) {
+	    j = 0;
+	    for (i=jz-1;i>=jk;i--) j |= iq[i];
+	    if(j==0) { /* need recomputation */
+		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
+
+		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
+		    f[jx+i] = (double) ipio2[jv+i];
+		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
+		    q[i] = fw;
+		}
+		jz += k;
+		goto recompute;
+	    }
+	}
+
+    /* chop off zero terms */
+	if(z==0.0) {
+	    jz -= 1; q0 -= 24;
+	    while(iq[jz]==0) { jz--; q0-=24;}
+	} else { /* break z into 24-bit if necessary */
+	    z = __scalbn(z,-q0);
+	    if(z>=two24) {
+		fw = (double)((int32_t)(twon24*z));
+		iq[jz] = (int32_t)(z-two24*fw);
+		jz += 1; q0 += 24;
+		iq[jz] = (int32_t) fw;
+	    } else iq[jz] = (int32_t) z ;
+	}
+
+    /* convert integer "bit" chunk to floating-point value */
+	fw = __scalbn(one,q0);
+	for(i=jz;i>=0;i--) {
+	    q[i] = fw*(double)iq[i]; fw*=twon24;
+	}
+
+    /* compute PIo2[0,...,jp]*q[jz,...,0] */
+	for(i=jz;i>=0;i--) {
+	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
+	    fq[jz-i] = fw;
+	}
+
+    /* compress fq[] into y[] */
+	switch(prec) {
+	    case 0:
+		fw = 0.0;
+		for (i=jz;i>=0;i--) fw += fq[i];
+		y[0] = (ih==0)? fw: -fw;
+		break;
+	    case 1:
+	    case 2:
+		fw = 0.0;
+		for (i=jz;i>=0;i--) fw += fq[i];
+		y[0] = (ih==0)? fw: -fw;
+		fw = fq[0]-fw;
+		for (i=1;i<=jz;i++) fw += fq[i];
+		y[1] = (ih==0)? fw: -fw;
+		break;
+	    case 3:	/* painful */
+		for (i=jz;i>0;i--) {
+		    fw      = fq[i-1]+fq[i];
+		    fq[i]  += fq[i-1]-fw;
+		    fq[i-1] = fw;
+		}
+		for (i=jz;i>1;i--) {
+		    fw      = fq[i-1]+fq[i];
+		    fq[i]  += fq[i-1]-fw;
+		    fq[i-1] = fw;
+		}
+		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
+		if(ih==0) {
+		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
+		} else {
+		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
+		}
+	}
+	return n&7;
+}
diff --git a/sysdeps/ieee754/dbl-64/k_sin.c b/sysdeps/ieee754/dbl-64/k_sin.c
new file mode 100644
index 0000000000..49c59228e0
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/k_sin.c
@@ -0,0 +1,91 @@
+/* @(#)k_sin.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_sin.c,v 1.8 1995/05/10 20:46:31 jtc Exp $";
+#endif
+
+/* __kernel_sin( x, y, iy)
+ * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+ *
+ * Algorithm
+ *	1. Since sin(-x) = -sin(x), we need only to consider positive x.
+ *	2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
+ *	3. sin(x) is approximated by a polynomial of degree 13 on
+ *	   [0,pi/4]
+ *		  	         3            13
+ *	   	sin(x) ~ x + S1*x + ... + S6*x
+ *	   where
+ *
+ * 	|sin(x)         2     4     6     8     10     12  |     -58
+ * 	|----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
+ * 	|  x 					           |
+ *
+ *	4. sin(x+y) = sin(x) + sin'(x')*y
+ *		    ~ sin(x) + (1-x*x/2)*y
+ *	   For better accuracy, let
+ *		     3      2      2      2      2
+ *		r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
+ *	   then                   3    2
+ *		sin(x) = x + (S1*x + (x *(r-y/2)+y))
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+S[] = {
+  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+ -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
+  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
+ -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
+  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
+ -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
+  1.58969099521155010221e-10}; /* 0x3DE5D93A, 0x5ACFD57C */
+
+#ifdef __STDC__
+	double __kernel_sin(double x, double y, int iy)
+#else
+	double __kernel_sin(x, y, iy)
+	double x,y; int iy;		/* iy=0 if y is zero */
+#endif
+{
+	double z,r,v,z1,r1,r2;
+	int32_t ix;
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;			/* high word of x */
+	if(ix<0x3e400000)			/* |x| < 2**-27 */
+	   {if((int)x==0) return x;}		/* generate inexact */
+	z	=  x*x;
+	v	=  z*x;
+#ifdef DO_NOT_USE_THIS
+	r	=  S2+z*(S3+z*(S4+z*(S5+z*S6)));
+	if(iy==0) return x+v*(S1+z*r);
+	else      return x-((z*(half*y-v*r)-y)-v*S1);
+#else
+ 	r1	=  S[5]+z*S[6]; z1 = z*z*z;
+	r2	=  S[3]+z*S[4];
+	r	=  S[2] + z*r2 + z1*r1;
+	if(iy==0) return x+v*(S[1]+z*r);
+ 	else      return x-((z*(S[0]*y-v*r)-y)-v*S[1]);
+#endif
+}
diff --git a/sysdeps/ieee754/dbl-64/k_tan.c b/sysdeps/ieee754/dbl-64/k_tan.c
new file mode 100644
index 0000000000..55dafb8ebc
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/k_tan.c
@@ -0,0 +1,145 @@
+/* @(#)k_tan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_tan.c,v 1.8 1995/05/10 20:46:37 jtc Exp $";
+#endif
+
+/* __kernel_tan( x, y, k )
+ * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input k indicates whether tan (if k=1) or
+ * -1/tan (if k= -1) is returned.
+ *
+ * Algorithm
+ *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
+ *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
+ *	3. tan(x) is approximated by a odd polynomial of degree 27 on
+ *	   [0,0.67434]
+ *		  	         3             27
+ *	   	tan(x) ~ x + T1*x + ... + T13*x
+ *	   where
+ *
+ * 	        |tan(x)         2     4            26   |     -59.2
+ * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
+ * 	        |  x 					|
+ *
+ *	   Note: tan(x+y) = tan(x) + tan'(x)*y
+ *		          ~ tan(x) + (1+x*x)*y
+ *	   Therefore, for better accuracy in computing tan(x+y), let
+ *		     3      2      2       2       2
+ *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+ *	   then
+ *		 		    3    2
+ *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
+ *
+ *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
+ *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
+ *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
+ */
+
+#include "math.h"
+#include "math_private.h"
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
+pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
+T[] =  {
+  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
+  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
+  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
+  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
+  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
+  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
+  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
+  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
+  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
+  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
+  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
+ -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
+  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
+};
+
+#ifdef __STDC__
+	double __kernel_tan(double x, double y, int iy)
+#else
+	double __kernel_tan(x, y, iy)
+	double x,y; int iy;
+#endif
+{
+	double z,r,v,w,s,r1,r2,r3,v1,v2,v3,w2,w4;
+	int32_t ix,hx;
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;	/* high word of |x| */
+	if(ix<0x3e300000)			/* x < 2**-28 */
+	    {if((int)x==0) {			/* generate inexact */
+	        u_int32_t low;
+		GET_LOW_WORD(low,x);
+		if(((ix|low)|(iy+1))==0) return one/fabs(x);
+		else return (iy==1)? x: -one/x;
+	    }
+	    }
+	if(ix>=0x3FE59428) { 			/* |x|>=0.6744 */
+	    if(hx<0) {x = -x; y = -y;}
+	    z = pio4-x;
+	    w = pio4lo-y;
+	    x = z+w; y = 0.0;
+	}
+	z	=  x*x;
+	w 	=  z*z;
+    /* Break x^5*(T[1]+x^2*T[2]+...) into
+     *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+     *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+     */
+#ifdef DO_NOT_USE_THIS
+	r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
+	v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
+#else
+	v1 = T[10]+w*T[12]; w2=w*w;
+	v2 = T[6]+w*T[8]; w4=w2*w2;
+	v3 = T[2]+w*T[4]; v1=z*v1;
+	r1 = T[9]+w*T[11]; v2=z*v2;
+	r2 = T[5]+w*T[7]; v3=z*v3;
+	r3 = T[1]+w*T[3];
+	v  = v3 + w2*v2 + w4*v1;
+	r = r3 + w2*r2 + w4*r1;
+#endif
+	s = z*x;
+	r = y + z*(s*(r+v)+y);
+	r += T[0]*s;
+	w = x+r;
+	if(ix>=0x3FE59428) {
+	    v = (double)iy;
+	    return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
+	}
+	if(iy==1) return w;
+	else {		/* if allow error up to 2 ulp,
+			   simply return -1.0/(x+r) here */
+     /*  compute -1.0/(x+r) accurately */
+	    double a,t;
+	    z  = w;
+	    SET_LOW_WORD(z,0);
+	    v  = r-(z - x); 	/* z+v = r+x */
+	    t = a  = -1.0/w;	/* a = -1.0/w */
+	    SET_LOW_WORD(t,0);
+	    s  = 1.0+t*z;
+	    return t+a*(s+t*v);
+	}
+}
diff --git a/sysdeps/ieee754/mpn2dbl.c b/sysdeps/ieee754/dbl-64/mpn2dbl.c
index 8145eb9c3d..8145eb9c3d 100644
--- a/sysdeps/ieee754/mpn2dbl.c
+++ b/sysdeps/ieee754/dbl-64/mpn2dbl.c
diff --git a/sysdeps/ieee754/dbl-64/s_asinh.c b/sysdeps/ieee754/dbl-64/s_asinh.c
new file mode 100644
index 0000000000..985cfe32e1
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_asinh.c
@@ -0,0 +1,70 @@
+/* @(#)s_asinh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_asinh.c,v 1.9 1995/05/12 04:57:37 jtc Exp $";
+#endif
+
+/* asinh(x)
+ * Method :
+ *	Based on
+ *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
+ *	we have
+ *	asinh(x) := x  if  1+x*x=1,
+ *		 := sign(x)*(log(x)+ln2)) for large |x|, else
+ *		 := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
+ *		 := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+ln2 =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
+huge=  1.00000000000000000000e+300;
+
+#ifdef __STDC__
+	double __asinh(double x)
+#else
+	double __asinh(x)
+	double x;
+#endif
+{
+	double t,w;
+	int32_t hx,ix;
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7ff00000) return x+x;	/* x is inf or NaN */
+	if(ix< 0x3e300000) {	/* |x|<2**-28 */
+	    if(huge+x>one) return x;	/* return x inexact except 0 */
+	}
+	if(ix>0x41b00000) {	/* |x| > 2**28 */
+	    w = __ieee754_log(fabs(x))+ln2;
+	} else if (ix>0x40000000) {	/* 2**28 > |x| > 2.0 */
+	    t = fabs(x);
+	    w = __ieee754_log(2.0*t+one/(__ieee754_sqrt(x*x+one)+t));
+	} else {		/* 2.0 > |x| > 2**-28 */
+	    t = x*x;
+	    w =__log1p(fabs(x)+t/(one+__ieee754_sqrt(one+t)));
+	}
+	if(hx>0) return w; else return -w;
+}
+weak_alias (__asinh, asinh)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__asinh, __asinhl)
+weak_alias (__asinh, asinhl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_atan.c b/sysdeps/ieee754/dbl-64/s_atan.c
new file mode 100644
index 0000000000..cad3ba12a8
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_atan.c
@@ -0,0 +1,163 @@
+/* @(#)s_atan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_atan.c,v 1.8 1995/05/10 20:46:45 jtc Exp $";
+#endif
+
+/* atan(x)
+ * Method
+ *   1. Reduce x to positive by atan(x) = -atan(-x).
+ *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
+ *      is further reduced to one of the following intervals and the
+ *      arctangent of t is evaluated by the corresponding formula:
+ *
+ *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
+ *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
+ *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
+ *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
+ *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double atanhi[] = {
+#else
+static double atanhi[] = {
+#endif
+  4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
+  7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
+  9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
+  1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
+};
+
+#ifdef __STDC__
+static const double atanlo[] = {
+#else
+static double atanlo[] = {
+#endif
+  2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
+  3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
+  1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
+  6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
+};
+
+#ifdef __STDC__
+static const double aT[] = {
+#else
+static double aT[] = {
+#endif
+  3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
+ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
+  1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
+ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
+  9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
+ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
+  6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
+ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
+  4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
+ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
+  1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
+};
+
+#ifdef __STDC__
+	static const double
+#else
+	static double
+#endif
+one   = 1.0,
+huge   = 1.0e300;
+
+#ifdef __STDC__
+	double __atan(double x)
+#else
+	double __atan(x)
+	double x;
+#endif
+{
+	double w,s1,z,s,w2,w4,s11,s12,s13,s21,s22,s23;
+	int32_t ix,hx,id;
+
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x44100000) {	/* if |x| >= 2^66 */
+	    u_int32_t low;
+	    GET_LOW_WORD(low,x);
+	    if(ix>0x7ff00000||
+		(ix==0x7ff00000&&(low!=0)))
+		return x+x;		/* NaN */
+	    if(hx>0) return  atanhi[3]+atanlo[3];
+	    else     return -atanhi[3]-atanlo[3];
+	} if (ix < 0x3fdc0000) {	/* |x| < 0.4375 */
+	    if (ix < 0x3e200000) {	/* |x| < 2^-29 */
+		if(huge+x>one) return x;	/* raise inexact */
+	    }
+	    id = -1;
+	} else {
+	x = fabs(x);
+	if (ix < 0x3ff30000) {		/* |x| < 1.1875 */
+	    if (ix < 0x3fe60000) {	/* 7/16 <=|x|<11/16 */
+		id = 0; x = (2.0*x-one)/(2.0+x);
+	    } else {			/* 11/16<=|x|< 19/16 */
+		id = 1; x  = (x-one)/(x+one);
+	    }
+	} else {
+	    if (ix < 0x40038000) {	/* |x| < 2.4375 */
+		id = 2; x  = (x-1.5)/(one+1.5*x);
+	    } else {			/* 2.4375 <= |x| < 2^66 */
+		id = 3; x  = -1.0/x;
+	    }
+	}}
+    /* end of argument reduction */
+	z = x*x;
+	w = z*z;
+    /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+#ifdef DO_NOT_USE_THIS
+	s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
+	s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
+	if (id<0) return x - x*(s1+s2);
+	else {
+	    z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
+	    return (hx<0)? -z:z;
+	}
+#else
+	s11 = aT[8]+w*aT[10]; w2=w*w;
+	s12 = aT[4]+w*aT[6]; w4=w2*w2;
+	s13 = aT[0]+w*aT[2];
+	s21 = aT[7]+w*aT[9];
+	s22 = aT[3]+w*aT[5];
+	s23 = w*aT[1];
+	s1 = s13 + w2*s12 + w4*s11;
+	s = s23 + w2*s22 + w4*s21 + z*s1;
+	if (id<0) return x - x*(s);
+	else {
+	    z = atanhi[id] - ((x*(s) - atanlo[id]) - x);
+	    return (hx<0)? -z:z;
+	}
+#endif
+}
+weak_alias (__atan, atan)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__atan, __atanl)
+weak_alias (__atan, atanl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_cbrt.c b/sysdeps/ieee754/dbl-64/s_cbrt.c
new file mode 100644
index 0000000000..753049d375
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_cbrt.c
@@ -0,0 +1,76 @@
+/* Compute cubic root of double value.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Dirk Alboth <dirka@uni-paderborn.de> and
+   Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include "math.h"
+#include "math_private.h"
+
+
+#define CBRT2 1.2599210498948731648		/* 2^(1/3) */
+#define SQR_CBRT2 1.5874010519681994748		/* 2^(2/3) */
+
+static const double factor[5] =
+{
+  1.0 / SQR_CBRT2,
+  1.0 / CBRT2,
+  1.0,
+  CBRT2,
+  SQR_CBRT2
+};
+
+
+double
+__cbrt (double x)
+{
+  double xm, ym, u, t2;
+  int xe;
+
+  /* Reduce X.  XM now is an range 1.0 to 0.5.  */
+  xm = __frexp (fabs (x), &xe);
+
+  /* If X is not finite or is null return it (with raising exceptions
+     if necessary.
+     Note: *Our* version of `frexp' sets XE to zero if the argument is
+     Inf or NaN.  This is not portable but faster.  */
+  if (xe == 0 && fpclassify (x) <= FP_ZERO)
+    return x + x;
+
+ u = (0.354895765043919860
+      + ((1.50819193781584896
+	 + ((-2.11499494167371287
+	    + ((2.44693122563534430
+	       + ((-1.83469277483613086
+		  + (0.784932344976639262 - 0.145263899385486377 * xm) * xm)
+		  * xm))
+	       * xm))
+	    * xm))
+	 * xm));
+
+  t2 = u * u * u;
+
+  ym = u * (t2 + 2.0 * xm) / (2.0 * t2 + xm) * factor[2 + xe % 3];
+
+  return __ldexp (x > 0.0 ? ym : -ym, xe / 3);
+}
+weak_alias (__cbrt, cbrt)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__cbrt, __cbrtl)
+weak_alias (__cbrt, cbrtl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_ceil.c b/sysdeps/ieee754/dbl-64/s_ceil.c
new file mode 100644
index 0000000000..1b352a679e
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_ceil.c
@@ -0,0 +1,85 @@
+/* @(#)s_ceil.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_ceil.c,v 1.8 1995/05/10 20:46:53 jtc Exp $";
+#endif
+
+/*
+ * ceil(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ *	Bit twiddling.
+ * Exception:
+ *	Inexact flag raised if x not equal to ceil(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double huge = 1.0e300;
+#else
+static double huge = 1.0e300;
+#endif
+
+#ifdef __STDC__
+	double __ceil(double x)
+#else
+	double __ceil(x)
+	double x;
+#endif
+{
+	int32_t i0,i1,j0;
+	u_int32_t i,j;
+	EXTRACT_WORDS(i0,i1,x);
+	j0 = ((i0>>20)&0x7ff)-0x3ff;
+	if(j0<20) {
+	    if(j0<0) { 	/* raise inexact if x != 0 */
+		if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+		    if(i0<0) {i0=0x80000000;i1=0;}
+		    else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
+		}
+	    } else {
+		i = (0x000fffff)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		if(huge+x>0.0) {	/* raise inexact flag */
+		    if(i0>0) i0 += (0x00100000)>>j0;
+		    i0 &= (~i); i1=0;
+		}
+	    }
+	} else if (j0>51) {
+	    if(j0==0x400) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = ((u_int32_t)(0xffffffff))>>(j0-20);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    if(huge+x>0.0) { 		/* raise inexact flag */
+		if(i0>0) {
+		    if(j0==20) i0+=1;
+		    else {
+			j = i1 + (1<<(52-j0));
+			if(j<i1) i0+=1;	/* got a carry */
+			i1 = j;
+		    }
+		}
+		i1 &= (~i);
+	    }
+	}
+	INSERT_WORDS(x,i0,i1);
+	return x;
+}
+weak_alias (__ceil, ceil)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__ceil, __ceill)
+weak_alias (__ceil, ceill)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_copysign.c b/sysdeps/ieee754/dbl-64/s_copysign.c
new file mode 100644
index 0000000000..5e35e6943c
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_copysign.c
@@ -0,0 +1,43 @@
+/* @(#)s_copysign.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_copysign.c,v 1.8 1995/05/10 20:46:57 jtc Exp $";
+#endif
+
+/*
+ * copysign(double x, double y)
+ * copysign(x,y) returns a value with the magnitude of x and
+ * with the sign bit of y.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	double __copysign(double x, double y)
+#else
+	double __copysign(x,y)
+	double x,y;
+#endif
+{
+	u_int32_t hx,hy;
+	GET_HIGH_WORD(hx,x);
+	GET_HIGH_WORD(hy,y);
+	SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000));
+        return x;
+}
+weak_alias (__copysign, copysign)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__copysign, __copysignl)
+weak_alias (__copysign, copysignl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_cos.c b/sysdeps/ieee754/dbl-64/s_cos.c
new file mode 100644
index 0000000000..7edb5deafe
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_cos.c
@@ -0,0 +1,87 @@
+/* @(#)s_cos.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_cos.c,v 1.7 1995/05/10 20:47:02 jtc Exp $";
+#endif
+
+/* cos(x)
+ * Return cosine function of x.
+ *
+ * kernel function:
+ *	__kernel_sin		... sine function on [-pi/4,pi/4]
+ *	__kernel_cos		... cosine function on [-pi/4,pi/4]
+ *	__ieee754_rem_pio2	... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *	in [-pi/4 , +pi/4], and let n = k mod 4.
+ *	We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *	    0	       S	   C		 T
+ *	    1	       C	  -S		-1/T
+ *	    2	      -S	  -C		 T
+ *	    3	      -C	   S		-1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *	TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	double __cos(double x)
+#else
+	double __cos(x)
+	double x;
+#endif
+{
+	double y[2],z=0.0;
+	int32_t n, ix;
+
+    /* High word of x. */
+	GET_HIGH_WORD(ix,x);
+
+    /* |x| ~< pi/4 */
+	ix &= 0x7fffffff;
+	if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
+
+    /* cos(Inf or NaN) is NaN */
+	else if (ix>=0x7ff00000) return x-x;
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2(x,y);
+	    switch(n&3) {
+		case 0: return  __kernel_cos(y[0],y[1]);
+		case 1: return -__kernel_sin(y[0],y[1],1);
+		case 2: return -__kernel_cos(y[0],y[1]);
+		default:
+		        return  __kernel_sin(y[0],y[1],1);
+	    }
+	}
+}
+weak_alias (__cos, cos)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__cos, __cosl)
+weak_alias (__cos, cosl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_erf.c b/sysdeps/ieee754/dbl-64/s_erf.c
new file mode 100644
index 0000000000..d8b6629a72
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_erf.c
@@ -0,0 +1,431 @@
+/* @(#)s_erf.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
+#endif
+
+/* double erf(double x)
+ * double erfc(double x)
+ *			     x
+ *		      2      |\
+ *     erf(x)  =  ---------  | exp(-t*t)dt
+ *	 	   sqrt(pi) \|
+ *			     0
+ *
+ *     erfc(x) =  1-erf(x)
+ *  Note that
+ *		erf(-x) = -erf(x)
+ *		erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ *	1. For |x| in [0, 0.84375]
+ *	    erf(x)  = x + x*R(x^2)
+ *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
+ *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
+ *	   where R = P/Q where P is an odd poly of degree 8 and
+ *	   Q is an odd poly of degree 10.
+ *						 -57.90
+ *			| R - (erf(x)-x)/x | <= 2
+ *
+ *
+ *	   Remark. The formula is derived by noting
+ *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ *	   and that
+ *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ *	   is close to one. The interval is chosen because the fix
+ *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ *	   near 0.6174), and by some experiment, 0.84375 is chosen to
+ * 	   guarantee the error is less than one ulp for erf.
+ *
+ *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ *         c = 0.84506291151 rounded to single (24 bits)
+ *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
+ *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
+ *			  1+(c+P1(s)/Q1(s))    if x < 0
+ *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+ *	   Remark: here we use the taylor series expansion at x=1.
+ *		erf(1+s) = erf(1) + s*Poly(s)
+ *			 = 0.845.. + P1(s)/Q1(s)
+ *	   That is, we use rational approximation to approximate
+ *			erf(1+s) - (c = (single)0.84506291151)
+ *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ *	   where
+ *		P1(s) = degree 6 poly in s
+ *		Q1(s) = degree 6 poly in s
+ *
+ *      3. For x in [1.25,1/0.35(~2.857143)],
+ *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+ *         	erf(x)  = 1 - erfc(x)
+ *	   where
+ *		R1(z) = degree 7 poly in z, (z=1/x^2)
+ *		S1(z) = degree 8 poly in z
+ *
+ *      4. For x in [1/0.35,28]
+ *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
+ *			= 2.0 - tiny		(if x <= -6)
+ *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
+ *         	erf(x)  = sign(x)*(1.0 - tiny)
+ *	   where
+ *		R2(z) = degree 6 poly in z, (z=1/x^2)
+ *		S2(z) = degree 7 poly in z
+ *
+ *      Note1:
+ *	   To compute exp(-x*x-0.5625+R/S), let s be a single
+ *	   precision number and s := x; then
+ *		-x*x = -s*s + (s-x)*(s+x)
+ *	        exp(-x*x-0.5626+R/S) =
+ *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ *      Note2:
+ *	   Here 4 and 5 make use of the asymptotic series
+ *			  exp(-x*x)
+ *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ *			  x*sqrt(pi)
+ *	   We use rational approximation to approximate
+ *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
+ *	   Here is the error bound for R1/S1 and R2/S2
+ *      	|R1/S1 - f(x)|  < 2**(-62.57)
+ *      	|R2/S2 - f(x)|  < 2**(-61.52)
+ *
+ *      5. For inf > x >= 28
+ *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
+ *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
+ *			= 2 - tiny if x<0
+ *
+ *      7. Special case:
+ *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
+ *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ *	   	erfc/erf(NaN) is NaN
+ */
+
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+tiny	    = 1e-300,
+half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
+	/* c = (float)0.84506291151 */
+erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
+/*
+ * Coefficients for approximation to  erf on [0,0.84375]
+ */
+efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
+efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
+pp[]  =  {1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
+ -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
+ -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
+ -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
+ -2.37630166566501626084e-05}, /* 0xBEF8EAD6, 0x120016AC */
+qq[]  =  {0.0, 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
+  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
+  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
+  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
+ -3.96022827877536812320e-06}, /* 0xBED09C43, 0x42A26120 */
+/*
+ * Coefficients for approximation to  erf  in [0.84375,1.25]
+ */
+pa[]  = {-2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
+  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
+ -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
+  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
+ -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
+  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
+ -2.16637559486879084300e-03}, /* 0xBF61BF38, 0x0A96073F */
+qa[]  =  {0.0, 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
+  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
+  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
+  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
+  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
+  1.19844998467991074170e-02}, /* 0x3F888B54, 0x5735151D */
+/*
+ * Coefficients for approximation to  erfc in [1.25,1/0.35]
+ */
+ra[]  = {-9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
+ -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
+ -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
+ -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
+ -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
+ -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
+ -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
+ -9.81432934416914548592e+00}, /* 0xC023A0EF, 0xC69AC25C */
+sa[]  =  {0.0,1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
+  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
+  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
+  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
+  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
+  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
+  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
+ -6.04244152148580987438e-02}, /* 0xBFAEEFF2, 0xEE749A62 */
+/*
+ * Coefficients for approximation to  erfc in [1/.35,28]
+ */
+rb[]  = {-9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
+ -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
+ -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
+ -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
+ -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
+ -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
+ -4.83519191608651397019e+02}, /* 0xC07E384E, 0x9BDC383F */
+sb[]  =  {0.0,3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
+  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
+  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
+  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
+  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
+  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
+ -2.24409524465858183362e+01}; /* 0xC03670E2, 0x42712D62 */
+
+#ifdef __STDC__
+	double __erf(double x)
+#else
+	double __erf(x)
+	double x;
+#endif
+{
+	int32_t hx,ix,i;
+	double R,S,P,Q,s,y,z,r;
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7ff00000) {		/* erf(nan)=nan */
+	    i = ((u_int32_t)hx>>31)<<1;
+	    return (double)(1-i)+one/x;	/* erf(+-inf)=+-1 */
+	}
+
+	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
+	    double r1,r2,s1,s2,s3,z2,z4;
+	    if(ix < 0x3e300000) { 	/* |x|<2**-28 */
+	        if (ix < 0x00800000)
+		    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
+		return x + efx*x;
+	    }
+	    z = x*x;
+#ifdef DO_NOT_USE_THIS
+	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+#else
+	    r1 = pp[0]+z*pp[1]; z2=z*z;
+	    r2 = pp[2]+z*pp[3]; z4=z2*z2;
+	    s1 = one+z*qq[1];
+	    s2 = qq[2]+z*qq[3];
+	    s3 = qq[4]+z*qq[5];
+            r = r1 + z2*r2 + z4*pp[4];
+	    s  = s1 + z2*s2 + z4*s3;
+#endif
+	    y = r/s;
+	    return x + x*y;
+	}
+	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
+	    double s2,s4,s6,P1,P2,P3,P4,Q1,Q2,Q3,Q4;
+	    s = fabs(x)-one;
+#ifdef DO_NOT_USE_THIS
+	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+#else
+	    P1 = pa[0]+s*pa[1]; s2=s*s;
+	    Q1 = one+s*qa[1];   s4=s2*s2;
+	    P2 = pa[2]+s*pa[3]; s6=s4*s2;
+	    Q2 = qa[2]+s*qa[3];
+	    P3 = pa[4]+s*pa[5];
+	    Q3 = qa[4]+s*qa[5];
+	    P4 = s6*pa[6];
+	    Q4 = s6*qa[6];
+	    P = P1 + s2*P2 + s4*P3 + s6*P4;
+	    Q = Q1 + s2*Q2 + s4*Q3 + s6*Q4;
+#endif
+	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+	}
+	if (ix >= 0x40180000) {		/* inf>|x|>=6 */
+	    if(hx>=0) return one-tiny; else return tiny-one;
+	}
+	x = fabs(x);
+ 	s = one/(x*x);
+	if(ix< 0x4006DB6E) {	/* |x| < 1/0.35 */
+#ifdef DO_NOT_USE_THIS
+	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+				ra5+s*(ra6+s*ra7))))));
+	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+				sa5+s*(sa6+s*(sa7+s*sa8)))))));
+#else
+	    double R1,R2,R3,R4,S1,S2,S3,S4,s2,s4,s6,s8;
+	    R1 = ra[0]+s*ra[1];s2 = s*s;
+	    S1 = one+s*sa[1];  s4 = s2*s2;
+	    R2 = ra[2]+s*ra[3];s6 = s4*s2;
+	    S2 = sa[2]+s*sa[3];s8 = s4*s4;
+	    R3 = ra[4]+s*ra[5];
+	    S3 = sa[4]+s*sa[5];
+	    R4 = ra[6]+s*ra[7];
+	    S4 = sa[6]+s*sa[7];
+	    R = R1 + s2*R2 + s4*R3 + s6*R4;
+	    S = S1 + s2*S2 + s4*S3 + s6*S4 + s8*sa[8];
+#endif
+	} else {	/* |x| >= 1/0.35 */
+#ifdef DO_NOT_USE_THIS
+	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+				rb5+s*rb6)))));
+	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+				sb5+s*(sb6+s*sb7))))));
+#else
+	    double R1,R2,R3,S1,S2,S3,S4,s2,s4,s6;
+	    R1 = rb[0]+s*rb[1];s2 = s*s;
+	    S1 = one+s*sb[1];  s4 = s2*s2;
+	    R2 = rb[2]+s*rb[3];s6 = s4*s2;
+	    S2 = sb[2]+s*sb[3];
+	    R3 = rb[4]+s*rb[5];
+	    S3 = sb[4]+s*sb[5];
+	    S4 = sb[6]+s*sb[7];
+	    R = R1 + s2*R2 + s4*R3 + s6*rb[6];
+	    S = S1 + s2*S2 + s4*S3 + s6*S4;
+#endif
+	}
+	z  = x;
+	SET_LOW_WORD(z,0);
+	r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
+	if(hx>=0) return one-r/x; else return  r/x-one;
+}
+weak_alias (__erf, erf)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__erf, __erfl)
+weak_alias (__erf, erfl)
+#endif
+
+#ifdef __STDC__
+	double __erfc(double x)
+#else
+	double __erfc(x)
+	double x;
+#endif
+{
+	int32_t hx,ix;
+	double R,S,P,Q,s,y,z,r;
+	GET_HIGH_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7ff00000) {			/* erfc(nan)=nan */
+						/* erfc(+-inf)=0,2 */
+	    return (double)(((u_int32_t)hx>>31)<<1)+one/x;
+	}
+
+	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
+	    double r1,r2,s1,s2,s3,z2,z4;
+	    if(ix < 0x3c700000)  	/* |x|<2**-56 */
+		return one-x;
+	    z = x*x;
+#ifdef DO_NOT_USE_THIS
+	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+#else
+	    r1 = pp[0]+z*pp[1]; z2=z*z;
+	    r2 = pp[2]+z*pp[3]; z4=z2*z2;
+	    s1 = one+z*qq[1];
+	    s2 = qq[2]+z*qq[3];
+	    s3 = qq[4]+z*qq[5];
+            r = r1 + z2*r2 + z4*pp[4];
+	    s  = s1 + z2*s2 + z4*s3;
+#endif
+	    y = r/s;
+	    if(hx < 0x3fd00000) {  	/* x<1/4 */
+		return one-(x+x*y);
+	    } else {
+		r = x*y;
+		r += (x-half);
+	        return half - r ;
+	    }
+	}
+	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
+	    double s2,s4,s6,P1,P2,P3,P4,Q1,Q2,Q3,Q4;
+	    s = fabs(x)-one;
+#ifdef DO_NOT_USE_THIS
+	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+#else
+	    P1 = pa[0]+s*pa[1]; s2=s*s;
+	    Q1 = one+s*qa[1];   s4=s2*s2;
+	    P2 = pa[2]+s*pa[3]; s6=s4*s2;
+	    Q2 = qa[2]+s*qa[3];
+	    P3 = pa[4]+s*pa[5];
+	    Q3 = qa[4]+s*qa[5];
+	    P4 = s6*pa[6];
+	    Q4 = s6*qa[6];
+	    P = P1 + s2*P2 + s4*P3 + s6*P4;
+	    Q = Q1 + s2*Q2 + s4*Q3 + s6*Q4;
+#endif
+	    if(hx>=0) {
+	        z  = one-erx; return z - P/Q;
+	    } else {
+		z = erx+P/Q; return one+z;
+	    }
+	}
+	if (ix < 0x403c0000) {		/* |x|<28 */
+	    x = fabs(x);
+ 	    s = one/(x*x);
+	    if(ix< 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
+#ifdef DO_NOT_USE_THIS
+	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+				ra5+s*(ra6+s*ra7))))));
+	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+				sa5+s*(sa6+s*(sa7+s*sa8)))))));
+#else
+		double R1,R2,R3,R4,S1,S2,S3,S4,s2,s4,s6,s8;
+	    R1 = ra[0]+s*ra[1];s2 = s*s;
+	    S1 = one+s*sa[1];  s4 = s2*s2;
+	    R2 = ra[2]+s*ra[3];s6 = s4*s2;
+	    S2 = sa[2]+s*sa[3];s8 = s4*s4;
+	    R3 = ra[4]+s*ra[5];
+	    S3 = sa[4]+s*sa[5];
+	    R4 = ra[6]+s*ra[7];
+	    S4 = sa[6]+s*sa[7];
+	    R = R1 + s2*R2 + s4*R3 + s6*R4;
+	    S = S1 + s2*S2 + s4*S3 + s6*S4 + s8*sa[8];
+#endif
+	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
+		double R1,R2,R3,S1,S2,S3,S4,s2,s4,s6;
+		if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
+#ifdef DO_NOT_USE_THIS
+	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+				rb5+s*rb6)))));
+	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+				sb5+s*(sb6+s*sb7))))));
+#else
+		R1 = rb[0]+s*rb[1];s2 = s*s;
+		S1 = one+s*sb[1];  s4 = s2*s2;
+		R2 = rb[2]+s*rb[3];s6 = s4*s2;
+		S2 = sb[2]+s*sb[3];
+		R3 = rb[4]+s*rb[5];
+		S3 = sb[4]+s*sb[5];
+		S4 = sb[6]+s*sb[7];
+		R = R1 + s2*R2 + s4*R3 + s6*rb[6];
+		S = S1 + s2*S2 + s4*S3 + s6*S4;
+#endif
+	    }
+	    z  = x;
+	    SET_LOW_WORD(z,0);
+	    r  =  __ieee754_exp(-z*z-0.5625)*
+			__ieee754_exp((z-x)*(z+x)+R/S);
+	    if(hx>0) return r/x; else return two-r/x;
+	} else {
+	    if(hx>0) return tiny*tiny; else return two-tiny;
+	}
+}
+weak_alias (__erfc, erfc)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__erfc, __erfcl)
+weak_alias (__erfc, erfcl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_exp2.c b/sysdeps/ieee754/dbl-64/s_exp2.c
new file mode 100644
index 0000000000..875d4d6f2c
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_exp2.c
@@ -0,0 +1,129 @@
+/* Double-precision floating point 2^x.
+   Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* The basic design here is from
+   Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
+   Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
+   17 (1), March 1991, pp. 26-45.
+   It has been slightly modified to compute 2^x instead of e^x.
+   */
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+#include <float.h>
+#include <ieee754.h>
+#include <math.h>
+#include <fenv.h>
+#include <inttypes.h>
+#include <math_private.h>
+
+#include "t_exp2.h"
+
+static const volatile double TWO1023 = 8.988465674311579539e+307;
+static const volatile double TWOM1000 = 9.3326361850321887899e-302;
+
+double
+__ieee754_exp2 (double x)
+{
+  static const double himark = (double) DBL_MAX_EXP;
+  static const double lomark = (double) (DBL_MIN_EXP - DBL_MANT_DIG - 1) - 1.0;
+
+  /* Check for usual case.  */
+  if (isless (x, himark) && isgreater (x, lomark))
+    {
+      static const double THREEp42 = 13194139533312.0;
+      int tval, unsafe;
+      double rx, x22, result;
+      union ieee754_double ex2_u, scale_u;
+      fenv_t oldenv;
+
+      feholdexcept (&oldenv);
+#ifdef FE_TONEAREST
+      /* If we don't have this, it's too bad.  */
+      fesetround (FE_TONEAREST);
+#endif
+
+      /* 1. Argument reduction.
+	 Choose integers ex, -256 <= t < 256, and some real
+	 -1/1024 <= x1 <= 1024 so that
+	 x = ex + t/512 + x1.
+
+	 First, calculate rx = ex + t/512.  */
+      rx = x + THREEp42;
+      rx -= THREEp42;
+      x -= rx;  /* Compute x=x1. */
+      /* Compute tval = (ex*512 + t)+256.
+	 Now, t = (tval mod 512)-256 and ex=tval/512  [that's mod, NOT %; and
+	 /-round-to-nearest not the usual c integer /].  */
+      tval = (int) (rx * 512.0 + 256.0);
+
+      /* 2. Adjust for accurate table entry.
+	 Find e so that
+	 x = ex + t/512 + e + x2
+	 where -1e6 < e < 1e6, and
+	 (double)(2^(t/512+e))
+	 is accurate to one part in 2^-64.  */
+
+      /* 'tval & 511' is the same as 'tval%512' except that it's always
+	 positive.
+	 Compute x = x2.  */
+      x -= exp2_deltatable[tval & 511];
+
+      /* 3. Compute ex2 = 2^(t/512+e+ex).  */
+      ex2_u.d = exp2_accuratetable[tval & 511];
+      tval >>= 9;
+      unsafe = abs(tval) >= -DBL_MIN_EXP - 1;
+      ex2_u.ieee.exponent += tval >> unsafe;
+      scale_u.d = 1.0;
+      scale_u.ieee.exponent += tval - (tval >> unsafe);
+
+      /* 4. Approximate 2^x2 - 1, using a fourth-degree polynomial,
+	 with maximum error in [-2^-10-2^-30,2^-10+2^-30]
+	 less than 10^-19.  */
+
+      x22 = (((.0096181293647031180
+	       * x + .055504110254308625)
+	      * x + .240226506959100583)
+	     * x + .69314718055994495) * ex2_u.d;
+
+      /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex).  */
+      fesetenv (&oldenv);
+
+      result = x22 * x + ex2_u.d;
+
+      if (!unsafe)
+	return result;
+      else
+	return result * scale_u.d;
+    }
+  /* Exceptional cases:  */
+  else if (isless (x, himark))
+    {
+      if (__isinf (x))
+	/* e^-inf == 0, with no error.  */
+	return 0;
+      else
+	/* Underflow */
+	return TWOM1000 * TWOM1000;
+    }
+  else
+    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
+    return TWO1023*x;
+}
diff --git a/sysdeps/ieee754/dbl-64/s_expm1.c b/sysdeps/ieee754/dbl-64/s_expm1.c
new file mode 100644
index 0000000000..bfd15b2e31
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_expm1.c
@@ -0,0 +1,243 @@
+/* @(#)s_expm1.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
+#endif
+
+/* expm1(x)
+ * Returns exp(x)-1, the exponential of x minus 1.
+ *
+ * Method
+ *   1. Argument reduction:
+ *	Given x, find r and integer k such that
+ *
+ *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
+ *
+ *      Here a correction term c will be computed to compensate
+ *	the error in r when rounded to a floating-point number.
+ *
+ *   2. Approximating expm1(r) by a special rational function on
+ *	the interval [0,0.34658]:
+ *	Since
+ *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
+ *	we define R1(r*r) by
+ *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
+ *	That is,
+ *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+ *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+ *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+ *      We use a special Reme algorithm on [0,0.347] to generate
+ * 	a polynomial of degree 5 in r*r to approximate R1. The
+ *	maximum error of this polynomial approximation is bounded
+ *	by 2**-61. In other words,
+ *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+ *	where 	Q1  =  -1.6666666666666567384E-2,
+ * 		Q2  =   3.9682539681370365873E-4,
+ * 		Q3  =  -9.9206344733435987357E-6,
+ * 		Q4  =   2.5051361420808517002E-7,
+ * 		Q5  =  -6.2843505682382617102E-9;
+ *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
+ *	with error bounded by
+ *	    |                  5           |     -61
+ *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
+ *	    |                              |
+ *
+ *	expm1(r) = exp(r)-1 is then computed by the following
+ * 	specific way which minimize the accumulation rounding error:
+ *			       2     3
+ *			      r     r    [ 3 - (R1 + R1*r/2)  ]
+ *	      expm1(r) = r + --- + --- * [--------------------]
+ *		              2     2    [ 6 - r*(3 - R1*r/2) ]
+ *
+ *	To compensate the error in the argument reduction, we use
+ *		expm1(r+c) = expm1(r) + c + expm1(r)*c
+ *			   ~ expm1(r) + c + r*c
+ *	Thus c+r*c will be added in as the correction terms for
+ *	expm1(r+c). Now rearrange the term to avoid optimization
+ * 	screw up:
+ *		        (      2                                    2 )
+ *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
+ *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+ *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
+ *                      (                                             )
+ *
+ *		   = r - E
+ *   3. Scale back to obtain expm1(x):
+ *	From step 1, we have
+ *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
+ *		    = or     2^k*[expm1(r) + (1-2^-k)]
+ *   4. Implementation notes:
+ *	(A). To save one multiplication, we scale the coefficient Qi
+ *	     to Qi*2^i, and replace z by (x^2)/2.
+ *	(B). To achieve maximum accuracy, we compute expm1(x) by
+ *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+ *	  (ii)  if k=0, return r-E
+ *	  (iii) if k=-1, return 0.5*(r-E)-0.5
+ *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
+ *	       	       else	     return  1.0+2.0*(r-E);
+ *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+ *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+ *	  (vii) return 2^k(1-((E+2^-k)-r))
+ *
+ * Special cases:
+ *	expm1(INF) is INF, expm1(NaN) is NaN;
+ *	expm1(-INF) is -1, and
+ *	for finite argument, only expm1(0)=0 is exact.
+ *
+ * Accuracy:
+ *	according to an error analysis, the error is always less than
+ *	1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ *	For IEEE double
+ *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+#define one Q[0]
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+huge		= 1.0e+300,
+tiny		= 1.0e-300,
+o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
+ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
+ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
+invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
+	/* scaled coefficients related to expm1 */
+Q[]  =  {1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
+   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
+  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
+   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
+  -2.01099218183624371326e-07}; /* BE8AFDB7 6E09C32D */
+
+#ifdef __STDC__
+	double __expm1(double x)
+#else
+	double __expm1(x)
+	double x;
+#endif
+{
+	double y,hi,lo,c,t,e,hxs,hfx,r1,h2,h4,R1,R2,R3;
+	int32_t k,xsb;
+	u_int32_t hx;
+
+	GET_HIGH_WORD(hx,x);
+	xsb = hx&0x80000000;		/* sign bit of x */
+	if(xsb==0) y=x; else y= -x;	/* y = |x| */
+	hx &= 0x7fffffff;		/* high word of |x| */
+
+    /* filter out huge and non-finite argument */
+	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
+	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
+                if(hx>=0x7ff00000) {
+		    u_int32_t low;
+		    GET_LOW_WORD(low,x);
+		    if(((hx&0xfffff)|low)!=0)
+		         return x+x; 	 /* NaN */
+		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
+	        }
+	        if(x > o_threshold) return huge*huge; /* overflow */
+	    }
+	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
+		if(x+tiny<0.0)		/* raise inexact */
+		return tiny-one;	/* return -1 */
+	    }
+	}
+
+    /* argument reduction */
+	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
+	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
+		if(xsb==0)
+		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
+		else
+		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
+	    } else {
+		k  = invln2*x+((xsb==0)?0.5:-0.5);
+		t  = k;
+		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
+		lo = t*ln2_lo;
+	    }
+	    x  = hi - lo;
+	    c  = (hi-x)-lo;
+	}
+	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
+	    t = huge+x;	/* return x with inexact flags when x!=0 */
+	    return x - (t-(huge+x));
+	}
+	else k = 0;
+
+    /* x is now in primary range */
+	hfx = 0.5*x;
+	hxs = x*hfx;
+#ifdef DO_NOT_USE_THIS
+	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
+#else
+	R1 = one+hxs*Q[1]; h2 = hxs*hxs;
+	R2 = Q[2]+hxs*Q[3]; h4 = h2*h2;
+	R3 = Q[4]+hxs*Q[5];
+	r1 = R1 + h2*R2 + h4*R3;
+#endif
+	t  = 3.0-r1*hfx;
+	e  = hxs*((r1-t)/(6.0 - x*t));
+	if(k==0) return x - (x*e-hxs);		/* c is 0 */
+	else {
+	    e  = (x*(e-c)-c);
+	    e -= hxs;
+	    if(k== -1) return 0.5*(x-e)-0.5;
+	    if(k==1) {
+	       	if(x < -0.25) return -2.0*(e-(x+0.5));
+	       	else 	      return  one+2.0*(x-e);
+	    }
+	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
+	        u_int32_t high;
+	        y = one-(e-x);
+		GET_HIGH_WORD(high,y);
+		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
+	        return y-one;
+	    }
+	    t = one;
+	    if(k<20) {
+	        u_int32_t high;
+	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
+	       	y = t-(e-x);
+		GET_HIGH_WORD(high,y);
+		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
+	   } else {
+	        u_int32_t high;
+		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
+	       	y = x-(e+t);
+	       	y += one;
+		GET_HIGH_WORD(high,y);
+		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
+	    }
+	}
+	return y;
+}
+weak_alias (__expm1, expm1)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__expm1, __expm1l)
+weak_alias (__expm1, expm1l)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_fabs.c b/sysdeps/ieee754/dbl-64/s_fabs.c
new file mode 100644
index 0000000000..1abe9432a3
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_fabs.c
@@ -0,0 +1,40 @@
+/* @(#)s_fabs.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_fabs.c,v 1.7 1995/05/10 20:47:13 jtc Exp $";
+#endif
+
+/*
+ * fabs(x) returns the absolute value of x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	double __fabs(double x)
+#else
+	double __fabs(x)
+	double x;
+#endif
+{
+	u_int32_t high;
+	GET_HIGH_WORD(high,x);
+	SET_HIGH_WORD(x,high&0x7fffffff);
+        return x;
+}
+weak_alias (__fabs, fabs)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__fabs, __fabsl)
+weak_alias (__fabs, fabsl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_finite.c b/sysdeps/ieee754/dbl-64/s_finite.c
new file mode 100644
index 0000000000..b12ff42360
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_finite.c
@@ -0,0 +1,40 @@
+/* @(#)s_finite.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_finite.c,v 1.8 1995/05/10 20:47:17 jtc Exp $";
+#endif
+
+/*
+ * finite(x) returns 1 is x is finite, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __finite(double x)
+#else
+	int __finite(x)
+	double x;
+#endif
+{
+	int32_t hx;
+	GET_HIGH_WORD(hx,x);
+	return (int)((u_int32_t)((hx&0x7fffffff)-0x7ff00000)>>31);
+}
+weak_alias (__finite, finite)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__finite, __finitel)
+weak_alias (__finite, finitel)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_floor.c b/sysdeps/ieee754/dbl-64/s_floor.c
new file mode 100644
index 0000000000..77db9ef392
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_floor.c
@@ -0,0 +1,86 @@
+/* @(#)s_floor.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_floor.c,v 1.8 1995/05/10 20:47:20 jtc Exp $";
+#endif
+
+/*
+ * floor(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ *	Bit twiddling.
+ * Exception:
+ *	Inexact flag raised if x not equal to floor(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double huge = 1.0e300;
+#else
+static double huge = 1.0e300;
+#endif
+
+#ifdef __STDC__
+	double __floor(double x)
+#else
+	double __floor(x)
+	double x;
+#endif
+{
+	int32_t i0,i1,j0;
+	u_int32_t i,j;
+	EXTRACT_WORDS(i0,i1,x);
+	j0 = ((i0>>20)&0x7ff)-0x3ff;
+	if(j0<20) {
+	    if(j0<0) { 	/* raise inexact if x != 0 */
+		if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+		    if(i0>=0) {i0=i1=0;}
+		    else if(((i0&0x7fffffff)|i1)!=0)
+			{ i0=0xbff00000;i1=0;}
+		}
+	    } else {
+		i = (0x000fffff)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		if(huge+x>0.0) {	/* raise inexact flag */
+		    if(i0<0) i0 += (0x00100000)>>j0;
+		    i0 &= (~i); i1=0;
+		}
+	    }
+	} else if (j0>51) {
+	    if(j0==0x400) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = ((u_int32_t)(0xffffffff))>>(j0-20);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    if(huge+x>0.0) { 		/* raise inexact flag */
+		if(i0<0) {
+		    if(j0==20) i0+=1;
+		    else {
+			j = i1+(1<<(52-j0));
+			if(j<i1) i0 +=1 ; 	/* got a carry */
+			i1=j;
+		    }
+		}
+		i1 &= (~i);
+	    }
+	}
+	INSERT_WORDS(x,i0,i1);
+	return x;
+}
+weak_alias (__floor, floor)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__floor, __floorl)
+weak_alias (__floor, floorl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_fpclassify.c b/sysdeps/ieee754/dbl-64/s_fpclassify.c
new file mode 100644
index 0000000000..72a15369b5
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_fpclassify.c
@@ -0,0 +1,43 @@
+/* Return classification value corresponding to argument.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+int
+__fpclassify (double x)
+{
+  u_int32_t hx, lx;
+  int retval = FP_NORMAL;
+
+  EXTRACT_WORDS (hx, lx, x);
+  lx |= hx & 0xfffff;
+  hx &= 0x7ff00000;
+  if ((hx | lx) == 0)
+    retval = FP_ZERO;
+  else if (hx == 0)
+    retval = FP_SUBNORMAL;
+  else if (hx == 0x7ff00000)
+    retval = lx != 0 ? FP_NAN : FP_INFINITE;
+
+  return retval;
+}
diff --git a/sysdeps/ieee754/dbl-64/s_frexp.c b/sysdeps/ieee754/dbl-64/s_frexp.c
new file mode 100644
index 0000000000..7dbddfde06
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_frexp.c
@@ -0,0 +1,64 @@
+/* @(#)s_frexp.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_frexp.c,v 1.9 1995/05/10 20:47:24 jtc Exp $";
+#endif
+
+/*
+ * for non-zero x
+ *	x = frexp(arg,&exp);
+ * return a double fp quantity x such that 0.5 <= |x| <1.0
+ * and the corresponding binary exponent "exp". That is
+ *	arg = x*2^exp.
+ * If arg is inf, 0.0, or NaN, then frexp(arg,&exp) returns arg
+ * with *exp=0.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two54 =  1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
+
+#ifdef __STDC__
+	double __frexp(double x, int *eptr)
+#else
+	double __frexp(x, eptr)
+	double x; int *eptr;
+#endif
+{
+	int32_t hx, ix, lx;
+	EXTRACT_WORDS(hx,lx,x);
+	ix = 0x7fffffff&hx;
+	*eptr = 0;
+	if(ix>=0x7ff00000||((ix|lx)==0)) return x;	/* 0,inf,nan */
+	if (ix<0x00100000) {		/* subnormal */
+	    x *= two54;
+	    GET_HIGH_WORD(hx,x);
+	    ix = hx&0x7fffffff;
+	    *eptr = -54;
+	}
+	*eptr += (ix>>20)-1022;
+	hx = (hx&0x800fffff)|0x3fe00000;
+	SET_HIGH_WORD(x,hx);
+	return x;
+}
+weak_alias (__frexp, frexp)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__frexp, __frexpl)
+weak_alias (__frexp, frexpl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_ilogb.c b/sysdeps/ieee754/dbl-64/s_ilogb.c
new file mode 100644
index 0000000000..820f01c9b2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_ilogb.c
@@ -0,0 +1,56 @@
+/* @(#)s_ilogb.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_ilogb.c,v 1.9 1995/05/10 20:47:28 jtc Exp $";
+#endif
+
+/* ilogb(double x)
+ * return the binary exponent of non-zero x
+ * ilogb(0) = 0x80000001
+ * ilogb(inf/NaN) = 0x7fffffff (no signal is raised)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __ilogb(double x)
+#else
+	int __ilogb(x)
+	double x;
+#endif
+{
+	int32_t hx,lx,ix;
+
+	GET_HIGH_WORD(hx,x);
+	hx &= 0x7fffffff;
+	if(hx<0x00100000) {
+	    GET_LOW_WORD(lx,x);
+	    if((hx|lx)==0)
+		return FP_ILOGB0;	/* ilogb(0) = FP_ILOGB0 */
+	    else			/* subnormal x */
+		if(hx==0) {
+		    for (ix = -1043; lx>0; lx<<=1) ix -=1;
+		} else {
+		    for (ix = -1022,hx<<=11; hx>0; hx<<=1) ix -=1;
+		}
+	    return ix;
+	}
+	else if (hx<0x7ff00000) return (hx>>20)-1023;
+	else return FP_ILOGBNAN;
+}
+weak_alias (__ilogb, ilogb)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__ilogb, __ilogbl)
+weak_alias (__ilogb, ilogbl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_isinf.c b/sysdeps/ieee754/dbl-64/s_isinf.c
new file mode 100644
index 0000000000..4f063d09c5
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_isinf.c
@@ -0,0 +1,32 @@
+/*
+ * Written by J.T. Conklin <jtc@netbsd.org>.
+ * Changed to return -1 for -Inf by Ulrich Drepper <drepper@cygnus.com>.
+ * Public domain.
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_isinf.c,v 1.3 1995/05/11 23:20:14 jtc Exp $";
+#endif
+
+/*
+ * isinf(x) returns 1 is x is inf, -1 if x is -inf, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+int
+__isinf (double x)
+{
+	int32_t hx,lx;
+	EXTRACT_WORDS(hx,lx,x);
+	lx |= (hx & 0x7fffffff) ^ 0x7ff00000;
+	lx |= -lx;
+	return ~(lx >> 31) & (hx >> 30);
+}
+weak_alias (__isinf, isinf)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__isinf, __isinfl)
+weak_alias (__isinf, isinfl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_isnan.c b/sysdeps/ieee754/dbl-64/s_isnan.c
new file mode 100644
index 0000000000..86301e1531
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_isnan.c
@@ -0,0 +1,43 @@
+/* @(#)s_isnan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_isnan.c,v 1.8 1995/05/10 20:47:36 jtc Exp $";
+#endif
+
+/*
+ * isnan(x) returns 1 is x is nan, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __isnan(double x)
+#else
+	int __isnan(x)
+	double x;
+#endif
+{
+	int32_t hx,lx;
+	EXTRACT_WORDS(hx,lx,x);
+	hx &= 0x7fffffff;
+	hx |= (u_int32_t)(lx|(-lx))>>31;
+	hx = 0x7ff00000 - hx;
+	return (int)(((u_int32_t)hx)>>31);
+}
+weak_alias (__isnan, isnan)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__isnan, __isnanl)
+weak_alias (__isnan, isnanl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_llrint.c b/sysdeps/ieee754/dbl-64/s_llrint.c
new file mode 100644
index 0000000000..8e70bcff36
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_llrint.c
@@ -0,0 +1,95 @@
+/* Round argument to nearest integral value according to current rounding
+   direction.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const long double two52[2] =
+{
+  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
+};
+
+
+long long int
+__llrint (double x)
+{
+  int32_t j0;
+  u_int32_t i1, i0;
+  long long int result;
+  volatile double w;
+  double t;
+  int sx;
+
+  EXTRACT_WORDS (i0, i1, x);
+  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+  sx = i0 >> 31;
+  i0 &= 0xfffff;
+  i0 |= 0x100000;
+
+  if (j0 < 20)
+    {
+      if (j0 < -1)
+	return 0;
+      else
+	{
+	  w = two52[sx] + x;
+	  t = w - two52[sx];
+	  EXTRACT_WORDS (i0, i1, t);
+	  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+	  i0 &= 0xfffff;
+	  i0 |= 0x100000;
+
+	  result = i0 >> (20 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
+    {
+      if (j0 >= 52)
+	result = (((long long int) i0 << 32) | i1) << (j0 - 52);
+      else
+	{
+	  w = two52[sx] + x;
+	  t = w - two52[sx];
+	  EXTRACT_WORDS (i0, i1, t);
+	  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+	  i0 &= 0xfffff;
+	  i0 |= 0x100000;
+
+	  result = ((long long int) i0 << (j0 - 20)) | (i1 >> (52 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long long int) x;
+    }
+
+  return sx ? -result : result;
+}
+
+weak_alias (__llrint, llrint)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__llrint, __llrintl)
+weak_alias (__llrint, llrintl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_llround.c b/sysdeps/ieee754/dbl-64/s_llround.c
new file mode 100644
index 0000000000..92ce10fc42
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_llround.c
@@ -0,0 +1,81 @@
+/* Round double value to long long int.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long long int
+__llround (double x)
+{
+  int32_t j0;
+  u_int32_t i1, i0;
+  long long int result;
+  int sign;
+
+  EXTRACT_WORDS (i0, i1, x);
+  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+  sign = (i0 & 0x80000000) != 0 ? -1 : 1;
+  i0 &= 0xfffff;
+  i0 |= 0x100000;
+
+  if (j0 < 20)
+    {
+      if (j0 < 0)
+	return j0 < -1 ? 0 : sign;
+      else
+	{
+	  i0 += 0x80000 >> j0;
+
+	  result = i0 >> (20 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
+    {
+      if (j0 >= 52)
+	result = (((long long int) i0 << 32) | i1) << (j0 - 52);
+      else
+	{
+	  u_int32_t j = i1 + (0x80000000 >> (j0 - 20));
+	  if (j < i1)
+	    ++i0;
+
+	  if (j0 == 20)
+	    result = (long long int) i0;
+	  else
+	    result = ((long long int) i0 << (j0 - 20)) | (j >> (52 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long long int) x;
+    }
+
+  return sign * result;
+}
+
+weak_alias (__llround, llround)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__llround, __llroundl)
+weak_alias (__llround, llroundl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_log1p.c b/sysdeps/ieee754/dbl-64/s_log1p.c
new file mode 100644
index 0000000000..0a9801a931
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_log1p.c
@@ -0,0 +1,191 @@
+/* @(#)s_log1p.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+   for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
+#endif
+
+/* double log1p(double x)
+ *
+ * Method :
+ *   1. Argument Reduction: find k and f such that
+ *			1+x = 2^k * (1+f),
+ *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ *      Note. If k=0, then f=x is exact. However, if k!=0, then f
+ *	may not be representable exactly. In that case, a correction
+ *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ *	and add back the correction term c/u.
+ *	(Note: when x > 2**53, one can simply return log(x))
+ *
+ *   2. Approximation of log1p(f).
+ *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ *	     	 = 2s + s*R
+ *      We use a special Reme algorithm on [0,0.1716] to generate
+ * 	a polynomial of degree 14 to approximate R The maximum error
+ *	of this polynomial approximation is bounded by 2**-58.45. In
+ *	other words,
+ *		        2      4      6      8      10      12      14
+ *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
+ *  	(the values of Lp1 to Lp7 are listed in the program)
+ *	and
+ *	    |      2          14          |     -58.45
+ *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
+ *	    |                             |
+ *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ *	In order to guarantee error in log below 1ulp, we compute log
+ *	by
+ *		log1p(f) = f - (hfsq - s*(hfsq+R)).
+ *
+ *	3. Finally, log1p(x) = k*ln2 + log1p(f).
+ *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ *	   Here ln2 is split into two floating point number:
+ *			ln2_hi + ln2_lo,
+ *	   where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ *	log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ *	log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ *	log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ *	according to an error analysis, the error is always less than
+ *	1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ * 	 algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ *		u = 1+x;
+ *		if(u==1.0) return x ; else
+ *			   return log(u)*(x/(u-1.0));
+ *
+ *	 See HP-15C Advanced Functions Handbook, p.193.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
+ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
+two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
+Lp[] = {0.0, 6.666666666666735130e-01,  /* 3FE55555 55555593 */
+ 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
+ 2.857142874366239149e-01,  /* 3FD24924 94229359 */
+ 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
+ 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
+ 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
+ 1.479819860511658591e-01};  /* 3FC2F112 DF3E5244 */
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+	double __log1p(double x)
+#else
+	double __log1p(x)
+	double x;
+#endif
+{
+	double hfsq,f,c,s,z,R,u,z2,z4,z6,R1,R2,R3,R4;
+	int32_t k,hx,hu,ax;
+
+	GET_HIGH_WORD(hx,x);
+	ax = hx&0x7fffffff;
+
+	k = 1;
+	if (hx < 0x3FDA827A) {			/* x < 0.41422  */
+	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
+		if(x==-1.0) return -two54/(x-x);/* log1p(-1)=+inf */
+		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
+	    }
+	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
+		if(two54+x>zero			/* raise inexact */
+	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
+		    return x;
+		else
+		    return x - x*x*0.5;
+	    }
+	    if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
+		k=0;f=x;hu=1;}	/* -0.2929<x<0.41422 */
+	}
+	if (hx >= 0x7ff00000) return x+x;
+	if(k!=0) {
+	    if(hx<0x43400000) {
+		u  = 1.0+x;
+		GET_HIGH_WORD(hu,u);
+	        k  = (hu>>20)-1023;
+	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
+		c /= u;
+	    } else {
+		u  = x;
+		GET_HIGH_WORD(hu,u);
+	        k  = (hu>>20)-1023;
+		c  = 0;
+	    }
+	    hu &= 0x000fffff;
+	    if(hu<0x6a09e) {
+	        SET_HIGH_WORD(u,hu|0x3ff00000);	/* normalize u */
+	    } else {
+	        k += 1;
+		SET_HIGH_WORD(u,hu|0x3fe00000);	/* normalize u/2 */
+	        hu = (0x00100000-hu)>>2;
+	    }
+	    f = u-1.0;
+	}
+	hfsq=0.5*f*f;
+	if(hu==0) {	/* |f| < 2**-20 */
+	    if(f==zero) {
+	      if(k==0) return zero;
+			else {c += k*ln2_lo; return k*ln2_hi+c;}
+	    }
+	    R = hfsq*(1.0-0.66666666666666666*f);
+	    if(k==0) return f-R; else
+	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
+	}
+ 	s = f/(2.0+f);
+	z = s*s;
+#ifdef DO_NOT_USE_THIS
+	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
+#else
+	R1 = z*Lp[1]; z2=z*z;
+	R2 = Lp[2]+z*Lp[3]; z4=z2*z2;
+	R3 = Lp[4]+z*Lp[5]; z6=z4*z2;
+	R4 = Lp[6]+z*Lp[7];
+	R = R1 + z2*R2 + z4*R3 + z6*R4;
+#endif
+	if(k==0) return f-(hfsq-s*(hfsq+R)); else
+		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
+}
+weak_alias (__log1p, log1p)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__log1p, __log1pl)
+weak_alias (__log1p, log1pl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_log2.c b/sysdeps/ieee754/dbl-64/s_log2.c
new file mode 100644
index 0000000000..7379ce85e7
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_log2.c
@@ -0,0 +1,136 @@
+/* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>.  */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __log2(x)
+ * Return the logarithm to base 2 of x
+ *
+ * Method :
+ *   1. Argument Reduction: find k and f such that
+ *			x = 2^k * (1+f),
+ *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ *   2. Approximation of log(1+f).
+ *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ *	     	 = 2s + s*R
+ *      We use a special Reme algorithm on [0,0.1716] to generate
+ * 	a polynomial of degree 14 to approximate R The maximum error
+ *	of this polynomial approximation is bounded by 2**-58.45. In
+ *	other words,
+ *		        2      4      6      8      10      12      14
+ *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
+ *  	(the values of Lg1 to Lg7 are listed in the program)
+ *	and
+ *	    |      2          14          |     -58.45
+ *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
+ *	    |                             |
+ *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ *	In order to guarantee error in log below 1ulp, we compute log
+ *	by
+ *		log(1+f) = f - s*(f - R)	(if f is not too large)
+ *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
+ *
+ *	3. Finally,  log(x) = k + log(1+f).
+ *			    = k+(f-(hfsq-(s*(hfsq+R))))
+ *
+ * Special cases:
+ *	log2(x) is NaN with signal if x < 0 (including -INF) ;
+ *	log2(+INF) is +INF; log(0) is -INF with signal;
+ *	log2(NaN) is that NaN with no signal.
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+ln2 = 0.69314718055994530942,
+two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
+Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
+
+#ifdef __STDC__
+static const double zero   =  0.0;
+#else
+static double zero   =  0.0;
+#endif
+
+#ifdef __STDC__
+	double __log2(double x)
+#else
+	double __log2(x)
+	double x;
+#endif
+{
+	double hfsq,f,s,z,R,w,t1,t2,dk;
+	int32_t k,hx,i,j;
+	u_int32_t lx;
+
+	EXTRACT_WORDS(hx,lx,x);
+
+	k=0;
+	if (hx < 0x00100000) {			/* x < 2**-1022  */
+	    if (((hx&0x7fffffff)|lx)==0)
+		return -two54/(x-x);		/* log(+-0)=-inf */
+	    if (hx<0) return (x-x)/(x-x);	/* log(-#) = NaN */
+	    k -= 54; x *= two54; /* subnormal number, scale up x */
+	    GET_HIGH_WORD(hx,x);
+	}
+	if (hx >= 0x7ff00000) return x+x;
+	k += (hx>>20)-1023;
+	hx &= 0x000fffff;
+	i = (hx+0x95f64)&0x100000;
+	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
+	k += (i>>20);
+	dk = (double) k;
+	f = x-1.0;
+	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
+	    if(f==zero) return dk;
+	    R = f*f*(0.5-0.33333333333333333*f);
+	    return dk-(R-f)/ln2;
+	}
+ 	s = f/(2.0+f);
+	z = s*s;
+	i = hx-0x6147a;
+	w = z*z;
+	j = 0x6b851-hx;
+	t1= w*(Lg2+w*(Lg4+w*Lg6));
+	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+	i |= j;
+	R = t2+t1;
+	if(i>0) {
+	    hfsq=0.5*f*f;
+	    return dk-((hfsq-(s*(hfsq+R)))-f)/ln2;
+	} else {
+	    return dk-((s*(f-R))-f)/ln2;
+	}
+}
+
+weak_alias (__log2, log2)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__log2, __log2l)
+weak_alias (__log2, log2l)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_logb.c b/sysdeps/ieee754/dbl-64/s_logb.c
new file mode 100644
index 0000000000..4668cf78f8
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_logb.c
@@ -0,0 +1,47 @@
+/* @(#)s_logb.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_logb.c,v 1.8 1995/05/10 20:47:50 jtc Exp $";
+#endif
+
+/*
+ * double logb(x)
+ * IEEE 754 logb. Included to pass IEEE test suite. Not recommend.
+ * Use ilogb instead.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	double __logb(double x)
+#else
+	double __logb(x)
+	double x;
+#endif
+{
+	int32_t lx,ix;
+	EXTRACT_WORDS(ix,lx,x);
+	ix &= 0x7fffffff;			/* high |x| */
+	if((ix|lx)==0) return -1.0/fabs(x);
+	if(ix>=0x7ff00000) return x*x;
+	if((ix>>=20)==0) 			/* IEEE 754 logb */
+		return -1022.0;
+	else
+		return (double) (ix-1023);
+}
+weak_alias (__logb, logb)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__logb, __logbl)
+weak_alias (__logb, logbl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_lrint.c b/sysdeps/ieee754/dbl-64/s_lrint.c
new file mode 100644
index 0000000000..8f0d717963
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_lrint.c
@@ -0,0 +1,95 @@
+/* Round argument to nearest integral value according to current rounding
+   direction.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const double two52[2] =
+{
+  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
+};
+
+
+long int
+__lrint (double x)
+{
+  int32_t j0;
+  u_int32_t i0,i1;
+  volatile double w;
+  double t;
+  long int result;
+  int sx;
+
+  EXTRACT_WORDS (i0, i1, x);
+  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+  sx = i0 >> 31;
+  i0 &= 0xfffff;
+  i0 |= 0x100000;
+
+  if (j0 < 20)
+    {
+      if (j0 < -1)
+	return 0;
+      else
+	{
+	  w = two52[sx] + x;
+	  t = w - two52[sx];
+	  EXTRACT_WORDS (i0, i1, t);
+	  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+	  i0 &= 0xfffff;
+	  i0 |= 0x100000;
+
+	  result = i0 >> (20 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
+    {
+      if (j0 >= 52)
+	result = ((long int) i0 << (j0 - 20)) | (i1 << (j0 - 52));
+      else
+	{
+	  w = two52[sx] + x;
+	  t = w - two52[sx];
+	  EXTRACT_WORDS (i0, i1, t);
+	  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+	  i0 &= 0xfffff;
+	  i0 |= 0x100000;
+
+	  result = ((long int) i0 << (j0 - 20)) | (i1 >> (52 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long int) x;
+    }
+
+  return sx ? -result : result;
+}
+
+weak_alias (__lrint, lrint)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__lrint, __lrintl)
+weak_alias (__lrint, lrintl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_lround.c b/sysdeps/ieee754/dbl-64/s_lround.c
new file mode 100644
index 0000000000..49be12f03b
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_lround.c
@@ -0,0 +1,78 @@
+/* Round double value to long int.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long int
+__lround (double x)
+{
+  int32_t j0;
+  u_int32_t i1, i0;
+  long int result;
+  int sign;
+
+  EXTRACT_WORDS (i0, i1, x);
+  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+  sign = (i0 & 0x80000000) != 0 ? -1 : 1;
+  i0 &= 0xfffff;
+  i0 |= 0x100000;
+
+  if (j0 < 20)
+    {
+      if (j0 < 0)
+	return j0 < -1 ? 0 : sign;
+      else
+	{
+	  i0 += 0x80000 >> j0;
+
+	  result = i0 >> (20 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
+    {
+      if (j0 >= 52)
+	result = ((long int) i0 << (j0 - 20)) | (i1 << (j0 - 52));
+      else
+	{
+	  u_int32_t j = i1 + (0x80000000 >> (j0 - 20));
+	  if (j < i1)
+	    ++i0;
+
+	  result = ((long int) i0 << (j0 - 20)) | (j >> (52 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long int) x;
+    }
+
+  return sign * result;
+}
+
+weak_alias (__lround, lround)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__lround, __lroundl)
+weak_alias (__lround, lroundl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_modf.c b/sysdeps/ieee754/dbl-64/s_modf.c
new file mode 100644
index 0000000000..7851f675a4
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_modf.c
@@ -0,0 +1,85 @@
+/* @(#)s_modf.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_modf.c,v 1.8 1995/05/10 20:47:55 jtc Exp $";
+#endif
+
+/*
+ * modf(double x, double *iptr)
+ * return fraction part of x, and return x's integral part in *iptr.
+ * Method:
+ *	Bit twiddling.
+ *
+ * Exception:
+ *	No exception.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0;
+#else
+static double one = 1.0;
+#endif
+
+#ifdef __STDC__
+	double __modf(double x, double *iptr)
+#else
+	double __modf(x, iptr)
+	double x,*iptr;
+#endif
+{
+	int32_t i0,i1,j0;
+	u_int32_t i;
+	EXTRACT_WORDS(i0,i1,x);
+	j0 = ((i0>>20)&0x7ff)-0x3ff;	/* exponent of x */
+	if(j0<20) {			/* integer part in high x */
+	    if(j0<0) {			/* |x|<1 */
+	        INSERT_WORDS(*iptr,i0&0x80000000,0);	/* *iptr = +-0 */
+		return x;
+	    } else {
+		i = (0x000fffff)>>j0;
+		if(((i0&i)|i1)==0) {		/* x is integral */
+		    *iptr = x;
+		    INSERT_WORDS(x,i0&0x80000000,0);	/* return +-0 */
+		    return x;
+		} else {
+		    INSERT_WORDS(*iptr,i0&(~i),0);
+		    return x - *iptr;
+		}
+	    }
+	} else if (j0>51) {		/* no fraction part */
+	    *iptr = x*one;
+	    /* We must handle NaNs separately.  */
+	    if (j0 == 0x400 && ((i0 & 0xfffff) | i1))
+	      return x*one;
+	    INSERT_WORDS(x,i0&0x80000000,0);	/* return +-0 */
+	    return x;
+	} else {			/* fraction part in low x */
+	    i = ((u_int32_t)(0xffffffff))>>(j0-20);
+	    if((i1&i)==0) { 		/* x is integral */
+		*iptr = x;
+		INSERT_WORDS(x,i0&0x80000000,0);	/* return +-0 */
+		return x;
+	    } else {
+	        INSERT_WORDS(*iptr,i0,i1&(~i));
+		return x - *iptr;
+	    }
+	}
+}
+weak_alias (__modf, modf)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__modf, __modfl)
+weak_alias (__modf, modfl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_nearbyint.c b/sysdeps/ieee754/dbl-64/s_nearbyint.c
new file mode 100644
index 0000000000..32f5bf9447
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_nearbyint.c
@@ -0,0 +1,98 @@
+/* Adapted for use as nearbyint by Ulrich Drepper <drepper@cygnus.com>.  */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_rint.c,v 1.8 1995/05/10 20:48:04 jtc Exp $";
+#endif
+
+/*
+ * rint(x)
+ * Return x rounded to integral value according to the prevailing
+ * rounding mode.
+ * Method:
+ *	Using floating addition.
+ * Exception:
+ *	Inexact flag raised if x not equal to rint(x).
+ */
+
+#include <fenv.h>
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+TWO52[2]={
+  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
+};
+
+#ifdef __STDC__
+	double __nearbyint(double x)
+#else
+	double __nearbyint(x)
+	double x;
+#endif
+{
+	fenv_t env;
+	int32_t i0,j0,sx;
+	u_int32_t i,i1;
+	double w,t;
+	EXTRACT_WORDS(i0,i1,x);
+	sx = (i0>>31)&1;
+	j0 = ((i0>>20)&0x7ff)-0x3ff;
+	if(j0<20) {
+	    if(j0<0) {
+		if(((i0&0x7fffffff)|i1)==0) return x;
+		i1 |= (i0&0x0fffff);
+		i0 &= 0xfffe0000;
+		i0 |= ((i1|-i1)>>12)&0x80000;
+		SET_HIGH_WORD(x,i0);
+		feholdexcept (&env);
+	        w = TWO52[sx]+x;
+	        t =  w-TWO52[sx];
+		fesetenv (&env);
+		GET_HIGH_WORD(i0,t);
+		SET_HIGH_WORD(t,(i0&0x7fffffff)|(sx<<31));
+	        return t;
+	    } else {
+		i = (0x000fffff)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		i>>=1;
+		if(((i0&i)|i1)!=0) {
+		    if(j0==19) i1 = 0x40000000; else
+		    i0 = (i0&(~i))|((0x20000)>>j0);
+		}
+	    }
+	} else if (j0>51) {
+	    if(j0==0x400) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = ((u_int32_t)(0xffffffff))>>(j0-20);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    i>>=1;
+	    if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20));
+	}
+	INSERT_WORDS(x,i0,i1);
+	feholdexcept (&env);
+	w = TWO52[sx]+x;
+	t = w-TWO52[sx];
+	fesetenv (&env);
+	return t;
+}
+weak_alias (__nearbyint, nearbyint)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__nearbyint, __nearbyintl)
+weak_alias (__nearbyint, nearbyintl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_nexttoward.c b/sysdeps/ieee754/dbl-64/s_nexttoward.c
new file mode 100644
index 0000000000..c68ba98cb3
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_nexttoward.c
@@ -0,0 +1 @@
+/* This function is the same as nextafter so we use an alias there.  */
diff --git a/sysdeps/ieee754/dbl-64/s_remquo.c b/sysdeps/ieee754/dbl-64/s_remquo.c
new file mode 100644
index 0000000000..6e32efbba2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_remquo.c
@@ -0,0 +1,113 @@
+/* Compute remainder and a congruent to the quotient.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const double zero = 0.0;
+
+
+double
+__remquo (double x, double y, int *quo)
+{
+  int32_t hx,hy;
+  u_int32_t sx,lx,ly;
+  int cquo, qs;
+
+  EXTRACT_WORDS (hx, lx, x);
+  EXTRACT_WORDS (hy, ly, y);
+  sx = hx & 0x80000000;
+  qs = sx ^ (hy & 0x80000000);
+  hy &= 0x7fffffff;
+  hx &= 0x7fffffff;
+
+  /* Purge off exception values.  */
+  if ((hy | ly) == 0)
+    return (x * y) / (x * y); 			/* y = 0 */
+  if ((hx >= 0x7ff00000)			/* x not finite */
+      || ((hy >= 0x7ff00000)			/* p is NaN */
+	  && (((hy - 0x7ff00000) | ly) != 0)))
+    return (x * y) / (x * y);
+
+  if (hy <= 0x7fbfffff)
+    x = __ieee754_fmod (x, 8 * y);		/* now x < 8y */
+
+  if (((hx - hy) | (lx - ly)) == 0)
+    {
+      *quo = qs ? -1 : 1;
+      return zero * x;
+    }
+
+  x  = fabs (x);
+  y  = fabs (y);
+  cquo = 0;
+
+  if (x >= 4 * y)
+    {
+      x -= 4 * y;
+      cquo += 4;
+    }
+  if (x >= 2 * y)
+    {
+      x -= 2 * y;
+      cquo += 2;
+    }
+
+  if (hy < 0x00200000)
+    {
+      if (x + x > y)
+	{
+	  x -= y;
+	  ++cquo;
+	  if (x + x >= y)
+	    {
+	      x -= y;
+	      ++cquo;
+	    }
+	}
+    }
+  else
+    {
+      double y_half = 0.5 * y;
+      if (x > y_half)
+	{
+	  x -= y;
+	  ++cquo;
+	  if (x >= y_half)
+	    {
+	      x -= y;
+	      ++cquo;
+	    }
+	}
+    }
+
+  *quo = qs ? -cquo : cquo;
+
+  if (sx)
+    x = -x;
+  return x;
+}
+weak_alias (__remquo, remquo)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__remquo, __remquol)
+weak_alias (__remquo, remquol)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_rint.c b/sysdeps/ieee754/dbl-64/s_rint.c
new file mode 100644
index 0000000000..e5f241291c
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_rint.c
@@ -0,0 +1,91 @@
+/* @(#)s_rint.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_rint.c,v 1.8 1995/05/10 20:48:04 jtc Exp $";
+#endif
+
+/*
+ * rint(x)
+ * Return x rounded to integral value according to the prevailing
+ * rounding mode.
+ * Method:
+ *	Using floating addition.
+ * Exception:
+ *	Inexact flag raised if x not equal to rint(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+TWO52[2]={
+  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
+};
+
+#ifdef __STDC__
+	double __rint(double x)
+#else
+	double __rint(x)
+	double x;
+#endif
+{
+	int32_t i0,j0,sx;
+	u_int32_t i,i1;
+	double w,t;
+	EXTRACT_WORDS(i0,i1,x);
+	sx = (i0>>31)&1;
+	j0 = ((i0>>20)&0x7ff)-0x3ff;
+	if(j0<20) {
+	    if(j0<0) {
+		if(((i0&0x7fffffff)|i1)==0) return x;
+		i1 |= (i0&0x0fffff);
+		i0 &= 0xfffe0000;
+		i0 |= ((i1|-i1)>>12)&0x80000;
+		SET_HIGH_WORD(x,i0);
+	        w = TWO52[sx]+x;
+	        t =  w-TWO52[sx];
+		GET_HIGH_WORD(i0,t);
+		SET_HIGH_WORD(t,(i0&0x7fffffff)|(sx<<31));
+	        return t;
+	    } else {
+		i = (0x000fffff)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		i>>=1;
+		if(((i0&i)|i1)!=0) {
+		    if(j0==19) i1 = 0x40000000; else
+		    i0 = (i0&(~i))|((0x20000)>>j0);
+		}
+	    }
+	} else if (j0>51) {
+	    if(j0==0x400) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = ((u_int32_t)(0xffffffff))>>(j0-20);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    i>>=1;
+	    if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20));
+	}
+	INSERT_WORDS(x,i0,i1);
+	w = TWO52[sx]+x;
+	return w-TWO52[sx];
+}
+weak_alias (__rint, rint)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__rint, __rintl)
+weak_alias (__rint, rintl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_round.c b/sysdeps/ieee754/dbl-64/s_round.c
new file mode 100644
index 0000000000..fdb17f8de8
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_round.c
@@ -0,0 +1,97 @@
+/* Round double to integer away from zero.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const double huge = 1.0e300;
+
+
+double
+__round (double x)
+{
+  int32_t i0, j0;
+  u_int32_t i1;
+
+  EXTRACT_WORDS (i0, i1, x);
+  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+  if (j0 < 20)
+    {
+      if (j0 < 0)
+	{
+	  if (huge + x > 0.0)
+	    {
+	      i0 &= 0x80000000;
+	      if (j0 == -1)
+		i0 |= 0x3ff00000;
+	      i1 = 0;
+	    }
+	}
+      else
+	{
+	  u_int32_t i = 0x000fffff >> j0;
+	  if (((i0 & i) | i1) == 0)
+	    /* X is integral.  */
+	    return x;
+	  if (huge + x > 0.0)
+	    {
+	      /* Raise inexact if x != 0.  */
+	      i0 += 0x00080000 >> j0;
+	      i0 &= ~i;
+	      i1 = 0;
+	    }
+	}
+    }
+  else if (j0 > 51)
+    {
+      if (j0 == 0x400)
+	/* Inf or NaN.  */
+	return x + x;
+      else
+	return x;
+    }
+  else
+    {
+      u_int32_t i = 0xffffffff >> (j0 - 20);
+      if ((i1 & i) == 0)
+	/* X is integral.  */
+	return x;
+
+      if (huge + x > 0.0)
+	{
+	  /* Raise inexact if x != 0.  */
+	  u_int32_t j = i1 + (1 << (51 - j0));
+	  if (j < i1)
+	    i0 += 1;
+	  i1 = j;
+	}
+      i1 &= ~i;
+    }
+
+  INSERT_WORDS (x, i0, i1);
+  return x;
+}
+weak_alias (__round, round)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__round, __roundl)
+weak_alias (__round, roundl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_scalbln.c b/sysdeps/ieee754/dbl-64/s_scalbln.c
new file mode 100644
index 0000000000..aa6134f093
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_scalbln.c
@@ -0,0 +1,70 @@
+/* @(#)s_scalbn.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_scalbn.c,v 1.8 1995/05/10 20:48:08 jtc Exp $";
+#endif
+
+/*
+ * scalbn (double x, int n)
+ * scalbn(x,n) returns x* 2**n  computed by  exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
+twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
+huge   = 1.0e+300,
+tiny   = 1.0e-300;
+
+#ifdef __STDC__
+	double __scalbln (double x, long int n)
+#else
+	double __scalbln (x,n)
+	double x; long int n;
+#endif
+{
+	int32_t k,hx,lx;
+	EXTRACT_WORDS(hx,lx,x);
+        k = (hx&0x7ff00000)>>20;		/* extract exponent */
+        if (k==0) {				/* 0 or subnormal x */
+            if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
+	    x *= two54;
+	    GET_HIGH_WORD(hx,x);
+	    k = ((hx&0x7ff00000)>>20) - 54;
+	    }
+        if (k==0x7ff) return x+x;		/* NaN or Inf */
+        k = k+n;
+        if (n> 50000 || k >  0x7fe)
+	  return huge*__copysign(huge,x); /* overflow  */
+	if (n< -50000) return tiny*__copysign(tiny,x); /*underflow*/
+        if (k > 0) 				/* normal result */
+	    {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
+        if (k <= -54)
+	  return tiny*__copysign(tiny,x); 	/*underflow*/
+        k += 54;				/* subnormal result */
+	SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
+        return x*twom54;
+}
+weak_alias (__scalbln, scalbln)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__scalbln, __scalblnl)
+weak_alias (__scalbln, scalblnl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_scalbn.c b/sysdeps/ieee754/dbl-64/s_scalbn.c
new file mode 100644
index 0000000000..3dbfe8fef0
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_scalbn.c
@@ -0,0 +1,70 @@
+/* @(#)s_scalbn.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_scalbn.c,v 1.8 1995/05/10 20:48:08 jtc Exp $";
+#endif
+
+/*
+ * scalbn (double x, int n)
+ * scalbn(x,n) returns x* 2**n  computed by  exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
+twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
+huge   = 1.0e+300,
+tiny   = 1.0e-300;
+
+#ifdef __STDC__
+	double __scalbn (double x, int n)
+#else
+	double __scalbn (x,n)
+	double x; int n;
+#endif
+{
+	int32_t k,hx,lx;
+	EXTRACT_WORDS(hx,lx,x);
+        k = (hx&0x7ff00000)>>20;		/* extract exponent */
+        if (k==0) {				/* 0 or subnormal x */
+            if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
+	    x *= two54;
+	    GET_HIGH_WORD(hx,x);
+	    k = ((hx&0x7ff00000)>>20) - 54;
+	    }
+        if (k==0x7ff) return x+x;		/* NaN or Inf */
+        k = k+n;
+        if (n> 50000 || k >  0x7fe)
+	  return huge*__copysign(huge,x); /* overflow  */
+	if (n< -50000) return tiny*__copysign(tiny,x); /*underflow*/
+        if (k > 0) 				/* normal result */
+	    {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
+        if (k <= -54)
+	  return tiny*__copysign(tiny,x); 	/*underflow*/
+        k += 54;				/* subnormal result */
+	SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
+        return x*twom54;
+}
+weak_alias (__scalbn, scalbn)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__scalbn, __scalbnl)
+weak_alias (__scalbn, scalbnl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_signbit.c b/sysdeps/ieee754/dbl-64/s_signbit.c
new file mode 100644
index 0000000000..ee340035fb
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_signbit.c
@@ -0,0 +1,32 @@
+/* Return nonzero value if number is negative.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+int
+__signbit (double x)
+{
+  int32_t hx;
+
+  GET_HIGH_WORD (hx, x);
+  return hx & 0x80000000;
+}
diff --git a/sysdeps/ieee754/dbl-64/s_sin.c b/sysdeps/ieee754/dbl-64/s_sin.c
new file mode 100644
index 0000000000..376c69ed00
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_sin.c
@@ -0,0 +1,87 @@
+/* @(#)s_sin.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_sin.c,v 1.7 1995/05/10 20:48:15 jtc Exp $";
+#endif
+
+/* sin(x)
+ * Return sine function of x.
+ *
+ * kernel function:
+ *	__kernel_sin		... sine function on [-pi/4,pi/4]
+ *	__kernel_cos		... cose function on [-pi/4,pi/4]
+ *	__ieee754_rem_pio2	... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *	in [-pi/4 , +pi/4], and let n = k mod 4.
+ *	We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *	    0	       S	   C		 T
+ *	    1	       C	  -S		-1/T
+ *	    2	      -S	  -C		 T
+ *	    3	      -C	   S		-1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *	TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	double __sin(double x)
+#else
+	double __sin(x)
+	double x;
+#endif
+{
+	double y[2],z=0.0;
+	int32_t n, ix;
+
+    /* High word of x. */
+	GET_HIGH_WORD(ix,x);
+
+    /* |x| ~< pi/4 */
+	ix &= 0x7fffffff;
+	if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
+
+    /* sin(Inf or NaN) is NaN */
+	else if (ix>=0x7ff00000) return x-x;
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2(x,y);
+	    switch(n&3) {
+		case 0: return  __kernel_sin(y[0],y[1],1);
+		case 1: return  __kernel_cos(y[0],y[1]);
+		case 2: return -__kernel_sin(y[0],y[1],1);
+		default:
+			return -__kernel_cos(y[0],y[1]);
+	    }
+	}
+}
+weak_alias (__sin, sin)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__sin, __sinl)
+weak_alias (__sin, sinl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_sincos.c b/sysdeps/ieee754/dbl-64/s_sincos.c
new file mode 100644
index 0000000000..5bc564ba5b
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_sincos.c
@@ -0,0 +1,78 @@
+/* Compute sine and cosine of argument.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+void
+__sincos (double x, double *sinx, double *cosx)
+{
+  int32_t ix;
+
+  /* High word of x. */
+  GET_HIGH_WORD (ix, x);
+
+  /* |x| ~< pi/4 */
+  ix &= 0x7fffffff;
+  if (ix <= 0x3fe921fb)
+    {
+      *sinx = __kernel_sin (x, 0.0, 0);
+      *cosx = __kernel_cos (x, 0.0);
+    }
+  else if (ix>=0x7ff00000)
+    {
+      /* sin(Inf or NaN) is NaN */
+      *sinx = *cosx = x - x;
+    }
+  else
+    {
+      /* Argument reduction needed.  */
+      double y[2];
+      int n;
+
+      n = __ieee754_rem_pio2 (x, y);
+      switch (n & 3)
+	{
+	case 0:
+	  *sinx = __kernel_sin (y[0], y[1], 1);
+	  *cosx = __kernel_cos (y[0], y[1]);
+	  break;
+	case 1:
+	  *sinx = __kernel_cos (y[0], y[1]);
+	  *cosx = -__kernel_sin (y[0], y[1], 1);
+	  break;
+	case 2:
+	  *sinx = -__kernel_sin (y[0], y[1], 1);
+	  *cosx = -__kernel_cos (y[0], y[1]);
+	  break;
+	default:
+	  *sinx = -__kernel_cos (y[0], y[1]);
+	  *cosx = __kernel_sin (y[0], y[1], 1);
+	  break;
+	}
+    }
+}
+weak_alias (__sincos, sincos)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__sincos, __sincosl)
+weak_alias (__sincos, sincosl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_tan.c b/sysdeps/ieee754/dbl-64/s_tan.c
new file mode 100644
index 0000000000..714cf27dd2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_tan.c
@@ -0,0 +1,81 @@
+/* @(#)s_tan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_tan.c,v 1.7 1995/05/10 20:48:18 jtc Exp $";
+#endif
+
+/* tan(x)
+ * Return tangent function of x.
+ *
+ * kernel function:
+ *	__kernel_tan		... tangent function on [-pi/4,pi/4]
+ *	__ieee754_rem_pio2	... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *	in [-pi/4 , +pi/4], and let n = k mod 4.
+ *	We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *	    0	       S	   C		 T
+ *	    1	       C	  -S		-1/T
+ *	    2	      -S	  -C		 T
+ *	    3	      -C	   S		-1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *	TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	double __tan(double x)
+#else
+	double __tan(x)
+	double x;
+#endif
+{
+	double y[2],z=0.0;
+	int32_t n, ix;
+
+    /* High word of x. */
+	GET_HIGH_WORD(ix,x);
+
+    /* |x| ~< pi/4 */
+	ix &= 0x7fffffff;
+	if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
+
+    /* tan(Inf or NaN) is NaN */
+	else if (ix>=0x7ff00000) return x-x;		/* NaN */
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2(x,y);
+	    return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
+							-1 -- n odd */
+	}
+}
+weak_alias (__tan, tan)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__tan, __tanl)
+weak_alias (__tan, tanl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_tanh.c b/sysdeps/ieee754/dbl-64/s_tanh.c
new file mode 100644
index 0000000000..944f96386f
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_tanh.c
@@ -0,0 +1,93 @@
+/* @(#)s_tanh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_tanh.c,v 1.7 1995/05/10 20:48:22 jtc Exp $";
+#endif
+
+/* Tanh(x)
+ * Return the Hyperbolic Tangent of x
+ *
+ * Method :
+ *				       x    -x
+ *				      e  - e
+ *	0. tanh(x) is defined to be -----------
+ *				       x    -x
+ *				      e  + e
+ *	1. reduce x to non-negative by tanh(-x) = -tanh(x).
+ *	2.  0      <= x <= 2**-55 : tanh(x) := x*(one+x)
+ *					        -t
+ *	    2**-55 <  x <=  1     : tanh(x) := -----; t = expm1(-2x)
+ *					       t + 2
+ *						     2
+ *	    1      <= x <=  22.0  : tanh(x) := 1-  ----- ; t=expm1(2x)
+ *						   t + 2
+ *	    22.0   <  x <= INF    : tanh(x) := 1.
+ *
+ * Special cases:
+ *	tanh(NaN) is NaN;
+ *	only tanh(0)=0 is exact for finite argument.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one=1.0, two=2.0, tiny = 1.0e-300;
+#else
+static double one=1.0, two=2.0, tiny = 1.0e-300;
+#endif
+
+#ifdef __STDC__
+	double __tanh(double x)
+#else
+	double __tanh(x)
+	double x;
+#endif
+{
+	double t,z;
+	int32_t jx,ix,lx;
+
+    /* High word of |x|. */
+	EXTRACT_WORDS(jx,lx,x);
+	ix = jx&0x7fffffff;
+
+    /* x is INF or NaN */
+	if(ix>=0x7ff00000) {
+	    if (jx>=0) return one/x+one;    /* tanh(+-inf)=+-1 */
+	    else       return one/x-one;    /* tanh(NaN) = NaN */
+	}
+
+    /* |x| < 22 */
+	if (ix < 0x40360000) {		/* |x|<22 */
+	    if ((ix | lx) == 0)
+		return x;		/* x == +-0 */
+	    if (ix<0x3c800000) 		/* |x|<2**-55 */
+		return x*(one+x);    	/* tanh(small) = small */
+	    if (ix>=0x3ff00000) {	/* |x|>=1  */
+		t = __expm1(two*fabs(x));
+		z = one - two/(t+two);
+	    } else {
+	        t = __expm1(-two*fabs(x));
+	        z= -t/(t+two);
+	    }
+    /* |x| > 22, return +-1 */
+	} else {
+	    z = one - tiny;		/* raised inexact flag */
+	}
+	return (jx>=0)? z: -z;
+}
+weak_alias (__tanh, tanh)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__tanh, __tanhl)
+weak_alias (__tanh, tanhl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_trunc.c b/sysdeps/ieee754/dbl-64/s_trunc.c
new file mode 100644
index 0000000000..07b4951bcb
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_trunc.c
@@ -0,0 +1,61 @@
+/* Truncate argument to nearest integral value not larger than the argument.
+   Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+double
+__trunc (double x)
+{
+  int32_t i0, j0;
+  u_int32_t i1;
+  int sx;
+
+  EXTRACT_WORDS (i0, i1, x);
+  sx = i0 & 0x80000000;
+  j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+  if (j0 < 20)
+    {
+      if (j0 < 0)
+	/* The magnitude of the number is < 1 so the result is +-0.  */
+	INSERT_WORDS (x, sx, 0);
+      else
+	INSERT_WORDS (x, sx | (i0 & ~(0x000fffff >> j0)), 0);
+    }
+  else if (j0 > 51)
+    {
+      if (j0 == 0x400)
+	/* x is inf or NaN.  */
+	return x + x;
+    }
+  else
+    {
+      INSERT_WORDS (x, i0, i1 & ~(0xffffffffu >> (j0 - 20)));
+    }
+
+  return x;
+}
+weak_alias (__trunc, trunc)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__trunc, __truncl)
+weak_alias (__trunc, truncl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/t_exp.c b/sysdeps/ieee754/dbl-64/t_exp.c
new file mode 100644
index 0000000000..b02b4f55ca
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/t_exp.c
@@ -0,0 +1,436 @@
+/* Accurate tables for exp().
+   Copyright (C) 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* This table has the property that, for all integers -177 <= i <= 177,
+   exp(i/512.0 + __exp_deltatable[abs(i)]) == __exp_atable[i+177] + r
+   for some -2^-64 < r < 2^-64 (abs(r) < 2^-65 if i <= 0); and that
+   __exp_deltatable[abs(i)] == t * 2^-60
+   for integer t so that abs(t) <= 8847927 * 2^8.  */
+
+#define W52 (2.22044605e-16)
+#define W55 (2.77555756e-17)
+#define W58 (3.46944695e-18)
+#define W59 (1.73472348e-18)
+#define W60 (8.67361738e-19)
+const float __exp_deltatable[178] = {
+         0*W60,  16558714*W60, -10672149*W59,   1441652*W60,
+ -15787963*W55,    462888*W60,   7291806*W60,   1698880*W60,
+ -14375103*W58,  -2021016*W60,    728829*W60,  -3759654*W60,
+   3202123*W60, -10916019*W58,   -251570*W60,  -1043086*W60,
+   8207536*W60,   -409964*W60,  -5993931*W60,   -475500*W60,
+   2237522*W60,    324170*W60,   -244117*W60,     32077*W60,
+    123907*W60,  -1019734*W60,      -143*W60,    813077*W60,
+    743345*W60,    462461*W60,    629794*W60,   2125066*W60,
+  -2339121*W60,   -337951*W60,   9922067*W60,   -648704*W60,
+    149407*W60,  -2687209*W60,   -631608*W60,   2128280*W60,
+  -4882082*W60,   2001360*W60,    175074*W60,   2923216*W60,
+   -538947*W60,  -1212193*W60,  -1920926*W60,  -1080577*W60,
+   3690196*W60,   2643367*W60,   2911937*W60,    671455*W60,
+  -1128674*W60,    593282*W60,  -5219347*W60,  -1941490*W60,
+  11007953*W60,    239609*W60,  -2969658*W60,  -1183650*W60,
+    942998*W60,    699063*W60,    450569*W60,   -329250*W60,
+  -7257875*W60,   -312436*W60,     51626*W60,    555877*W60,
+   -641761*W60,   1565666*W60,    884327*W60, -10960035*W60,
+  -2004679*W60,   -995793*W60,  -2229051*W60,   -146179*W60,
+   -510327*W60,   1453482*W60,  -3778852*W60,  -2238056*W60,
+  -4895983*W60,   3398883*W60,   -252738*W60,   1230155*W60,
+    346918*W60,   1109352*W60,    268941*W60,  -2930483*W60,
+  -1036263*W60,  -1159280*W60,   1328176*W60,   2937642*W60,
+  -9371420*W60,  -6902650*W60,  -1419134*W60,   1442904*W60,
+  -1319056*W60,    -16369*W60,    696555*W60,   -279987*W60,
+  -7919763*W60,    252741*W60,    459711*W60,  -1709645*W60,
+    354913*W60,   6025867*W60,   -421460*W60,   -853103*W60,
+   -338649*W60,    962151*W60,    955965*W60,    784419*W60,
+  -3633653*W60,   2277133*W60,  -8847927*W52,   1223028*W60,
+   5907079*W60,    623167*W60,   5142888*W60,   2599099*W60,
+   1214280*W60,   4870359*W60,    593349*W60,    -57705*W60,
+   7761209*W60,  -5564097*W60,   2051261*W60,   6216869*W60,
+   4692163*W60,    601691*W60,  -5264906*W60,   1077872*W60,
+  -3205949*W60,   1833082*W60,   2081746*W60,   -987363*W60,
+  -1049535*W60,   2015244*W60,    874230*W60,   2168259*W60,
+  -1740124*W60, -10068269*W60,    -18242*W60,  -3013583*W60,
+    580601*W60,  -2547161*W60,   -535689*W60,   2220815*W60,
+   1285067*W60,   2806933*W60,   -983086*W60,  -1729097*W60,
+  -1162985*W60,  -2561904*W60,    801988*W60,    244351*W60,
+   1441893*W60,  -7517981*W60,    271781*W60, -15021588*W60,
+  -2341588*W60,   -919198*W60,   1642232*W60,   4771771*W60,
+  -1220099*W60,  -3062372*W60,    628624*W60,   1278114*W60,
+  13083513*W60, -10521925*W60,   3180310*W60,  -1659307*W60,
+   3543773*W60,   2501203*W60,      4151*W60,   -340748*W60,
+  -2285625*W60,   2495202*W60
+};
+
+const double __exp_atable[355] /* __attribute__((mode(DF))) */ = {
+ 0.707722561055888932371, /* 0x0.b52d4e46605c27ffd */
+ 0.709106182438804188967, /* 0x0.b587fb96f75097ffb */
+ 0.710492508843861281234, /* 0x0.b5e2d649899167ffd */
+ 0.711881545564593931623, /* 0x0.b63dde74d36bdfffe */
+ 0.713273297897442870573, /* 0x0.b699142f945f87ffc */
+ 0.714667771153751463236, /* 0x0.b6f477909c4ea0001 */
+ 0.716064970655995725059, /* 0x0.b75008aec758f8004 */
+ 0.717464901723956938193, /* 0x0.b7abc7a0eea7e0002 */
+ 0.718867569715736398602, /* 0x0.b807b47e1586c7ff8 */
+ 0.720272979947266023271, /* 0x0.b863cf5d10e380003 */
+ 0.721681137825144314297, /* 0x0.b8c01855195c37ffb */
+ 0.723092048691992950199, /* 0x0.b91c8f7d213740004 */
+ 0.724505717938892290800, /* 0x0.b97934ec5002d0007 */
+ 0.725922150953176470431, /* 0x0.b9d608b9c92ea7ffc */
+ 0.727341353138962865022, /* 0x0.ba330afcc29e98003 */
+ 0.728763329918453162104, /* 0x0.ba903bcc8618b7ffc */
+ 0.730188086709957051568, /* 0x0.baed9b40591ba0000 */
+ 0.731615628948127705309, /* 0x0.bb4b296f931e30002 */
+ 0.733045962086486091436, /* 0x0.bba8e671a05617ff9 */
+ 0.734479091556371366251, /* 0x0.bc06d25dd49568001 */
+ 0.735915022857225542529, /* 0x0.bc64ed4bce8f6fff9 */
+ 0.737353761441304711410, /* 0x0.bcc33752f915d7ff9 */
+ 0.738795312814142124419, /* 0x0.bd21b08af98e78005 */
+ 0.740239682467211168593, /* 0x0.bd80590b65e9a8000 */
+ 0.741686875913991849885, /* 0x0.bddf30ebec4a10000 */
+ 0.743136898669507939299, /* 0x0.be3e38443c84e0007 */
+ 0.744589756269486091620, /* 0x0.be9d6f2c1d32a0002 */
+ 0.746045454254026796384, /* 0x0.befcd5bb59baf8004 */
+ 0.747503998175051087583, /* 0x0.bf5c6c09ca84c0003 */
+ 0.748965393601880857739, /* 0x0.bfbc322f5b18b7ff8 */
+ 0.750429646104262104698, /* 0x0.c01c2843f776fffff */
+ 0.751896761271877989160, /* 0x0.c07c4e5fa18b88002 */
+ 0.753366744698445112140, /* 0x0.c0dca49a5fb18fffd */
+ 0.754839601988627206827, /* 0x0.c13d2b0c444db0005 */
+ 0.756315338768691947122, /* 0x0.c19de1cd798578006 */
+ 0.757793960659406629066, /* 0x0.c1fec8f623723fffd */
+ 0.759275473314173443536, /* 0x0.c25fe09e8a0f47ff8 */
+ 0.760759882363831851927, /* 0x0.c2c128dedc88f8000 */
+ 0.762247193485956486805, /* 0x0.c322a1cf7d6e7fffa */
+ 0.763737412354726363781, /* 0x0.c3844b88cb9347ffc */
+ 0.765230544649828092739, /* 0x0.c3e626232bd8f7ffc */
+ 0.766726596071518051729, /* 0x0.c44831b719bf18002 */
+ 0.768225572321911687194, /* 0x0.c4aa6e5d12d078001 */
+ 0.769727479119219348810, /* 0x0.c50cdc2da64a37ffb */
+ 0.771232322196981678892, /* 0x0.c56f7b41744490001 */
+ 0.772740107296721268087, /* 0x0.c5d24bb1259e70004 */
+ 0.774250840160724651565, /* 0x0.c6354d95640dd0007 */
+ 0.775764526565368872643, /* 0x0.c6988106fec447fff */
+ 0.777281172269557396602, /* 0x0.c6fbe61eb1bd0ffff */
+ 0.778800783068235302750, /* 0x0.c75f7cf560942fffc */
+ 0.780323364758801041312, /* 0x0.c7c345a3f1983fffe */
+ 0.781848923151573727006, /* 0x0.c8274043594cb0002 */
+ 0.783377464064598849602, /* 0x0.c88b6cec94b3b7ff9 */
+ 0.784908993312207869935, /* 0x0.c8efcbb89cba27ffe */
+ 0.786443516765346961618, /* 0x0.c9545cc0a88c70003 */
+ 0.787981040257604625744, /* 0x0.c9b9201dc643bfffa */
+ 0.789521569657452682047, /* 0x0.ca1e15e92a5410007 */
+ 0.791065110849462849192, /* 0x0.ca833e3c1ae510005 */
+ 0.792611669712891875319, /* 0x0.cae8992fd84667ffd */
+ 0.794161252150049179450, /* 0x0.cb4e26ddbc207fff8 */
+ 0.795713864077794763584, /* 0x0.cbb3e75f301b60003 */
+ 0.797269511407239561694, /* 0x0.cc19dacd978cd8002 */
+ 0.798828200086368567220, /* 0x0.cc8001427e55d7ffb */
+ 0.800389937624300440456, /* 0x0.cce65ade24d360006 */
+ 0.801954725261124767840, /* 0x0.cd4ce7a5de839fffb */
+ 0.803522573691593189330, /* 0x0.cdb3a7c79a678fffd */
+ 0.805093487311204114563, /* 0x0.ce1a9b563965ffffc */
+ 0.806667472122675088819, /* 0x0.ce81c26b838db8000 */
+ 0.808244534127439906441, /* 0x0.cee91d213f8428002 */
+ 0.809824679342317166307, /* 0x0.cf50ab9144d92fff9 */
+ 0.811407913793616542005, /* 0x0.cfb86dd5758c2ffff */
+ 0.812994243520784198882, /* 0x0.d0206407c20e20005 */
+ 0.814583674571603966162, /* 0x0.d0888e4223facfff9 */
+ 0.816176213022088536960, /* 0x0.d0f0ec9eb3f7c8002 */
+ 0.817771864936188586101, /* 0x0.d1597f377d6768002 */
+ 0.819370636400374108252, /* 0x0.d1c24626a46eafff8 */
+ 0.820972533518165570298, /* 0x0.d22b41865ff1e7ff9 */
+ 0.822577562404315121269, /* 0x0.d2947170f32ec7ff9 */
+ 0.824185729164559344159, /* 0x0.d2fdd60097795fff8 */
+ 0.825797039949601741075, /* 0x0.d3676f4fb796d0001 */
+ 0.827411500902565544264, /* 0x0.d3d13d78b5f68fffb */
+ 0.829029118181348834154, /* 0x0.d43b40960546d8001 */
+ 0.830649897953322891022, /* 0x0.d4a578c222a058000 */
+ 0.832273846408250750368, /* 0x0.d50fe617a3ba78005 */
+ 0.833900969738858188772, /* 0x0.d57a88b1218e90002 */
+ 0.835531274148056613016, /* 0x0.d5e560a94048f8006 */
+ 0.837164765846411529371, /* 0x0.d6506e1aac8078003 */
+ 0.838801451086016225394, /* 0x0.d6bbb1204074e0001 */
+ 0.840441336100884561780, /* 0x0.d72729d4c28518004 */
+ 0.842084427144139224814, /* 0x0.d792d8530e12b0001 */
+ 0.843730730487052604790, /* 0x0.d7febcb61273e7fff */
+ 0.845380252404570153833, /* 0x0.d86ad718c308dfff9 */
+ 0.847032999194574087728, /* 0x0.d8d727962c69d7fff */
+ 0.848688977161248581090, /* 0x0.d943ae49621ce7ffb */
+ 0.850348192619261200615, /* 0x0.d9b06b4d832ef8005 */
+ 0.852010651900976245816, /* 0x0.da1d5ebdc22220005 */
+ 0.853676361342631029337, /* 0x0.da8a88b555baa0006 */
+ 0.855345327311054837175, /* 0x0.daf7e94f965f98004 */
+ 0.857017556155879489641, /* 0x0.db6580a7c98f7fff8 */
+ 0.858693054267390953857, /* 0x0.dbd34ed9617befff8 */
+ 0.860371828028939855647, /* 0x0.dc4153ffc8b65fff9 */
+ 0.862053883854957292436, /* 0x0.dcaf90368bfca8004 */
+ 0.863739228154875360306, /* 0x0.dd1e0399328d87ffe */
+ 0.865427867361348468455, /* 0x0.dd8cae435d303fff9 */
+ 0.867119807911702289458, /* 0x0.ddfb9050b1cee8006 */
+ 0.868815056264353846599, /* 0x0.de6aa9dced8448001 */
+ 0.870513618890481399881, /* 0x0.ded9fb03db7320006 */
+ 0.872215502247877139094, /* 0x0.df4983e1380657ff8 */
+ 0.873920712852848668986, /* 0x0.dfb94490ffff77ffd */
+ 0.875629257204025623884, /* 0x0.e0293d2f1cb01fff9 */
+ 0.877341141814212965880, /* 0x0.e0996dd786fff0007 */
+ 0.879056373217612985183, /* 0x0.e109d6a64f5d57ffc */
+ 0.880774957955916648615, /* 0x0.e17a77b78e72a7ffe */
+ 0.882496902590150900078, /* 0x0.e1eb5127722cc7ff8 */
+ 0.884222213673356738383, /* 0x0.e25c63121fb0c8006 */
+ 0.885950897802399772740, /* 0x0.e2cdad93ec5340003 */
+ 0.887682961567391237685, /* 0x0.e33f30c925fb97ffb */
+ 0.889418411575228162725, /* 0x0.e3b0ecce2d05ffff9 */
+ 0.891157254447957902797, /* 0x0.e422e1bf727718006 */
+ 0.892899496816652704641, /* 0x0.e4950fb9713fc7ffe */
+ 0.894645145323828439008, /* 0x0.e50776d8b0e60fff8 */
+ 0.896394206626591749641, /* 0x0.e57a1739c8fadfffc */
+ 0.898146687421414902124, /* 0x0.e5ecf0f97c5798007 */
+ 0.899902594367530173098, /* 0x0.e660043464e378005 */
+ 0.901661934163603406867, /* 0x0.e6d3510747e150006 */
+ 0.903424713533971135418, /* 0x0.e746d78f06cd97ffd */
+ 0.905190939194458810123, /* 0x0.e7ba97e879c91fffc */
+ 0.906960617885092856864, /* 0x0.e82e92309390b0007 */
+ 0.908733756358986566306, /* 0x0.e8a2c6845544afffa */
+ 0.910510361377119825629, /* 0x0.e9173500c8abc7ff8 */
+ 0.912290439722343249336, /* 0x0.e98bddc30f98b0002 */
+ 0.914073998177417412765, /* 0x0.ea00c0e84bc4c7fff */
+ 0.915861043547953501680, /* 0x0.ea75de8db8094fffe */
+ 0.917651582652244779397, /* 0x0.eaeb36d09d3137ffe */
+ 0.919445622318405764159, /* 0x0.eb60c9ce4ed3dffff */
+ 0.921243169397334638073, /* 0x0.ebd697a43995b0007 */
+ 0.923044230737526172328, /* 0x0.ec4ca06fc7768fffa */
+ 0.924848813220121135342, /* 0x0.ecc2e44e865b6fffb */
+ 0.926656923710931002014, /* 0x0.ed39635df34e70006 */
+ 0.928468569126343790092, /* 0x0.edb01dbbc2f5b7ffa */
+ 0.930283756368834757725, /* 0x0.ee2713859aab57ffa */
+ 0.932102492359406786818, /* 0x0.ee9e44d9342870004 */
+ 0.933924784042873379360, /* 0x0.ef15b1d4635438005 */
+ 0.935750638358567643520, /* 0x0.ef8d5a94f60f50007 */
+ 0.937580062297704630580, /* 0x0.f0053f38f345cffff */
+ 0.939413062815381727516, /* 0x0.f07d5fde3a2d98001 */
+ 0.941249646905368053689, /* 0x0.f0f5bca2d481a8004 */
+ 0.943089821583810716806, /* 0x0.f16e55a4e497d7ffe */
+ 0.944933593864477061592, /* 0x0.f1e72b028a2827ffb */
+ 0.946780970781518460559, /* 0x0.f2603cd9fb5430001 */
+ 0.948631959382661205081, /* 0x0.f2d98b497d2a87ff9 */
+ 0.950486566729423554277, /* 0x0.f353166f63e3dffff */
+ 0.952344799896018723290, /* 0x0.f3ccde6a11ae37ffe */
+ 0.954206665969085765512, /* 0x0.f446e357f66120000 */
+ 0.956072172053890279009, /* 0x0.f4c12557964f0fff9 */
+ 0.957941325265908139014, /* 0x0.f53ba48781046fffb */
+ 0.959814132734539637840, /* 0x0.f5b66106555d07ffa */
+ 0.961690601603558903308, /* 0x0.f6315af2c2027fffc */
+ 0.963570739036113010927, /* 0x0.f6ac926b8aeb80004 */
+ 0.965454552202857141381, /* 0x0.f728078f7c5008002 */
+ 0.967342048278315158608, /* 0x0.f7a3ba7d66a908001 */
+ 0.969233234469444204768, /* 0x0.f81fab543e1897ffb */
+ 0.971128118008140250896, /* 0x0.f89bda33122c78007 */
+ 0.973026706099345495256, /* 0x0.f9184738d4cf97ff8 */
+ 0.974929006031422851235, /* 0x0.f994f284d3a5c0008 */
+ 0.976835024947348973265, /* 0x0.fa11dc35bc7820002 */
+ 0.978744770239899142285, /* 0x0.fa8f046b4fb7f8007 */
+ 0.980658249138918636210, /* 0x0.fb0c6b449ab1cfff9 */
+ 0.982575468959622777535, /* 0x0.fb8a10e1088fb7ffa */
+ 0.984496437054508843888, /* 0x0.fc07f5602d79afffc */
+ 0.986421160608523028820, /* 0x0.fc8618e0e55e47ffb */
+ 0.988349647107594098099, /* 0x0.fd047b83571b1fffa */
+ 0.990281903873210800357, /* 0x0.fd831d66f4c018002 */
+ 0.992217938695037382475, /* 0x0.fe01fead3320bfff8 */
+ 0.994157757657894713987, /* 0x0.fe811f703491e8006 */
+ 0.996101369488558541238, /* 0x0.ff007fd5744490005 */
+ 0.998048781093141101932, /* 0x0.ff801ffa9b9280007 */
+ 1.000000000000000000000, /* 0x1.00000000000000000 */
+ 1.001955033605393285965, /* 0x1.0080200565d29ffff */
+ 1.003913889319761887310, /* 0x1.0100802aa0e80fff0 */
+ 1.005876574715736104818, /* 0x1.01812090377240007 */
+ 1.007843096764807100351, /* 0x1.020201541aad7fff6 */
+ 1.009813464316352327214, /* 0x1.0283229c4c9820007 */
+ 1.011787683565730677817, /* 0x1.030484836910a000e */
+ 1.013765762469146736174, /* 0x1.0386272b9c077fffe */
+ 1.015747708536026694351, /* 0x1.04080ab526304fff0 */
+ 1.017733529475172815584, /* 0x1.048a2f412375ffff0 */
+ 1.019723232714418781378, /* 0x1.050c94ef7ad5e000a */
+ 1.021716825883923762690, /* 0x1.058f3be0f1c2d0004 */
+ 1.023714316605201180057, /* 0x1.06122436442e2000e */
+ 1.025715712440059545995, /* 0x1.06954e0fec63afff2 */
+ 1.027721021151397406936, /* 0x1.0718b98f41c92fff6 */
+ 1.029730250269221158939, /* 0x1.079c66d49bb2ffff1 */
+ 1.031743407506447551857, /* 0x1.082056011a9230009 */
+ 1.033760500517691527387, /* 0x1.08a487359ebd50002 */
+ 1.035781537016238873464, /* 0x1.0928fa93490d4fff3 */
+ 1.037806524719013578963, /* 0x1.09adb03b3e5b3000d */
+ 1.039835471338248051878, /* 0x1.0a32a84e9e5760004 */
+ 1.041868384612101516848, /* 0x1.0ab7e2eea5340ffff */
+ 1.043905272300907460835, /* 0x1.0b3d603ca784f0009 */
+ 1.045946142174331239262, /* 0x1.0bc3205a042060000 */
+ 1.047991002016745332165, /* 0x1.0c4923682a086fffe */
+ 1.050039859627715177527, /* 0x1.0ccf698898f3a000d */
+ 1.052092722826109660856, /* 0x1.0d55f2dce5d1dfffb */
+ 1.054149599440827866881, /* 0x1.0ddcbf86b09a5fff6 */
+ 1.056210497317612961855, /* 0x1.0e63cfa7abc97fffd */
+ 1.058275424318780855142, /* 0x1.0eeb23619c146fffb */
+ 1.060344388322010722446, /* 0x1.0f72bad65714bffff */
+ 1.062417397220589476718, /* 0x1.0ffa9627c38d30004 */
+ 1.064494458915699715017, /* 0x1.1082b577d0eef0003 */
+ 1.066575581342167566880, /* 0x1.110b18e893a90000a */
+ 1.068660772440545025953, /* 0x1.1193c09c267610006 */
+ 1.070750040138235936705, /* 0x1.121cacb4959befff6 */
+ 1.072843392435016474095, /* 0x1.12a5dd543cf36ffff */
+ 1.074940837302467588937, /* 0x1.132f529d59552000b */
+ 1.077042382749654914030, /* 0x1.13b90cb250d08fff5 */
+ 1.079148036789447484528, /* 0x1.14430bb58da3dfff9 */
+ 1.081257807444460983297, /* 0x1.14cd4fc984c4a000e */
+ 1.083371702785017154417, /* 0x1.1557d910df9c7000e */
+ 1.085489730853784307038, /* 0x1.15e2a7ae292d30002 */
+ 1.087611899742884524772, /* 0x1.166dbbc422d8c0004 */
+ 1.089738217537583819804, /* 0x1.16f9157586772ffff */
+ 1.091868692357631731528, /* 0x1.1784b4e533cacfff0 */
+ 1.094003332327482702577, /* 0x1.18109a360fc23fff2 */
+ 1.096142145591650907149, /* 0x1.189cc58b155a70008 */
+ 1.098285140311341168136, /* 0x1.1929370751ea50002 */
+ 1.100432324652149906842, /* 0x1.19b5eecdd79cefff0 */
+ 1.102583706811727015711, /* 0x1.1a42ed01dbdba000e */
+ 1.104739294993289488947, /* 0x1.1ad031c69a2eafff0 */
+ 1.106899097422573863281, /* 0x1.1b5dbd3f66e120003 */
+ 1.109063122341542140286, /* 0x1.1beb8f8fa8150000b */
+ 1.111231377994659874592, /* 0x1.1c79a8dac6ad0fff4 */
+ 1.113403872669181282605, /* 0x1.1d0809445a97ffffc */
+ 1.115580614653132185460, /* 0x1.1d96b0effc9db000e */
+ 1.117761612217810673898, /* 0x1.1e25a001332190000 */
+ 1.119946873713312474002, /* 0x1.1eb4d69bdb2a9fff1 */
+ 1.122136407473298902480, /* 0x1.1f4454e3bfae00006 */
+ 1.124330221845670330058, /* 0x1.1fd41afcbb48bfff8 */
+ 1.126528325196519908506, /* 0x1.2064290abc98c0001 */
+ 1.128730725913251964394, /* 0x1.20f47f31c9aa7000f */
+ 1.130937432396844410880, /* 0x1.21851d95f776dfff0 */
+ 1.133148453059692917203, /* 0x1.2216045b6784efffa */
+ 1.135363796355857157764, /* 0x1.22a733a6692ae0004 */
+ 1.137583470716100553249, /* 0x1.2338ab9b3221a0004 */
+ 1.139807484614418608939, /* 0x1.23ca6c5e27aadfff7 */
+ 1.142035846532929888057, /* 0x1.245c7613b7f6c0004 */
+ 1.144268564977221958089, /* 0x1.24eec8e06b035000c */
+ 1.146505648458203463465, /* 0x1.258164e8cea85fff8 */
+ 1.148747105501412235671, /* 0x1.26144a5180d380009 */
+ 1.150992944689175123667, /* 0x1.26a7793f5de2efffa */
+ 1.153243174560058870217, /* 0x1.273af1d712179000d */
+ 1.155497803703682491111, /* 0x1.27ceb43d81d42fff1 */
+ 1.157756840726344771440, /* 0x1.2862c097a3d29000c */
+ 1.160020294239811677834, /* 0x1.28f7170a74cf4fff1 */
+ 1.162288172883275239058, /* 0x1.298bb7bb0faed0004 */
+ 1.164560485298402170388, /* 0x1.2a20a2ce920dffff4 */
+ 1.166837240167474476460, /* 0x1.2ab5d86a4631ffff6 */
+ 1.169118446164539637555, /* 0x1.2b4b58b36d5220009 */
+ 1.171404112007080167155, /* 0x1.2be123cf786790002 */
+ 1.173694246390975415341, /* 0x1.2c7739e3c0aac000d */
+ 1.175988858069749065617, /* 0x1.2d0d9b15deb58fff6 */
+ 1.178287955789017793514, /* 0x1.2da4478b627040002 */
+ 1.180591548323240091978, /* 0x1.2e3b3f69fb794fffc */
+ 1.182899644456603782686, /* 0x1.2ed282d76421d0004 */
+ 1.185212252993012693694, /* 0x1.2f6a11f96c685fff3 */
+ 1.187529382762033236513, /* 0x1.3001ecf60082ffffa */
+ 1.189851042595508889847, /* 0x1.309a13f30f28a0004 */
+ 1.192177241354644978669, /* 0x1.31328716a758cfff7 */
+ 1.194507987909589896687, /* 0x1.31cb4686e1e85fffb */
+ 1.196843291137896336843, /* 0x1.32645269dfd04000a */
+ 1.199183159977805113226, /* 0x1.32fdaae604c39000f */
+ 1.201527603343041317132, /* 0x1.339750219980dfff3 */
+ 1.203876630171082595692, /* 0x1.3431424300e480007 */
+ 1.206230249419600664189, /* 0x1.34cb8170b3fee000e */
+ 1.208588470077065268869, /* 0x1.35660dd14dbd4fffc */
+ 1.210951301134513435915, /* 0x1.3600e78b6bdfc0005 */
+ 1.213318751604272271958, /* 0x1.369c0ec5c38ebfff2 */
+ 1.215690830512196507537, /* 0x1.373783a718d29000f */
+ 1.218067546930756250870, /* 0x1.37d3465662f480007 */
+ 1.220448909901335365929, /* 0x1.386f56fa770fe0008 */
+ 1.222834928513994334780, /* 0x1.390bb5ba5fc540004 */
+ 1.225225611877684750397, /* 0x1.39a862bd3c7a8fff3 */
+ 1.227620969111500981433, /* 0x1.3a455e2a37bcafffd */
+ 1.230021009336254911271, /* 0x1.3ae2a8287dfbefff6 */
+ 1.232425741726685064472, /* 0x1.3b8040df76f39fffa */
+ 1.234835175450728295084, /* 0x1.3c1e287682e48fff1 */
+ 1.237249319699482263931, /* 0x1.3cbc5f151b86bfff8 */
+ 1.239668183679933477545, /* 0x1.3d5ae4e2cc0a8000f */
+ 1.242091776620540377629, /* 0x1.3df9ba07373bf0006 */
+ 1.244520107762172811399, /* 0x1.3e98deaa0d8cafffe */
+ 1.246953186383919165383, /* 0x1.3f3852f32973efff0 */
+ 1.249391019292643401078, /* 0x1.3fd816ffc72b90001 */
+ 1.251833623164381181797, /* 0x1.40782b17863250005 */
+ 1.254280999953110153911, /* 0x1.41188f42caf400000 */
+ 1.256733161434815393410, /* 0x1.41b943b42945bfffd */
+ 1.259190116985283935980, /* 0x1.425a4893e5f10000a */
+ 1.261651875958665236542, /* 0x1.42fb9e0a2df4c0009 */
+ 1.264118447754797758244, /* 0x1.439d443f608c4fff9 */
+ 1.266589841787181258708, /* 0x1.443f3b5bebf850008 */
+ 1.269066067469190262045, /* 0x1.44e183883e561fff7 */
+ 1.271547134259576328224, /* 0x1.45841cecf7a7a0001 */
+ 1.274033051628237434048, /* 0x1.462707b2c43020009 */
+ 1.276523829025464573684, /* 0x1.46ca44023aa410007 */
+ 1.279019475999373156531, /* 0x1.476dd2045d46ffff0 */
+ 1.281520002043128991825, /* 0x1.4811b1e1f1f19000b */
+ 1.284025416692967214122, /* 0x1.48b5e3c3edd74fff4 */
+ 1.286535729509738823464, /* 0x1.495a67d3613c8fff7 */
+ 1.289050950070396384145, /* 0x1.49ff3e396e19d000b */
+ 1.291571087985403654081, /* 0x1.4aa4671f5b401fff1 */
+ 1.294096152842774794011, /* 0x1.4b49e2ae56d19000d */
+ 1.296626154297237043484, /* 0x1.4befb10fd84a3fff4 */
+ 1.299161101984141142272, /* 0x1.4c95d26d41d84fff8 */
+ 1.301701005575179204100, /* 0x1.4d3c46f01d9f0fff3 */
+ 1.304245874766450485904, /* 0x1.4de30ec21097d0003 */
+ 1.306795719266019562007, /* 0x1.4e8a2a0ccce3d0002 */
+ 1.309350548792467483458, /* 0x1.4f3198fa10346fff5 */
+ 1.311910373099227200545, /* 0x1.4fd95bb3be8cffffd */
+ 1.314475201942565174546, /* 0x1.50817263bf0e5fffb */
+ 1.317045045107389400535, /* 0x1.5129dd3418575000e */
+ 1.319619912422941299109, /* 0x1.51d29c4f01c54ffff */
+ 1.322199813675649204855, /* 0x1.527bafde83a310009 */
+ 1.324784758729532718739, /* 0x1.5325180cfb8b3fffd */
+ 1.327374757430096474625, /* 0x1.53ced504b2bd0fff4 */
+ 1.329969819671041886272, /* 0x1.5478e6f02775e0001 */
+ 1.332569955346704748651, /* 0x1.55234df9d8a59fff8 */
+ 1.335175174370685002822, /* 0x1.55ce0a4c5a6a9fff6 */
+ 1.337785486688218616860, /* 0x1.56791c1263abefff7 */
+ 1.340400902247843806217, /* 0x1.57248376aef21fffa */
+ 1.343021431036279800211, /* 0x1.57d040a420c0bfff3 */
+ 1.345647083048053138662, /* 0x1.587c53c5a630f0002 */
+ 1.348277868295411074918, /* 0x1.5928bd063fd7bfff9 */
+ 1.350913796821875845231, /* 0x1.59d57c9110ad60006 */
+ 1.353554878672557082439, /* 0x1.5a8292913d68cfffc */
+ 1.356201123929036356254, /* 0x1.5b2fff3212db00007 */
+ 1.358852542671913132777, /* 0x1.5bddc29edcc06fff3 */
+ 1.361509145047255398051, /* 0x1.5c8bdd032ed16000f */
+ 1.364170941142184734180, /* 0x1.5d3a4e8a5bf61fff4 */
+ 1.366837941171020309735, /* 0x1.5de9176042f1effff */
+ 1.369510155261156381121, /* 0x1.5e9837b062f4e0005 */
+ 1.372187593620959988833, /* 0x1.5f47afa69436cfff1 */
+ 1.374870266463378287715, /* 0x1.5ff77f6eb3f8cfffd */
+ 1.377558184010425845733, /* 0x1.60a7a734a9742fff9 */
+ 1.380251356531521533853, /* 0x1.6158272490016000c */
+ 1.382949794301995272203, /* 0x1.6208ff6a8978a000f */
+ 1.385653507605306700170, /* 0x1.62ba3032c0a280004 */
+ 1.388362506772382154503, /* 0x1.636bb9a994784000f */
+ 1.391076802081129493127, /* 0x1.641d9bfb29a7bfff6 */
+ 1.393796403973427855412, /* 0x1.64cfd7545928b0002 */
+ 1.396521322756352656542, /* 0x1.65826be167badfff8 */
+ 1.399251568859207761660, /* 0x1.663559cf20826000c */
+ 1.401987152677323100733, /* 0x1.66e8a14a29486fffc */
+ 1.404728084651919228815, /* 0x1.679c427f5a4b6000b */
+ 1.407474375243217723560, /* 0x1.68503d9ba0add000f */
+ 1.410226034922914983815, /* 0x1.690492cbf6303fff9 */
+ 1.412983074197955213304, /* 0x1.69b9423d7b548fff6 */
+};
diff --git a/sysdeps/ieee754/dbl-64/t_exp2.h b/sysdeps/ieee754/dbl-64/t_exp2.h
new file mode 100644
index 0000000000..1fd73338cf
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/t_exp2.h
@@ -0,0 +1,585 @@
+/* These values are accurate to 52+12 bits when represented as
+   a double.  */
+static const double exp2_accuratetable[512] = {
+0.707106781187802013759 /* 0x0.b504f333fb3f80007 */,
+0.708064712808760599040 /* 0x0.b543baa0f71b38000 */,
+0.709023942160304065938 /* 0x0.b58297d3a8d518002 */,
+0.709984470998547667624 /* 0x0.b5c18ad39b4ba0001 */,
+0.710946301084324217006 /* 0x0.b60093a85e8d30001 */,
+0.711909434180505784637 /* 0x0.b63fb25984e628005 */,
+0.712873872052760648733 /* 0x0.b67ee6eea3b5f8003 */,
+0.713839616467838999908 /* 0x0.b6be316f518c98001 */,
+0.714806669195984345523 /* 0x0.b6fd91e328d148007 */,
+0.715775032009894562898 /* 0x0.b73d0851c69e20002 */,
+0.716744706683768884058 /* 0x0.b77c94c2c9b3d0003 */,
+0.717715694995770148178 /* 0x0.b7bc373dd52eb0003 */,
+0.718687998724665488852 /* 0x0.b7fbefca8cd530004 */,
+0.719661619652575468291 /* 0x0.b83bbe70981da8001 */,
+0.720636559564428180758 /* 0x0.b87ba337a194b0006 */,
+0.721612820246623098989 /* 0x0.b8bb9e27556508004 */,
+0.722590403488338473025 /* 0x0.b8fbaf4762c798006 */,
+0.723569311081411870036 /* 0x0.b93bd69f7be1d0000 */,
+0.724549544820974333906 /* 0x0.b97c1437567828007 */,
+0.725531106502312561633 /* 0x0.b9bc6816a87ae8002 */,
+0.726513997924421062181 /* 0x0.b9fcd2452bee00000 */,
+0.727498220889519875430 /* 0x0.ba3d52ca9e6148002 */,
+0.728483777200401694265 /* 0x0.ba7de9aebe05c8003 */,
+0.729470668664712662563 /* 0x0.babe96f94e62a8002 */,
+0.730458897090379144517 /* 0x0.baff5ab2134df0004 */,
+0.731448464287988597833 /* 0x0.bb4034e0d38ab0000 */,
+0.732439372072965166897 /* 0x0.bb81258d5b2d60001 */,
+0.733431622260458326859 /* 0x0.bbc22cbf75fd28001 */,
+0.734425216668725511232 /* 0x0.bc034a7ef32c00001 */,
+0.735420157118880535324 /* 0x0.bc447ed3a50fe0005 */,
+0.736416445434497690674 /* 0x0.bc85c9c560b350001 */,
+0.737414083433310718618 /* 0x0.bcc72b5bf4b4e0000 */,
+0.738413072966152328496 /* 0x0.bd08a39f5417a8007 */,
+0.739413415848264365956 /* 0x0.bd4a32974abcd0002 */,
+0.740415113911250699637 /* 0x0.bd8bd84bb68300002 */,
+0.741418168994518067562 /* 0x0.bdcd94c47ddd30003 */,
+0.742422582936659858376 /* 0x0.be0f6809865968006 */,
+0.743428357577745613238 /* 0x0.be515222b72530003 */,
+0.744435494762383687126 /* 0x0.be935317fc6ba0002 */,
+0.745443996335090397492 /* 0x0.bed56af1423de8001 */,
+0.746453864145572798553 /* 0x0.bf1799b67a6248007 */,
+0.747465100043933849969 /* 0x0.bf59df6f970e70002 */,
+0.748477705883256683178 /* 0x0.bf9c3c248dbee8001 */,
+0.749491683518965001732 /* 0x0.bfdeafdd568308000 */,
+0.750507034813367890373 /* 0x0.c0213aa1f0fc38004 */,
+0.751523761622240105153 /* 0x0.c063dc7a559ca0003 */,
+0.752541865811731880422 /* 0x0.c0a6956e883ed8000 */,
+0.753561349247157341600 /* 0x0.c0e965868bd220006 */,
+0.754582213796583967110 /* 0x0.c12c4cca664cb8002 */,
+0.755604461332336940791 /* 0x0.c16f4b42225350006 */,
+0.756628093726406381068 /* 0x0.c1b260f5ca2c48002 */,
+0.757653112855631305506 /* 0x0.c1f58ded6d72d8001 */,
+0.758679520599333412360 /* 0x0.c238d2311e7d08001 */,
+0.759707318837184453227 /* 0x0.c27c2dc8f00368005 */,
+0.760736509456435783249 /* 0x0.c2bfa0bcfd1400000 */,
+0.761767094336480043995 /* 0x0.c3032b155818d0000 */,
+0.762799075372231349951 /* 0x0.c346ccda248cc0001 */,
+0.763832454453522768941 /* 0x0.c38a8613805488005 */,
+0.764867233473625618441 /* 0x0.c3ce56c98d1ca8005 */,
+0.765903414329434539816 /* 0x0.c4123f04708d80002 */,
+0.766940998920452976510 /* 0x0.c4563ecc532dc0001 */,
+0.767979989148100838946 /* 0x0.c49a56295f9f88006 */,
+0.769020386915772125040 /* 0x0.c4de8523c2b0a0001 */,
+0.770062194131770905170 /* 0x0.c522cbc3ae94e0003 */,
+0.771105412703856241146 /* 0x0.c5672a1154e6b8004 */,
+0.772150044545352520777 /* 0x0.c5aba014ed5f18003 */,
+0.773196091570364285606 /* 0x0.c5f02dd6b09288003 */,
+0.774243555696622731700 /* 0x0.c634d35edb1260003 */,
+0.775292438842697939641 /* 0x0.c67990b5aa5c18004 */,
+0.776342742931542928455 /* 0x0.c6be65e360bed8000 */,
+0.777394469888802008854 /* 0x0.c70352f0437f50004 */,
+0.778447621641124243320 /* 0x0.c74857e498fd00006 */,
+0.779502200118583399303 /* 0x0.c78d74c8ab5b60000 */,
+0.780558207255445668515 /* 0x0.c7d2a9a4c959f8000 */,
+0.781615644985491186966 /* 0x0.c817f681412f80002 */,
+0.782674515247667956808 /* 0x0.c85d5b6666c150006 */,
+0.783734819983036512536 /* 0x0.c8a2d85c904760003 */,
+0.784796561133562109454 /* 0x0.c8e86d6c14f850002 */,
+0.785859740645942328471 /* 0x0.c92e1a9d513ec8002 */,
+0.786924360469767103536 /* 0x0.c973dff8a4b390007 */,
+0.787990422552312885808 /* 0x0.c9b9bd866c6440007 */,
+0.789057928854407064640 /* 0x0.c9ffb34f1444b0001 */,
+0.790126881326406182996 /* 0x0.ca45c15afcc570001 */,
+0.791197281930050233534 /* 0x0.ca8be7b292db38000 */,
+0.792269132620954885659 /* 0x0.cad2265e3cbee8000 */,
+0.793342435380726906957 /* 0x0.cb187d667d3d38006 */,
+0.794417192158282659010 /* 0x0.cb5eecd3b33158006 */,
+0.795493404931386649540 /* 0x0.cba574ae5d2e80001 */,
+0.796571075671306805268 /* 0x0.cbec14fef2a348004 */,
+0.797650206352955137846 /* 0x0.cc32cdcdef0000000 */,
+0.798730798954342069432 /* 0x0.cc799f23d11d18000 */,
+0.799812855456121796232 /* 0x0.ccc089091abb28004 */,
+0.800896377841454287795 /* 0x0.cd078b86505c18003 */,
+0.801981368096190028208 /* 0x0.cd4ea6a3f97720007 */,
+0.803067828208752554378 /* 0x0.cd95da6aa057b8007 */,
+0.804155760170129796375 /* 0x0.cddd26e2d21b28001 */,
+0.805245165974338261710 /* 0x0.ce248c151f3330001 */,
+0.806336047619038653883 /* 0x0.ce6c0a0a1c1350001 */,
+0.807428407102107836855 /* 0x0.ceb3a0ca5d6be0006 */,
+0.808522246427078927792 /* 0x0.cefb505e7e2550007 */,
+0.809617567597010201484 /* 0x0.cf4318cf18a268002 */,
+0.810714372621179513182 /* 0x0.cf8afa24ce1c98004 */,
+0.811812663508675536069 /* 0x0.cfd2f4683f9810005 */,
+0.812912442272482604912 /* 0x0.d01b07a2126188003 */,
+0.814013710929394895825 /* 0x0.d06333daeff618001 */,
+0.815116471495287542325 /* 0x0.d0ab791b80d028006 */,
+0.816220725993571205593 /* 0x0.d0f3d76c75b330000 */,
+0.817326476447408967199 /* 0x0.d13c4ed67f1cf8000 */,
+0.818433724883006474832 /* 0x0.d184df6250e3b0001 */,
+0.819542473330909460055 /* 0x0.d1cd8918a3a328004 */,
+0.820652723822034690935 /* 0x0.d2164c02305fa0002 */,
+0.821764478391968422618 /* 0x0.d25f2827b53fb0005 */,
+0.822877739077315761840 /* 0x0.d2a81d91f188b8000 */,
+0.823992507918612782109 /* 0x0.d2f12c49a8d290005 */,
+0.825108786960634610365 /* 0x0.d33a5457a35e40003 */,
+0.826226578247117093869 /* 0x0.d38395c4a84848007 */,
+0.827345883828319528258 /* 0x0.d3ccf09985d958004 */,
+0.828466705754248966560 /* 0x0.d41664df0a1320005 */,
+0.829589046080638992111 /* 0x0.d45ff29e094330000 */,
+0.830712906863802391671 /* 0x0.d4a999df585a20005 */,
+0.831838290163696481037 /* 0x0.d4f35aabd04a60006 */,
+0.832965198041969556729 /* 0x0.d53d350c4be258002 */,
+0.834093632565442222342 /* 0x0.d5872909aba050007 */,
+0.835223595802037643865 /* 0x0.d5d136acd138e8006 */,
+0.836355089820669306292 /* 0x0.d61b5dfe9f7780004 */,
+0.837488116698010487424 /* 0x0.d6659f0801afa8005 */,
+0.838622678508982644113 /* 0x0.d6aff9d1e147d8004 */,
+0.839758777333464490056 /* 0x0.d6fa6e652d19e0000 */,
+0.840896415254110962690 /* 0x0.d744fccad70d00003 */,
+0.842035594355151628676 /* 0x0.d78fa50bd2c3b0000 */,
+0.843176316724478125433 /* 0x0.d7da673117e730007 */,
+0.844318584453106590905 /* 0x0.d8254343a19038003 */,
+0.845462399634695271912 /* 0x0.d870394c6dbf30003 */,
+0.846607764365415071965 /* 0x0.d8bb49547d37c0004 */,
+0.847754680744707056494 /* 0x0.d9067364d45608003 */,
+0.848903150873708822763 /* 0x0.d951b7867953b0006 */,
+0.850053176859071113491 /* 0x0.d99d15c2787a30006 */,
+0.851204760807439786431 /* 0x0.d9e88e21de11a0003 */,
+0.852357904828824897169 /* 0x0.da3420adba1508003 */,
+0.853512611037803181642 /* 0x0.da7fcd6f2184d8005 */,
+0.854668881550406100980 /* 0x0.dacb946f2afaf8000 */,
+0.855826718478671755185 /* 0x0.db1775b6e8ad48000 */,
+0.856986123964844970247 /* 0x0.db63714f8e0818006 */,
+0.858147100114499461478 /* 0x0.dbaf87422625b8000 */,
+0.859309649060962410524 /* 0x0.dbfbb797daa460002 */,
+0.860473772936213743282 /* 0x0.dc480259d3a710001 */,
+0.861639473872910177676 /* 0x0.dc9467913a0f48006 */,
+0.862806754008130227807 /* 0x0.dce0e7473b9b28003 */,
+0.863975615481124226159 /* 0x0.dd2d8185086c20006 */,
+0.865146060433749419813 /* 0x0.dd7a3653d38168005 */,
+0.866318091005120138881 /* 0x0.ddc705bcccd628000 */,
+0.867491709362415264210 /* 0x0.de13efc9434100004 */,
+0.868666917636779056818 /* 0x0.de60f4825df9b8005 */,
+0.869843717989716047624 /* 0x0.deae13f16599c0003 */,
+0.871022112578215268471 /* 0x0.defb4e1f9dc388002 */,
+0.872202103559697183859 /* 0x0.df48a3164a92f0001 */,
+0.873383693097737778847 /* 0x0.df9612deb6e878007 */,
+0.874566883362160263365 /* 0x0.dfe39d82348310001 */,
+0.875751676517234511901 /* 0x0.e031430a0f0688000 */,
+0.876938074732511840819 /* 0x0.e07f037f97e548001 */,
+0.878126080186539592654 /* 0x0.e0ccdeec2a75e0006 */,
+0.879315695055312818168 /* 0x0.e11ad5591f4078001 */,
+0.880506921518618312932 /* 0x0.e168e6cfd2f880004 */,
+0.881699761760385225541 /* 0x0.e1b71359a6df60003 */,
+0.882894217964411143207 /* 0x0.e2055afffc1178000 */,
+0.884090292325693805080 /* 0x0.e253bdcc3ffbb8001 */,
+0.885287987031581180559 /* 0x0.e2a23bc7d7a1d8002 */,
+0.886487304278189114386 /* 0x0.e2f0d4fc31ab80004 */,
+0.887688246263368285778 /* 0x0.e33f8972bea8a8005 */,
+0.888890815189881999840 /* 0x0.e38e5934f49010007 */,
+0.890095013257492739835 /* 0x0.e3dd444c460bd0007 */,
+0.891300842677948068626 /* 0x0.e42c4ac232f380000 */,
+0.892508305659222567226 /* 0x0.e47b6ca036f8b8005 */,
+0.893717404414979710310 /* 0x0.e4caa9efd40e58002 */,
+0.894928141160697743242 /* 0x0.e51a02ba8e2610007 */,
+0.896140518115016826430 /* 0x0.e5697709ecab90000 */,
+0.897354537501434679237 /* 0x0.e5b906e77c61d0006 */,
+0.898570201543732793877 /* 0x0.e608b25cca5ba8005 */,
+0.899787512470129891014 /* 0x0.e6587973688ce8002 */,
+0.901006472512270728537 /* 0x0.e6a85c34ecadb8000 */,
+0.902227083902570559127 /* 0x0.e6f85aaaed4f20006 */,
+0.903449348881299796343 /* 0x0.e74874df09a530003 */,
+0.904673269686823378091 /* 0x0.e798aadadecba0007 */,
+0.905898848559668845585 /* 0x0.e7e8fca80c3ee0001 */,
+0.907126087750156795426 /* 0x0.e8396a503c3fe0005 */,
+0.908354989505901100354 /* 0x0.e889f3dd1615b0002 */,
+0.909585556079328783087 /* 0x0.e8da9958465228007 */,
+0.910817789726044213523 /* 0x0.e92b5acb7d0578001 */,
+0.912051692703457872481 /* 0x0.e97c38406c3c30003 */,
+0.913287267274154990210 /* 0x0.e9cd31c0cbb370001 */,
+0.914524515702244578108 /* 0x0.ea1e475654d540000 */,
+0.915763440256158633982 /* 0x0.ea6f790ac5cc78001 */,
+0.917004043205012497909 /* 0x0.eac0c6e7dd8448007 */,
+0.918246326823137892807 /* 0x0.eb1230f760a428007 */,
+0.919490293387826285200 /* 0x0.eb63b7431714a8007 */,
+0.920735945178816406225 /* 0x0.ebb559d4cb6f30007 */,
+0.921983284479243714322 /* 0x0.ec0718b64c0940002 */,
+0.923232313574974705626 /* 0x0.ec58f3f16a3910002 */,
+0.924483034755387955725 /* 0x0.ecaaeb8ffb3168005 */,
+0.925735450311948926408 /* 0x0.ecfcff9bd67078000 */,
+0.926989562542820610982 /* 0x0.ed4f301edad1a0007 */,
+0.928245373740515189457 /* 0x0.eda17d22e0f9b0001 */,
+0.929502886213858126045 /* 0x0.edf3e6b1d37d40001 */,
+0.930762102264245716494 /* 0x0.ee466cd594c5c8005 */,
+0.932023024199046146183 /* 0x0.ee990f980dcdb0005 */,
+0.933285654329454095216 /* 0x0.eeebcf032bc470007 */,
+0.934549994971191289044 /* 0x0.ef3eab20e0d3c0001 */,
+0.935816048439005676599 /* 0x0.ef91a3fb1e1340004 */,
+0.937083817055075818404 /* 0x0.efe4b99bdcc618006 */,
+0.938353303143720007819 /* 0x0.f037ec0d1889b8000 */,
+0.939624509028518128972 /* 0x0.f08b3b58cc2bb8006 */,
+0.940897437041863904384 /* 0x0.f0dea788fc2a90000 */,
+0.942172089516254085427 /* 0x0.f13230a7ad21b8003 */,
+0.943448468787511540534 /* 0x0.f185d6bee754e0006 */,
+0.944726577195256100890 /* 0x0.f1d999d8b73478005 */,
+0.946006417082291717338 /* 0x0.f22d79ff2cb130000 */,
+0.947287990793413858827 /* 0x0.f281773c59ec48007 */,
+0.948571300678290207925 /* 0x0.f2d5919a566268001 */,
+0.949856349088629370320 /* 0x0.f329c9233bceb0001 */,
+0.951143138379053731954 /* 0x0.f37e1de1272068002 */,
+0.952431670908847949364 /* 0x0.f3d28fde3a6728006 */,
+0.953721949039916472305 /* 0x0.f4271f249a93f0001 */,
+0.955013975135367898520 /* 0x0.f47bcbbe6deab0001 */,
+0.956307751564417496418 /* 0x0.f4d095b5e16638004 */,
+0.957603280698967163097 /* 0x0.f5257d1524f590006 */,
+0.958900564911197350604 /* 0x0.f57a81e668d628000 */,
+0.960199606581278120057 /* 0x0.f5cfa433e60e50007 */,
+0.961500408088936442422 /* 0x0.f624e407d527a0007 */,
+0.962802971817578789903 /* 0x0.f67a416c72b760006 */,
+0.964107300155846558292 /* 0x0.f6cfbc6c011458004 */,
+0.965413395493874504368 /* 0x0.f7255510c439a8002 */,
+0.966721260225105960572 /* 0x0.f77b0b6503c5b8006 */,
+0.968030896745834645873 /* 0x0.f7d0df730a7940005 */,
+0.969342307458006424716 /* 0x0.f826d145294be8003 */,
+0.970655494764855020231 /* 0x0.f87ce0e5b29fd8000 */,
+0.971970461071268720958 /* 0x0.f8d30e5efaa8f0004 */,
+0.973287208789983648852 /* 0x0.f92959bb5e3c08001 */,
+0.974605740331924708124 /* 0x0.f97fc305383028004 */,
+0.975926058115625383329 /* 0x0.f9d64a46ebb9f8004 */,
+0.977248164559556209435 /* 0x0.fa2cef8adbfc68004 */,
+0.978572062087848637573 /* 0x0.fa83b2db7253d0007 */,
+0.979897753126343307191 /* 0x0.fada944319fda0005 */,
+0.981225240104636631254 /* 0x0.fb3193cc425870002 */,
+0.982554525455618277276 /* 0x0.fb88b1815e61d0003 */,
+0.983885611617111077747 /* 0x0.fbdfed6ce683e0007 */,
+0.985218501026348891812 /* 0x0.fc3747995282f8006 */,
+0.986553196127724962867 /* 0x0.fc8ec0112202a0005 */,
+0.987889699367056062238 /* 0x0.fce656ded63710002 */,
+0.989228013193998778636 /* 0x0.fd3e0c0cf48d50005 */,
+0.990568140061241164686 /* 0x0.fd95dfa605c7b0003 */,
+0.991910082424819927754 /* 0x0.fdedd1b4965710004 */,
+0.993253842749249660216 /* 0x0.fe45e2433bfea0000 */,
+0.994599423484053835071 /* 0x0.fe9e115c7c05f0005 */,
+0.995946827107488830167 /* 0x0.fef65f0afb4c28006 */,
+0.997296056085008264529 /* 0x0.ff4ecb59509cc8001 */,
+0.998647112892057764479 /* 0x0.ffa756521dbfd0007 */,
+1.000000000000000000000 /* 0x1.00000000000000000 */,
+1.001354719891689004659 /* 0x1.0058c86da14aa0005 */,
+1.002711275050312211844 /* 0x1.00b1afa5abead0003 */,
+1.004069667960743483835 /* 0x1.010ab5b2cc0660009 */,
+1.005429901112333324093 /* 0x1.0163da9fb2af30008 */,
+1.006791976999887428009 /* 0x1.01bd1e7716f6a0008 */,
+1.008155898118476168101 /* 0x1.02168143b03890006 */,
+1.009521666967782227439 /* 0x1.027003103ae320002 */,
+1.010889286051850133326 /* 0x1.02c9a3e7783030002 */,
+1.012258757875921233497 /* 0x1.032363d42aaa8000e */,
+1.013630084952214405194 /* 0x1.037d42e11c88d0000 */,
+1.015003269791313389451 /* 0x1.03d741191635a0001 */,
+1.016378314911229763267 /* 0x1.04315e86e84630008 */,
+1.017755222831652872635 /* 0x1.048b9b35652800002 */,
+1.019133996077934645224 /* 0x1.04e5f72f65827000b */,
+1.020514637175266248212 /* 0x1.0540727fc1cfa0006 */,
+1.021897148653734488385 /* 0x1.059b0d3157ebb0002 */,
+1.023281533050062419584 /* 0x1.05f5c74f0cfeb0002 */,
+1.024667792897328677539 /* 0x1.0650a0e3c22ee0003 */,
+1.026055930738840826806 /* 0x1.06ab99fa63e1b0008 */,
+1.027445949118511947550 /* 0x1.0706b29ddf2700009 */,
+1.028837850584049418178 /* 0x1.0761ead9253ab0009 */,
+1.030231637685799839262 /* 0x1.07bd42b72a3f80008 */,
+1.031627312979383592802 /* 0x1.0818ba42e824a000c */,
+1.033024879021186448496 /* 0x1.0874518759b0b0008 */,
+1.034424338374263729911 /* 0x1.08d0088f80ffa0006 */,
+1.035825693601787333992 /* 0x1.092bdf66604e30005 */,
+1.037228947273990842283 /* 0x1.0987d617019cd000a */,
+1.038634101961269928846 /* 0x1.09e3ecac6f199000f */,
+1.040041160239590700707 /* 0x1.0a402331b91270002 */,
+1.041450124688240164200 /* 0x1.0a9c79b1f37c3000b */,
+1.042860997889083929381 /* 0x1.0af8f038352160000 */,
+1.044273782427270314011 /* 0x1.0b5586cf986890006 */,
+1.045688480893644856116 /* 0x1.0bb23d833dfbf0006 */,
+1.047105095879385272564 /* 0x1.0c0f145e46e330007 */,
+1.048523629981608529302 /* 0x1.0c6c0b6bdaadc000f */,
+1.049944085800634585634 /* 0x1.0cc922b72470a000f */,
+1.051366465939483019223 /* 0x1.0d265a4b5238b0007 */,
+1.052790773004648849929 /* 0x1.0d83b23395e510002 */,
+1.054217009607077093512 /* 0x1.0de12a7b263970006 */,
+1.055645178360430591625 /* 0x1.0e3ec32d3cf680000 */,
+1.057075281882416506511 /* 0x1.0e9c7c55184f5000e */,
+1.058507322794714378170 /* 0x1.0efa55fdfad51000a */,
+1.059941303721639416236 /* 0x1.0f58503329fed0003 */,
+1.061377227289284297385 /* 0x1.0fb66affed37f0000 */,
+1.062815096132297298980 /* 0x1.1014a66f95540000c */,
+1.064254912884593951029 /* 0x1.1073028d725850007 */,
+1.065696680185205469411 /* 0x1.10d17f64d9ea2000b */,
+1.067140400676658718053 /* 0x1.11301d012586a0007 */,
+1.068586077004890055886 /* 0x1.118edb6db26ab0003 */,
+1.070033711820396415998 /* 0x1.11edbab5e2d6e000b */,
+1.071483307775789262099 /* 0x1.124cbae51b5ef0001 */,
+1.072934867526001312439 /* 0x1.12abdc06c3240000c */,
+1.074388393734249103080 /* 0x1.130b1e264a62e0005 */,
+1.075843889063253344684 /* 0x1.136a814f20ccd0003 */,
+1.077301356179926061823 /* 0x1.13ca058cbaaed000b */,
+1.078760797756675327056 /* 0x1.1429aaea9260e000e */,
+1.080222216468626150775 /* 0x1.148971742537c0009 */,
+1.081685614993597610617 /* 0x1.14e95934f37e8000b */,
+1.083150996013011013776 /* 0x1.1549623881762000d */,
+1.084618362213087383633 /* 0x1.15a98c8a58a6a000b */,
+1.086087716284427351384 /* 0x1.1609d8360768c0008 */,
+1.087559060917626885283 /* 0x1.166a45471c13f0008 */,
+1.089032398810997337465 /* 0x1.16cad3c92d7b50009 */,
+1.090507732647478578212 /* 0x1.172b83c7c18b5000f */,
+1.091985065182095926460 /* 0x1.178c554ead72a000c */,
+1.093464399073070136880 /* 0x1.17ed48695befe000c */,
+1.094945737045367906172 /* 0x1.184e5d23812500007 */,
+1.096429081816546080591 /* 0x1.18af9388c90e40005 */,
+1.097914436104650892651 /* 0x1.1910eba4e031a0001 */,
+1.099401802629782043408 /* 0x1.19726583755720003 */,
+1.100891184121537858001 /* 0x1.19d4013041b860007 */,
+1.102382583308144647940 /* 0x1.1a35beb6fd0cd0007 */,
+1.103876002922312915544 /* 0x1.1a979e2363fa10000 */,
+1.105371445702084232160 /* 0x1.1af99f8139025000e */,
+1.106868914387219016199 /* 0x1.1b5bc2dc408b9000e */,
+1.108368411723785085252 /* 0x1.1bbe084045eb30002 */,
+1.109869940458469095340 /* 0x1.1c206fb91524c000e */,
+1.111373503344554869449 /* 0x1.1c82f952817cc0001 */,
+1.112879103137133007859 /* 0x1.1ce5a51860344000f */,
+1.114386742595953938610 /* 0x1.1d4873168babf000e */,
+1.115896424484008608911 /* 0x1.1dab6358e1d4a000f */,
+1.117408151567338414664 /* 0x1.1e0e75eb43f9c000c */,
+1.118921926613465345265 /* 0x1.1e71aad995078000f */,
+1.120437752409564780022 /* 0x1.1ed5022fcd8600003 */,
+1.121955631720569668277 /* 0x1.1f387bf9cd88b0000 */,
+1.123475567332998359439 /* 0x1.1f9c18438cdec000a */,
+1.124997562033035469759 /* 0x1.1fffd71902f970002 */,
+1.126521618608448571713 /* 0x1.2063b88629079000e */,
+1.128047739853580200284 /* 0x1.20c7bc96ff72a0002 */,
+1.129575928566289189112 /* 0x1.212be3578a81e0006 */,
+1.131106187546149888259 /* 0x1.21902cd3d05f70007 */,
+1.132638519598779369743 /* 0x1.21f49917ddda5000c */,
+1.134172927531616359481 /* 0x1.2259282fc1c24000e */,
+1.135709414157753949251 /* 0x1.22bdda27911e90007 */,
+1.137247982292643566662 /* 0x1.2322af0b638e60007 */,
+1.138788634756517259562 /* 0x1.2387a6e755f270000 */,
+1.140331374372893558110 /* 0x1.23ecc1c788c890006 */,
+1.141876203969685699176 /* 0x1.2451ffb821639000c */,
+1.143423126377846266197 /* 0x1.24b760c5486dc0009 */,
+1.144972144431494420774 /* 0x1.251ce4fb2a0cc0005 */,
+1.146523260971646252006 /* 0x1.25828c65f9fb8000d */,
+1.148076478839068270690 /* 0x1.25e85711ebaeb0000 */,
+1.149631800883562204903 /* 0x1.264e450b3c8a30008 */,
+1.151189229953253789786 /* 0x1.26b4565e281a20003 */,
+1.152748768902654319399 /* 0x1.271a8b16f0f000002 */,
+1.154310420590433317050 /* 0x1.2780e341de2fc0001 */,
+1.155874187878668246681 /* 0x1.27e75eeb3abc90007 */,
+1.157440073633736243899 /* 0x1.284dfe1f5633e000a */,
+1.159008080725518974322 /* 0x1.28b4c0ea840d90001 */,
+1.160578212048386514965 /* 0x1.291ba75932ae60000 */,
+1.162150470417516290340 /* 0x1.2982b177796850008 */,
+1.163724858777502646494 /* 0x1.29e9df51fdd900001 */,
+1.165301379991388053320 /* 0x1.2a5130f50bf34000e */,
+1.166880036952526289469 /* 0x1.2ab8a66d10fdc0008 */,
+1.168460832550151540268 /* 0x1.2b203fc675b7a000a */,
+1.170043769683112966389 /* 0x1.2b87fd0dad7260008 */,
+1.171628851252754177681 /* 0x1.2befde4f2e3da000d */,
+1.173216080163546060084 /* 0x1.2c57e397719940002 */,
+1.174805459325657830448 /* 0x1.2cc00cf2f7491000c */,
+1.176396991650083379037 /* 0x1.2d285a6e3ff90000b */,
+1.177990680055698513602 /* 0x1.2d90cc15d4ff90005 */,
+1.179586527463262646306 /* 0x1.2df961f641c57000c */,
+1.181184536796979545103 /* 0x1.2e621c1c157cd000d */,
+1.182784710984701836994 /* 0x1.2ecafa93e35af0004 */,
+1.184387052960675701386 /* 0x1.2f33fd6a459cb0000 */,
+1.185991565661414393112 /* 0x1.2f9d24abd8fd1000e */,
+1.187598252026902612178 /* 0x1.300670653e083000a */,
+1.189207115003001469262 /* 0x1.306fe0a31bc040008 */,
+1.190818157535919796833 /* 0x1.30d9757219895000e */,
+1.192431382587621380206 /* 0x1.31432edef01a1000f */,
+1.194046793097208292195 /* 0x1.31ad0cf63f0630008 */,
+1.195664392040319823392 /* 0x1.32170fc4ce0db000c */,
+1.197284182375793593084 /* 0x1.32813757527750005 */,
+1.198906167074650808198 /* 0x1.32eb83ba8eef3000f */,
+1.200530349107333139048 /* 0x1.3355f4fb457e5000d */,
+1.202156731453099647353 /* 0x1.33c08b2641df9000c */,
+1.203785317090505513368 /* 0x1.342b46484f07b0005 */,
+1.205416109005122526928 /* 0x1.3496266e3fa270005 */,
+1.207049110184904572310 /* 0x1.35012ba4e8fa10000 */,
+1.208684323627194912036 /* 0x1.356c55f92aabb0004 */,
+1.210321752322854882437 /* 0x1.35d7a577dd33f0004 */,
+1.211961399276747286580 /* 0x1.36431a2de8748000d */,
+1.213603267492579629347 /* 0x1.36aeb4283309e000c */,
+1.215247359985374142610 /* 0x1.371a7373b00160000 */,
+1.216893679753690671322 /* 0x1.3786581d404e90000 */,
+1.218542229828181611183 /* 0x1.37f26231e82e4000c */,
+1.220193013225231215567 /* 0x1.385e91be9c2d20002 */,
+1.221846032973555429280 /* 0x1.38cae6d05e66f0000 */,
+1.223501292099485437962 /* 0x1.393761742e5830001 */,
+1.225158793636904830441 /* 0x1.39a401b713cb3000e */,
+1.226818540625497444577 /* 0x1.3a10c7a61ceae0007 */,
+1.228480536107136034131 /* 0x1.3a7db34e5a4a50003 */,
+1.230144783126481566885 /* 0x1.3aeac4bcdf8d60001 */,
+1.231811284734168454619 /* 0x1.3b57fbfec6e950008 */,
+1.233480043984379381835 /* 0x1.3bc559212e7a2000f */,
+1.235151063936380300149 /* 0x1.3c32dc3139f2a0004 */,
+1.236824347652524913647 /* 0x1.3ca0853c106ac000e */,
+1.238499898199571624970 /* 0x1.3d0e544eddd240003 */,
+1.240177718649636107175 /* 0x1.3d7c4976d3fcd0000 */,
+1.241857812073360767273 /* 0x1.3dea64c1231f70004 */,
+1.243540181554270152039 /* 0x1.3e58a63b099920005 */,
+1.245224830175077013244 /* 0x1.3ec70df1c4e46000e */,
+1.246911761022835740725 /* 0x1.3f359bf29741c000e */,
+1.248600977188942806639 /* 0x1.3fa4504ac7b800009 */,
+1.250292481770148400634 /* 0x1.40132b07a330d000a */,
+1.251986277866492969263 /* 0x1.40822c367a340000b */,
+1.253682368581898742876 /* 0x1.40f153e4a18e0000d */,
+1.255380757024939564249 /* 0x1.4160a21f73289000d */,
+1.257081446308726757662 /* 0x1.41d016f44deaa000c */,
+1.258784439550028944083 /* 0x1.423fb27094c090008 */,
+1.260489739869405489991 /* 0x1.42af74a1aec1c0006 */,
+1.262197350394008266193 /* 0x1.431f5d950a453000c */,
+1.263907274252603851764 /* 0x1.438f6d58176860004 */,
+1.265619514578811388761 /* 0x1.43ffa3f84b9eb000d */,
+1.267334074511444086425 /* 0x1.44700183221180008 */,
+1.269050957191869555296 /* 0x1.44e0860618b930006 */,
+1.270770165768063009230 /* 0x1.4551318eb4d20000e */,
+1.272491703389059036805 /* 0x1.45c2042a7cc26000b */,
+1.274215573211836316547 /* 0x1.4632fde6ffacd000d */,
+1.275941778396075143580 /* 0x1.46a41ed1cfac40001 */,
+1.277670322103555911043 /* 0x1.471566f8812ac0000 */,
+1.279401207505722393185 /* 0x1.4786d668b33260005 */,
+1.281134437771823675369 /* 0x1.47f86d3002637000a */,
+1.282870016078732078362 /* 0x1.486a2b5c13c00000e */,
+1.284607945607987078432 /* 0x1.48dc10fa916bd0004 */,
+1.286348229545787758022 /* 0x1.494e1e192aaa30007 */,
+1.288090871080605159846 /* 0x1.49c052c5913df000c */,
+1.289835873406902644341 /* 0x1.4a32af0d7d8090002 */,
+1.291583239722392528754 /* 0x1.4aa532feab5e10002 */,
+1.293332973229098792374 /* 0x1.4b17dea6db8010008 */,
+1.295085077135345708087 /* 0x1.4b8ab213d57d9000d */,
+1.296839554650994097442 /* 0x1.4bfdad53629e10003 */,
+1.298596408992440220988 /* 0x1.4c70d0735358a000d */,
+1.300355643380135983739 /* 0x1.4ce41b817c99e0001 */,
+1.302117261036232376282 /* 0x1.4d578e8bb52cb0003 */,
+1.303881265192249561154 /* 0x1.4dcb299fde2920008 */,
+1.305647659079073541490 /* 0x1.4e3eeccbd7f4c0003 */,
+1.307416445934474813521 /* 0x1.4eb2d81d8a86f000b */,
+1.309187629001237640529 /* 0x1.4f26eba2e35a5000e */,
+1.310961211525240921493 /* 0x1.4f9b2769d35090009 */,
+1.312737196755087820678 /* 0x1.500f8b804e4a30000 */,
+1.314515587949291131086 /* 0x1.508417f4530d00009 */,
+1.316296388365203462468 /* 0x1.50f8ccd3df1840003 */,
+1.318079601265708777911 /* 0x1.516daa2cf60020002 */,
+1.319865229921343141607 /* 0x1.51e2b00da3c2b0007 */,
+1.321653277603506371251 /* 0x1.5257de83f5512000d */,
+1.323443747588034513690 /* 0x1.52cd359dfc7d5000e */,
+1.325236643161341820781 /* 0x1.5342b569d6baa000f */,
+1.327031967602244177939 /* 0x1.53b85df59921b0000 */,
+1.328829724206201046165 /* 0x1.542e2f4f6b17e0006 */,
+1.330629916266568235675 /* 0x1.54a4298571b27000e */,
+1.332432547083447937938 /* 0x1.551a4ca5d97190009 */,
+1.334237619959296017340 /* 0x1.559098bed16bf0008 */,
+1.336045138203900251029 /* 0x1.56070dde90c800000 */,
+1.337855105129210686631 /* 0x1.567dac13510cd0009 */,
+1.339667524053662184301 /* 0x1.56f4736b52e2c000c */,
+1.341482398296830025383 /* 0x1.576b63f4d8333000f */,
+1.343299731186792467254 /* 0x1.57e27dbe2c40e0003 */,
+1.345119526053918823702 /* 0x1.5859c0d59cd37000f */,
+1.346941786233264881662 /* 0x1.58d12d497cd9a0005 */,
+1.348766515064854010261 /* 0x1.5948c32824b87000c */,
+1.350593715891792223641 /* 0x1.59c0827ff03890007 */,
+1.352423392064920459908 /* 0x1.5a386b5f43a3e0006 */,
+1.354255546937278120764 /* 0x1.5ab07dd485af1000c */,
+1.356090183865519494030 /* 0x1.5b28b9ee21085000f */,
+1.357927306213322804534 /* 0x1.5ba11fba8816e000b */,
+1.359766917346459269620 /* 0x1.5c19af482f8f2000f */,
+1.361609020638567812980 /* 0x1.5c9268a594cc00004 */,
+1.363453619463660171403 /* 0x1.5d0b4be135916000c */,
+1.365300717204201985683 /* 0x1.5d84590998eeb0005 */,
+1.367150317245710233754 /* 0x1.5dfd902d494e40001 */,
+1.369002422974674892971 /* 0x1.5e76f15ad22c40008 */,
+1.370857037789471544224 /* 0x1.5ef07ca0cc166000b */,
+1.372714165088220639199 /* 0x1.5f6a320dcf5280006 */,
+1.374573808273481745378 /* 0x1.5fe411b0790800009 */,
+1.376435970755022220096 /* 0x1.605e1b976e4b1000e */,
+1.378300655944092456600 /* 0x1.60d84fd155d15000e */,
+1.380167867259843417228 /* 0x1.6152ae6cdf0030003 */,
+1.382037608124419003675 /* 0x1.61cd3778bc879000d */,
+1.383909881963391264069 /* 0x1.6247eb03a4dc40009 */,
+1.385784692209972801544 /* 0x1.62c2c91c56d9b0002 */,
+1.387662042298923203992 /* 0x1.633dd1d1930ec0001 */,
+1.389541935670444372533 /* 0x1.63b90532200630004 */,
+1.391424375772021271329 /* 0x1.6434634ccc4cc0007 */,
+1.393309366052102982208 /* 0x1.64afec30677e90008 */,
+1.395196909966106124701 /* 0x1.652b9febc8e0f000d */,
+1.397087010973788290271 /* 0x1.65a77e8dcc7f10004 */,
+1.398979672539331309267 /* 0x1.66238825534170000 */,
+1.400874898129892187656 /* 0x1.669fbcc1415600008 */,
+1.402772691220124823310 /* 0x1.671c1c708328e000a */,
+1.404673055288671035301 /* 0x1.6798a7420988b000d */,
+1.406575993818903302975 /* 0x1.68155d44ca77a000f */,
+1.408481510297352468121 /* 0x1.68923e87bf70e000a */,
+1.410389608216942924956 /* 0x1.690f4b19e8f74000c */,
+1.412300291075172076232 /* 0x1.698c830a4c94c0008 */
+};
+#define S (1.0/4503599627370496.0)  /* 2^-52 */
+static const float exp2_deltatable[512] = {
+ 11527*S,  -963*S,   884*S,  -781*S, -2363*S, -3441*S,   123*S,   526*S,
+    -6*S,  1254*S, -1138*S,  1519*S,  1576*S,   -65*S,  1040*S,   793*S,
+ -1662*S, -5063*S,  -387*S,   968*S,  -941*S,   984*S, -2856*S,  -545*S,
+   495*S, -5246*S, -2109*S,  1281*S,  2075*S,   909*S, -1642*S,-78233*S,
+-31653*S,  -265*S,   130*S,   430*S,  2482*S,  -742*S,  1616*S, -2213*S,
+  -519*S,    20*S, -3134*S,-13981*S,  1343*S, -1740*S,   247*S,  1679*S,
+ -1097*S,  3131*S,   871*S, -1480*S,  1936*S, -1827*S, 17325*S,   528*S,
+  -322*S,  1404*S,  -152*S, -1845*S,  -212*S,  2639*S,  -476*S,  2960*S,
+  -962*S, -1012*S, -1231*S,  3030*S,  1659*S,  -486*S,  2154*S,  1728*S,
+ -2793*S,   699*S, -1560*S, -2125*S,  2156*S,   142*S, -1888*S,  4426*S,
+-13443*S,  1970*S,   -50*S,  1771*S,-43399*S,  4979*S, -2448*S,  -370*S,
+  1414*S,  1075*S,   232*S,   206*S,   873*S,  2141*S,  2970*S,  1279*S,
+ -2331*S,   336*S, -2595*S,   753*S, -3384*S,  -616*S,    89*S,  -818*S,
+  5755*S,  -241*S,  -528*S,  -661*S, -3777*S,  -354*S,   250*S,  3881*S,
+  2632*S, -2131*S,  2565*S,  -316*S,  1746*S, -2541*S, -1324*S,   -50*S,
+  2564*S,  -782*S,  1176*S,  6452*S, -1002*S,  1288*S,   336*S,  -185*S,
+  3063*S,  3784*S,  2169*S,   686*S,   328*S,  -400*S,   312*S, -4517*S,
+ -1457*S,  1046*S, -1530*S,  -685*S,  1328*S,-49815*S,  -895*S,  1063*S,
+ -2091*S,  -672*S, -1710*S,  -665*S,  1545*S,  1819*S,-45265*S,  3548*S,
+  -554*S,  -568*S,  4752*S, -1907*S,-13738*S,   675*S,  9611*S, -1115*S,
+  -815*S,   408*S, -1281*S,  -937*S,-16376*S, -4772*S, -1440*S,   992*S,
+   788*S, 10364*S, -1602*S,  -661*S, -1783*S,  -265*S,   -20*S, -3781*S,
+  -861*S,  -345*S,  -994*S,  1364*S, -5339*S,  1620*S,  9390*S, -1066*S,
+  -305*S,  -170*S,   175*S,  2461*S,  -490*S,  -769*S, -1450*S,  3315*S,
+  2418*S,   -45*S,  -852*S, -1295*S,  -488*S,   -96*S,  1142*S, -2639*S,
+  7905*S, -9306*S, -3859*S,   760*S,  1057*S, -1570*S,  3977*S,   209*S,
+  -514*S,  7151*S,  1646*S,   627*S,   599*S,  -774*S, -1468*S,   633*S,
+  -473*S,   851*S,  2406*S,   143*S,    74*S,  4260*S,  1177*S,  -913*S,
+  2670*S, -3298*S, -1662*S,  -120*S, -3264*S, -2148*S,   410*S,  2078*S,
+ -2098*S,  -926*S,  3580*S, -1289*S,  2450*S, -1158*S,   907*S,  -590*S,
+   986*S,  1801*S,  1145*S, -1677*S,  3455*S,   956*S,   710*S,   144*S,
+   153*S,  -255*S, -1898*S, 28102*S,  2748*S,  1194*S, -3009*S,  7076*S,
+     0*S, -2720*S,   711*S,  1225*S, -3034*S,  -473*S,   378*S, -1046*S,
+   962*S, -2006*S,  4647*S,  3206*S,  1769*S, -2665*S,  1254*S,  2025*S,
+ -2430*S,  6193*S,  1224*S,  -856*S, -1592*S,  -325*S, -1521*S,  1827*S,
+  -264*S,  2403*S, -1065*S,   967*S,  -681*S, -2106*S,  -474*S,  1333*S,
+  -893*S,  2296*S,   592*S, -1220*S,  -326*S,   990*S,   139*S,   206*S,
+  -779*S, -1683*S,  1238*S,  6098*S,   136*S,  1197*S,   790*S,  -107*S,
+ -1004*S, -2449*S,   939*S,  5568*S,   156*S,  1812*S,  2792*S, -1094*S,
+ -2677*S,  -251*S,  2297*S,   943*S, -1329*S,  2883*S,  -853*S, -2626*S,
+-105929*S, -6552*S,  1095*S, -1508*S,  1003*S,  5039*S, -2600*S,  -749*S,
+  1790*S,   890*S,  2016*S, -1073*S,   624*S, -2084*S, -1536*S, -1330*S,
+   358*S,  2444*S,  -179*S,-25759*S,  -243*S,  -552*S,  -124*S,  3766*S,
+  1192*S, -1614*S,     6*S, -1227*S,   345*S,  -981*S,  -295*S, -1006*S,
+  -995*S, -1195*S,   706*S,  2512*S, -1758*S,  -734*S, -6286*S,  -922*S,
+  1530*S,  1542*S,  1223*S,    61*S,   -83*S,   522*S,116937*S,  -914*S,
+  -418*S, -7339*S,   249*S,  -520*S,  -762*S,   426*S,  -505*S,  2664*S,
+ -1093*S, -1035*S,  2130*S,  4878*S,  1982*S,  1551*S,  2304*S,   193*S,
+  1532*S, -7268*S, 24357*S,   531*S,  2676*S, -1170*S,  1465*S, -1917*S,
+  2143*S,  1466*S,    -7*S, -7300*S,  3297*S, -1197*S,  -289*S, -1548*S,
+ 26226*S,  4401*S,  4123*S, -1588*S,  4243*S,  4069*S, -1276*S, -2010*S,
+  1407*S,  1478*S,   488*S, -2366*S, -2909*S, -2534*S, -1285*S,  7095*S,
+  -645*S, -2089*S,  -944*S,   -40*S, -1363*S,  -833*S,   917*S,  1609*S,
+  1286*S,  1677*S,  1613*S, -2295*S, -1248*S,    40*S,    26*S,  2038*S,
+   698*S,  2675*S, -1755*S, -3522*S, -1614*S, -6111*S,   270*S,  1822*S,
+  -234*S, -2844*S, -1201*S,  -830*S,  1193*S,  2354*S,    47*S,  1522*S,
+   -78*S,  -640*S,  2425*S, -1596*S,  1563*S,  1169*S, -1006*S,   -83*S,
+  2362*S, -3521*S,  -314*S,  1814*S, -1751*S,   305*S,  1715*S, -3741*S,
+  7847*S,  1291*S,  1206*S,    36*S,  1397*S, -1419*S, -1194*S, -2014*S,
+  1742*S,  -578*S,  -207*S,   875*S,  1539*S,  2826*S, -1165*S,  -909*S,
+  1849*S,   927*S,  2018*S,  -981*S,  1637*S,  -463*S,   905*S,  6618*S,
+   400*S,   630*S,  2614*S,   900*S,  2323*S, -1094*S, -1858*S,  -212*S,
+ -2069*S,   747*S,  1845*S, -1450*S,   444*S,  -213*S,  -438*S,  1158*S,
+  4738*S,  2497*S,  -370*S, -2016*S,  -518*S, -1160*S, -1510*S,   123*S
+};
+/* Maximum magnitude in above table: 116937 */
+#undef S
diff --git a/sysdeps/ieee754/dbl-64/w_exp.c b/sysdeps/ieee754/dbl-64/w_exp.c
new file mode 100644
index 0000000000..445c5788d2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/w_exp.c
@@ -0,0 +1,58 @@
+/* @(#)w_exp.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: w_exp.c,v 1.6 1995/05/10 20:48:51 jtc Exp $";
+#endif
+
+/*
+ * wrapper exp(x)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
+u_threshold= -7.45133219101941108420e+02;  /* 0xc0874910, 0xD52D3051 */
+
+#ifdef __STDC__
+	double __exp(double x)		/* wrapper exp */
+#else
+	double __exp(x)			/* wrapper exp */
+	double x;
+#endif
+{
+#ifdef _IEEE_LIBM
+	return __ieee754_exp(x);
+#else
+	double z;
+	z = __ieee754_exp(x);
+	if(_LIB_VERSION == _IEEE_) return z;
+	if(__finite(x)) {
+	    if(x>o_threshold)
+	        return __kernel_standard(x,x,6); /* exp overflow */
+	    else if(x<u_threshold)
+	        return __kernel_standard(x,x,7); /* exp underflow */
+	}
+	return z;
+#endif
+}
+weak_alias (__exp, exp)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__exp, __expl)
+weak_alias (__exp, expl)
+#endif
diff --git a/sysdeps/ieee754/flt-32/Dist b/sysdeps/ieee754/flt-32/Dist
new file mode 100644
index 0000000000..045ac801f6
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/Dist
@@ -0,0 +1 @@
+t_exp2f.h
diff --git a/sysdeps/ieee754/flt-32/e_acosf.c b/sysdeps/ieee754/flt-32/e_acosf.c
new file mode 100644
index 0000000000..0d85c4210d
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_acosf.c
@@ -0,0 +1,89 @@
+/* e_acosf.c -- float version of e_acos.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_acosf.c,v 1.5 1995/05/12 04:57:16 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float 
+#else
+static float 
+#endif
+one =  1.0000000000e+00, /* 0x3F800000 */
+pi =  3.1415925026e+00, /* 0x40490fda */
+pio2_hi =  1.5707962513e+00, /* 0x3fc90fda */
+pio2_lo =  7.5497894159e-08, /* 0x33a22168 */
+pS0 =  1.6666667163e-01, /* 0x3e2aaaab */
+pS1 = -3.2556581497e-01, /* 0xbea6b090 */
+pS2 =  2.0121252537e-01, /* 0x3e4e0aa8 */
+pS3 = -4.0055535734e-02, /* 0xbd241146 */
+pS4 =  7.9153501429e-04, /* 0x3a4f7f04 */
+pS5 =  3.4793309169e-05, /* 0x3811ef08 */
+qS1 = -2.4033949375e+00, /* 0xc019d139 */
+qS2 =  2.0209457874e+00, /* 0x4001572d */
+qS3 = -6.8828397989e-01, /* 0xbf303361 */
+qS4 =  7.7038154006e-02; /* 0x3d9dc62e */
+
+#ifdef __STDC__
+	float __ieee754_acosf(float x)
+#else
+	float __ieee754_acosf(x)
+	float x;
+#endif
+{
+	float z,p,q,r,w,s,c,df;
+	int32_t hx,ix;
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix==0x3f800000) {		/* |x|==1 */
+	    if(hx>0) return 0.0;	/* acos(1) = 0  */
+	    else return pi+(float)2.0*pio2_lo;	/* acos(-1)= pi */
+	} else if(ix>0x3f800000) {	/* |x| >= 1 */
+	    return (x-x)/(x-x);		/* acos(|x|>1) is NaN */
+	}
+	if(ix<0x3f000000) {	/* |x| < 0.5 */
+	    if(ix<=0x23000000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
+	    z = x*x;
+	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+	    r = p/q;
+	    return pio2_hi - (x - (pio2_lo-x*r));
+	} else  if (hx<0) {		/* x < -0.5 */
+	    z = (one+x)*(float)0.5;
+	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+	    s = __ieee754_sqrtf(z);
+	    r = p/q;
+	    w = r*s-pio2_lo;
+	    return pi - (float)2.0*(s+w);
+	} else {			/* x > 0.5 */
+	    int32_t idf;
+	    z = (one-x)*(float)0.5;
+	    s = __ieee754_sqrtf(z);
+	    df = s;
+	    GET_FLOAT_WORD(idf,df);
+	    SET_FLOAT_WORD(df,idf&0xfffff000);
+	    c  = (z-df*df)/(s+df);
+	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+	    r = p/q;
+	    w = r*s+c;
+	    return (float)2.0*(df+w);
+	}
+}
diff --git a/sysdeps/ieee754/flt-32/e_acoshf.c b/sysdeps/ieee754/flt-32/e_acoshf.c
new file mode 100644
index 0000000000..c607f72117
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_acoshf.c
@@ -0,0 +1,57 @@
+/* e_acoshf.c -- float version of e_acosh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_acoshf.c,v 1.5 1995/05/12 04:57:20 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float 
+#else
+static float 
+#endif
+one	= 1.0,
+ln2	= 6.9314718246e-01;  /* 0x3f317218 */
+
+#ifdef __STDC__
+	float __ieee754_acoshf(float x)
+#else
+	float __ieee754_acoshf(x)
+	float x;
+#endif
+{	
+	float t;
+	int32_t hx;
+	GET_FLOAT_WORD(hx,x);
+	if(hx<0x3f800000) {		/* x < 1 */
+	    return (x-x)/(x-x);
+	} else if(hx >=0x4d800000) {	/* x > 2**28 */
+	    if(hx >=0x7f800000) {	/* x is inf of NaN */
+	        return x+x;
+	    } else 
+		return __ieee754_logf(x)+ln2;	/* acosh(huge)=log(2x) */
+	} else if (hx==0x3f800000) {
+	    return 0.0;			/* acosh(1) = 0 */
+	} else if (hx > 0x40000000) {	/* 2**28 > x > 2 */
+	    t=x*x;
+	    return __ieee754_logf((float)2.0*x-one/(x+__ieee754_sqrtf(t-one)));
+	} else {			/* 1<x<2 */
+	    t = x-one;
+	    return __log1pf(t+__sqrtf((float)2.0*t+t*t));
+	}
+}
diff --git a/sysdeps/ieee754/flt-32/e_asinf.c b/sysdeps/ieee754/flt-32/e_asinf.c
new file mode 100644
index 0000000000..5270f31144
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_asinf.c
@@ -0,0 +1,93 @@
+/* e_asinf.c -- float version of e_asin.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_asinf.c,v 1.5 1995/05/12 04:57:25 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+one =  1.0000000000e+00, /* 0x3F800000 */
+huge =  1.000e+30,
+pio2_hi =  1.5707962513e+00, /* 0x3fc90fda */
+pio2_lo =  7.5497894159e-08, /* 0x33a22168 */
+pio4_hi =  7.8539818525e-01, /* 0x3f490fdb */
+	/* coefficient for R(x^2) */
+pS0 =  1.6666667163e-01, /* 0x3e2aaaab */
+pS1 = -3.2556581497e-01, /* 0xbea6b090 */
+pS2 =  2.0121252537e-01, /* 0x3e4e0aa8 */
+pS3 = -4.0055535734e-02, /* 0xbd241146 */
+pS4 =  7.9153501429e-04, /* 0x3a4f7f04 */
+pS5 =  3.4793309169e-05, /* 0x3811ef08 */
+qS1 = -2.4033949375e+00, /* 0xc019d139 */
+qS2 =  2.0209457874e+00, /* 0x4001572d */
+qS3 = -6.8828397989e-01, /* 0xbf303361 */
+qS4 =  7.7038154006e-02; /* 0x3d9dc62e */
+
+#ifdef __STDC__
+	float __ieee754_asinf(float x)
+#else
+	float __ieee754_asinf(x)
+	float x;
+#endif
+{
+	float t,w,p,q,c,r,s;
+	int32_t hx,ix;
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix==0x3f800000) {
+		/* asin(1)=+-pi/2 with inexact */
+	    return x*pio2_hi+x*pio2_lo;
+	} else if(ix> 0x3f800000) {	/* |x|>= 1 */
+	    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */
+	} else if (ix<0x3f000000) {	/* |x|<0.5 */
+	    if(ix<0x32000000) {		/* if |x| < 2**-27 */
+		if(huge+x>one) return x;/* return x with inexact if x!=0*/
+	    } else {
+		t = x*x;
+		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+		w = p/q;
+		return x+x*w;
+	    }
+	}
+	/* 1> |x|>= 0.5 */
+	w = one-fabsf(x);
+	t = w*(float)0.5;
+	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+	s = __ieee754_sqrtf(t);
+	if(ix>=0x3F79999A) { 	/* if |x| > 0.975 */
+	    w = p/q;
+	    t = pio2_hi-((float)2.0*(s+s*w)-pio2_lo);
+	} else {
+	    int32_t iw;
+	    w  = s;
+	    GET_FLOAT_WORD(iw,w);
+	    SET_FLOAT_WORD(w,iw&0xfffff000);
+	    c  = (t-w*w)/(s+w);
+	    r  = p/q;
+	    p  = (float)2.0*s*r-(pio2_lo-(float)2.0*c);
+	    q  = pio4_hi-(float)2.0*w;
+	    t  = pio4_hi-(p-q);
+	}
+	if(hx>0) return t; else return -t;
+}
diff --git a/sysdeps/ieee754/flt-32/e_atan2f.c b/sysdeps/ieee754/flt-32/e_atan2f.c
new file mode 100644
index 0000000000..8b3398c0a3
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_atan2f.c
@@ -0,0 +1,105 @@
+/* e_atan2f.c -- float version of e_atan2.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_atan2f.c,v 1.4 1995/05/10 20:44:53 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+tiny  = 1.0e-30,
+zero  = 0.0,
+pi_o_4  = 7.8539818525e-01,  /* 0x3f490fdb */
+pi_o_2  = 1.5707963705e+00,  /* 0x3fc90fdb */
+pi      = 3.1415927410e+00,  /* 0x40490fdb */
+pi_lo   = -8.7422776573e-07; /* 0xb3bbbd2e */
+
+#ifdef __STDC__
+	float __ieee754_atan2f(float y, float x)
+#else
+	float __ieee754_atan2f(y,x)
+	float  y,x;
+#endif
+{
+	float z;
+	int32_t k,m,hx,hy,ix,iy;
+
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	GET_FLOAT_WORD(hy,y);
+	iy = hy&0x7fffffff;
+	if((ix>0x7f800000)||
+	   (iy>0x7f800000))	/* x or y is NaN */
+	   return x+y;
+	if(hx==0x3f800000) return __atanf(y);   /* x=1.0 */
+	m = ((hy>>31)&1)|((hx>>30)&2);	/* 2*sign(x)+sign(y) */
+
+    /* when y = 0 */
+	if(iy==0) {
+	    switch(m) {
+		case 0:
+		case 1: return y; 	/* atan(+-0,+anything)=+-0 */
+		case 2: return  pi+tiny;/* atan(+0,-anything) = pi */
+		case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
+	    }
+	}
+    /* when x = 0 */
+	if(ix==0) return (hy<0)?  -pi_o_2-tiny: pi_o_2+tiny;
+
+    /* when x is INF */
+	if(ix==0x7f800000) {
+	    if(iy==0x7f800000) {
+		switch(m) {
+		    case 0: return  pi_o_4+tiny;/* atan(+INF,+INF) */
+		    case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
+		    case 2: return  (float)3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
+		    case 3: return (float)-3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
+		}
+	    } else {
+		switch(m) {
+		    case 0: return  zero  ;	/* atan(+...,+INF) */
+		    case 1: return -zero  ;	/* atan(-...,+INF) */
+		    case 2: return  pi+tiny  ;	/* atan(+...,-INF) */
+		    case 3: return -pi-tiny  ;	/* atan(-...,-INF) */
+		}
+	    }
+	}
+    /* when y is INF */
+	if(iy==0x7f800000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
+
+    /* compute y/x */
+	k = (iy-ix)>>23;
+	if(k > 60) z=pi_o_2+(float)0.5*pi_lo; 	/* |y/x| >  2**60 */
+	else if(hx<0&&k<-60) z=0.0; 	/* |y|/x < -2**60 */
+	else z=__atanf(fabsf(y/x));	/* safe to do y/x */
+	switch (m) {
+	    case 0: return       z  ;	/* atan(+,+) */
+	    case 1: {
+	    	      u_int32_t zh;
+		      GET_FLOAT_WORD(zh,z);
+		      SET_FLOAT_WORD(z,zh ^ 0x80000000);
+		    }
+		    return       z  ;	/* atan(-,+) */
+	    case 2: return  pi-(z-pi_lo);/* atan(+,-) */
+	    default: /* case 3 */
+	    	    return  (z-pi_lo)-pi;/* atan(-,-) */
+	}
+}
diff --git a/sysdeps/ieee754/flt-32/e_atanhf.c b/sysdeps/ieee754/flt-32/e_atanhf.c
new file mode 100644
index 0000000000..f26a15bbc1
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_atanhf.c
@@ -0,0 +1,58 @@
+/* e_atanhf.c -- float version of e_atanh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_atanhf.c,v 1.4 1995/05/10 20:44:56 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float one = 1.0, huge = 1e30;
+#else
+static float one = 1.0, huge = 1e30;
+#endif
+
+#ifdef __STDC__
+static const float zero = 0.0;
+#else
+static float zero = 0.0;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_atanhf(float x)
+#else
+	float __ieee754_atanhf(x)
+	float x;
+#endif
+{
+	float t;
+	int32_t hx,ix;
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if (ix>0x3f800000) 		/* |x|>1 */
+	    return (x-x)/(x-x);
+	if(ix==0x3f800000) 
+	    return x/zero;
+	if(ix<0x31800000&&(huge+x)>zero) return x;	/* x<2**-28 */
+	SET_FLOAT_WORD(x,ix);
+	if(ix<0x3f000000) {		/* x < 0.5 */
+	    t = x+x;
+	    t = (float)0.5*__log1pf(t+t*x/(one-x));
+	} else 
+	    t = (float)0.5*__log1pf((x+x)/(one-x));
+	if(hx>=0) return t; else return -t;
+}
diff --git a/sysdeps/ieee754/flt-32/e_coshf.c b/sysdeps/ieee754/flt-32/e_coshf.c
new file mode 100644
index 0000000000..223fbeea20
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_coshf.c
@@ -0,0 +1,72 @@
+/* e_coshf.c -- float version of e_cosh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_coshf.c,v 1.6 1996/04/08 15:43:41 phil Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float huge = 1.0e30;
+static const float one = 1.0, half=0.5;
+#else
+static float one = 1.0, half=0.5, huge = 1.0e30;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_coshf(float x)
+#else
+	float __ieee754_coshf(x)
+	float x;
+#endif
+{
+	float t,w;
+	int32_t ix;
+
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+
+    /* x is INF or NaN */
+	if(ix>=0x7f800000) return x*x;
+
+    /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
+	if(ix<0x3eb17218) {
+	    t = __expm1f(fabsf(x));
+	    w = one+t;
+	    if (ix<0x24000000) return w;	/* cosh(tiny) = 1 */
+	    return one+(t*t)/(w+w);
+	}
+
+    /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
+	if (ix < 0x41b00000) {
+		t = __ieee754_expf(fabsf(x));
+		return half*t+half/t;
+	}
+
+    /* |x| in [22, log(maxdouble)] return half*exp(|x|) */
+	if (ix < 0x42b17180)  return half*__ieee754_expf(fabsf(x));
+
+    /* |x| in [log(maxdouble), overflowthresold] */
+	if (ix<=0x42b2d4fc) {
+	    w = __ieee754_expf(half*fabsf(x));
+	    t = half*w;
+	    return t*w;
+	}
+
+    /* |x| > overflowthresold, cosh(x) overflow */
+	return huge*huge;
+}
diff --git a/sysdeps/ieee754/flt-32/e_expf.c b/sysdeps/ieee754/flt-32/e_expf.c
new file mode 100644
index 0000000000..e8a9c9d874
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_expf.c
@@ -0,0 +1,140 @@
+/* Single-precision floating point e^x.
+   Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* How this works:
+
+   The input value, x, is written as
+
+   x = n * ln(2) + t/512 + delta[t] + x;
+
+   where:
+   - n is an integer, 127 >= n >= -150;
+   - t is an integer, 177 >= t >= -177
+   - delta is based on a table entry, delta[t] < 2^-28
+   - x is whatever is left, |x| < 2^-10
+
+   Then e^x is approximated as
+
+   e^x = 2^n ( e^(t/512 + delta[t])
+               + ( e^(t/512 + delta[t])
+                   * ( p(x + delta[t] + n * ln(2)) - delta ) ) )
+
+   where
+   - p(x) is a polynomial approximating e(x)-1;
+   - e^(t/512 + delta[t]) is obtained from a table.
+
+   The table used is the same one as for the double precision version;
+   since we have the table, we might as well use it.
+
+   It turns out to be faster to do calculations in double precision than
+   to perform an 'accurate table method' expf, because of the range reduction
+   overhead (compare exp2f).
+   */
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+#include <float.h>
+#include <ieee754.h>
+#include <math.h>
+#include <fenv.h>
+#include <inttypes.h>
+#include <math_private.h>
+
+extern const float __exp_deltatable[178];
+extern const double __exp_atable[355] /* __attribute__((mode(DF))) */;
+
+static const volatile float TWOM100 = 7.88860905e-31;
+static const volatile float TWO127 = 1.7014118346e+38;
+
+float
+__ieee754_expf (float x)
+{
+  static const float himark = 88.72283935546875;
+  static const float lomark = -103.972084045410;
+  /* Check for usual case.  */
+  if (isless (x, himark) && isgreater (x, lomark))
+    {
+      static const float THREEp42 = 13194139533312.0;
+      static const float THREEp22 = 12582912.0;
+      /* 1/ln(2).  */
+#undef M_1_LN2
+      static const float M_1_LN2 = 1.44269502163f;
+      /* ln(2) */
+#undef M_LN2
+      static const double M_LN2 = .6931471805599452862;
+
+      int tval;
+      double x22, t, result, dx;
+      float n, delta;
+      union ieee754_double ex2_u;
+      fenv_t oldenv;
+
+      feholdexcept (&oldenv);
+#ifdef FE_TONEAREST
+      fesetround (FE_TONEAREST);
+#endif
+
+      /* Calculate n.  */
+      n = x * M_1_LN2 + THREEp22;
+      n -= THREEp22;
+      dx = x - n*M_LN2;
+
+      /* Calculate t/512.  */
+      t = dx + THREEp42;
+      t -= THREEp42;
+      dx -= t;
+
+      /* Compute tval = t.  */
+      tval = (int) (t * 512.0);
+
+      if (t >= 0)
+	delta = - __exp_deltatable[tval];
+      else
+	delta = __exp_deltatable[-tval];
+
+      /* Compute ex2 = 2^n e^(t/512+delta[t]).  */
+      ex2_u.d = __exp_atable[tval+177];
+      ex2_u.ieee.exponent += (int) n;
+
+      /* Approximate e^(dx+delta) - 1, using a second-degree polynomial,
+	 with maximum error in [-2^-10-2^-28,2^-10+2^-28]
+	 less than 5e-11.  */
+      x22 = (0.5000000496709180453 * dx + 1.0000001192102037084) * dx + delta;
+
+      /* Return result.  */
+      fesetenv (&oldenv);
+
+      result = x22 * ex2_u.d + ex2_u.d;
+      return (float) result;
+    }
+  /* Exceptional cases:  */
+  else if (isless (x, himark))
+    {
+      if (__isinff (x))
+	/* e^-inf == 0, with no error.  */
+	return 0;
+      else
+	/* Underflow */
+	return TWOM100 * TWOM100;
+    }
+  else
+    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
+    return TWO127*x;
+}
diff --git a/sysdeps/ieee754/flt-32/e_fmodf.c b/sysdeps/ieee754/flt-32/e_fmodf.c
new file mode 100644
index 0000000000..47b312392c
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_fmodf.c
@@ -0,0 +1,113 @@
+/* e_fmodf.c -- float version of e_fmod.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_fmodf.c,v 1.4 1995/05/10 20:45:10 jtc Exp $";
+#endif
+
+/* 
+ * __ieee754_fmodf(x,y)
+ * Return x mod y in exact arithmetic
+ * Method: shift and subtract
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float one = 1.0, Zero[] = {0.0, -0.0,};
+#else
+static float one = 1.0, Zero[] = {0.0, -0.0,};
+#endif
+
+#ifdef __STDC__
+	float __ieee754_fmodf(float x, float y)
+#else
+	float __ieee754_fmodf(x,y)
+	float x,y ;
+#endif
+{
+	int32_t n,hx,hy,hz,ix,iy,sx,i;
+
+	GET_FLOAT_WORD(hx,x);
+	GET_FLOAT_WORD(hy,y);
+	sx = hx&0x80000000;		/* sign of x */
+	hx ^=sx;		/* |x| */
+	hy &= 0x7fffffff;	/* |y| */
+
+    /* purge off exception values */
+	if(hy==0||(hx>=0x7f800000)||		/* y=0,or x not finite */
+	   (hy>0x7f800000))			/* or y is NaN */
+	    return (x*y)/(x*y);
+	if(hx<hy) return x;			/* |x|<|y| return x */
+	if(hx==hy)
+	    return Zero[(u_int32_t)sx>>31];	/* |x|=|y| return x*0*/
+
+    /* determine ix = ilogb(x) */
+	if(hx<0x00800000) {	/* subnormal x */
+	    for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
+	} else ix = (hx>>23)-127;
+
+    /* determine iy = ilogb(y) */
+	if(hy<0x00800000) {	/* subnormal y */
+	    for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
+	} else iy = (hy>>23)-127;
+
+    /* set up {hx,lx}, {hy,ly} and align y to x */
+	if(ix >= -126) 
+	    hx = 0x00800000|(0x007fffff&hx);
+	else {		/* subnormal x, shift x to normal */
+	    n = -126-ix;
+	    hx = hx<<n;
+	}
+	if(iy >= -126) 
+	    hy = 0x00800000|(0x007fffff&hy);
+	else {		/* subnormal y, shift y to normal */
+	    n = -126-iy;
+	    hy = hy<<n;
+	}
+
+    /* fix point fmod */
+	n = ix - iy;
+	while(n--) {
+	    hz=hx-hy;
+	    if(hz<0){hx = hx+hx;}
+	    else {
+	    	if(hz==0) 		/* return sign(x)*0 */
+		    return Zero[(u_int32_t)sx>>31];
+	    	hx = hz+hz;
+	    }
+	}
+	hz=hx-hy;
+	if(hz>=0) {hx=hz;}
+
+    /* convert back to floating value and restore the sign */
+	if(hx==0) 			/* return sign(x)*0 */
+	    return Zero[(u_int32_t)sx>>31];	
+	while(hx<0x00800000) {		/* normalize x */
+	    hx = hx+hx;
+	    iy -= 1;
+	}
+	if(iy>= -126) {		/* normalize output */
+	    hx = ((hx-0x00800000)|((iy+127)<<23));
+	    SET_FLOAT_WORD(x,hx|sx);
+	} else {		/* subnormal output */
+	    n = -126 - iy;
+	    hx >>= n;
+	    SET_FLOAT_WORD(x,hx|sx);
+	    x *= one;		/* create necessary signal */
+	}
+	return x;		/* exact output */
+}
diff --git a/sysdeps/ieee754/flt-32/e_gammaf_r.c b/sysdeps/ieee754/flt-32/e_gammaf_r.c
new file mode 100644
index 0000000000..926905e7cd
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_gammaf_r.c
@@ -0,0 +1,50 @@
+/* Implementation of gamma function according to ISO C.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+#include <math_private.h>
+
+
+float
+__ieee754_gammaf_r (float x, int *signgamp)
+{
+  /* We don't have a real gamma implementation now.  We'll use lgamma
+     and the exp function.  But due to the required boundary
+     conditions we must check some values separately.  */
+  int32_t hx;
+
+  GET_FLOAT_WORD (hx, x);
+
+  if ((hx & 0x7fffffff) == 0)
+    {
+      /* Return value for x == 0 is NaN with invalid exception.  */
+      *signgamp = 0;
+      return x / x;
+    }
+  if (hx < 0 && (u_int32_t) hx < 0xff800000 && __rintf (x) == x)
+    {
+      /* Return value for integer x < 0 is NaN with invalid exception.  */
+      *signgamp = 0;
+      return (x - x) / (x - x);
+    }
+
+  /* XXX FIXME.  */
+  return __ieee754_expf (__ieee754_lgammaf_r (x, signgamp));
+}
diff --git a/sysdeps/ieee754/flt-32/e_hypotf.c b/sysdeps/ieee754/flt-32/e_hypotf.c
new file mode 100644
index 0000000000..d6b1520cb8
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_hypotf.c
@@ -0,0 +1,87 @@
+/* e_hypotf.c -- float version of e_hypot.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_hypotf.c,v 1.5 1995/05/12 04:57:30 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	float __ieee754_hypotf(float x, float y)
+#else
+	float __ieee754_hypot(x,y)
+	float x, y;
+#endif
+{
+	float a,b,t1,t2,y1,y2,w;
+	int32_t j,k,ha,hb;
+
+	GET_FLOAT_WORD(ha,x);
+	ha &= 0x7fffffff;
+	GET_FLOAT_WORD(hb,y);
+	hb &= 0x7fffffff;
+	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
+	SET_FLOAT_WORD(a,ha);	/* a <- |a| */
+	SET_FLOAT_WORD(b,hb);	/* b <- |b| */
+	if((ha-hb)>0xf000000) {return a+b;} /* x/y > 2**30 */
+	k=0;
+	if(ha > 0x58800000) {	/* a>2**50 */
+	   if(ha >= 0x7f800000) {	/* Inf or NaN */
+	       w = a+b;			/* for sNaN */
+	       if(ha == 0x7f800000) w = a;
+	       if(hb == 0x7f800000) w = b;
+	       return w;
+	   }
+	   /* scale a and b by 2**-60 */
+	   ha -= 0x5d800000; hb -= 0x5d800000;	k += 60;
+	   SET_FLOAT_WORD(a,ha);
+	   SET_FLOAT_WORD(b,hb);
+	}
+	if(hb < 0x26800000) {	/* b < 2**-50 */
+	    if(hb <= 0x007fffff) {	/* subnormal b or 0 */
+	        if(hb==0) return a;
+		SET_FLOAT_WORD(t1,0x3f000000);	/* t1=2^126 */
+		b *= t1;
+		a *= t1;
+		k -= 126;
+	    } else {		/* scale a and b by 2^60 */
+	        ha += 0x5d800000; 	/* a *= 2^60 */
+		hb += 0x5d800000;	/* b *= 2^60 */
+		k -= 60;
+		SET_FLOAT_WORD(a,ha);
+		SET_FLOAT_WORD(b,hb);
+	    }
+	}
+    /* medium size a and b */
+	w = a-b;
+	if (w>b) {
+	    SET_FLOAT_WORD(t1,ha&0xfffff000);
+	    t2 = a-t1;
+	    w  = __ieee754_sqrtf(t1*t1-(b*(-b)-t2*(a+t1)));
+	} else {
+	    a  = a+a;
+	    SET_FLOAT_WORD(y1,hb&0xfffff000);
+	    y2 = b - y1;
+	    SET_FLOAT_WORD(t1,ha+0x00800000);
+	    t2 = a - t1;
+	    w  = __ieee754_sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b)));
+	}
+	if(k!=0) {
+	    SET_FLOAT_WORD(t1,0x3f800000+(k<<23));
+	    return t1*w;
+	} else return w;
+}
diff --git a/sysdeps/ieee754/flt-32/e_j0f.c b/sysdeps/ieee754/flt-32/e_j0f.c
new file mode 100644
index 0000000000..eed171cc90
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_j0f.c
@@ -0,0 +1,444 @@
+/* e_j0f.c -- float version of e_j0.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_j0f.c,v 1.4 1995/05/10 20:45:25 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static float pzerof(float), qzerof(float);
+#else
+static float pzerof(), qzerof();
+#endif
+
+#ifdef __STDC__
+static const float 
+#else
+static float 
+#endif
+huge 	= 1e30,
+one	= 1.0,
+invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
+tpi      =  6.3661974669e-01, /* 0x3f22f983 */
+ 		/* R0/S0 on [0, 2.00] */
+R02  =  1.5625000000e-02, /* 0x3c800000 */
+R03  = -1.8997929874e-04, /* 0xb947352e */
+R04  =  1.8295404516e-06, /* 0x35f58e88 */
+R05  = -4.6183270541e-09, /* 0xb19eaf3c */
+S01  =  1.5619102865e-02, /* 0x3c7fe744 */
+S02  =  1.1692678527e-04, /* 0x38f53697 */
+S03  =  5.1354652442e-07, /* 0x3509daa6 */
+S04  =  1.1661400734e-09; /* 0x30a045e8 */
+
+#ifdef __STDC__
+static const float zero = 0.0;
+#else
+static float zero = 0.0;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_j0f(float x) 
+#else
+	float __ieee754_j0f(x) 
+	float x;
+#endif
+{
+	float z, s,c,ss,cc,r,u,v;
+	int32_t hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7f800000) return one/(x*x);
+	x = fabsf(x);
+	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
+		s = __sinf(x);
+		c = __cosf(x);
+		ss = s-c;
+		cc = s+c;
+		if(ix<0x7f000000) {  /* make sure x+x not overflow */
+		    z = -__cosf(x+x);
+		    if ((s*c)<zero) cc = z/ss;
+		    else 	    ss = z/cc;
+		}
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+		if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrtf(x);
+		else {
+		    u = pzerof(x); v = qzerof(x);
+		    z = invsqrtpi*(u*cc-v*ss)/__sqrtf(x);
+		}
+		return z;
+	}
+	if(ix<0x39000000) {	/* |x| < 2**-13 */
+	    if(huge+x>one) {	/* raise inexact if x != 0 */
+	        if(ix<0x32000000) return one;	/* |x|<2**-27 */
+	        else 	      return one - (float)0.25*x*x;
+	    }
+	}
+	z = x*x;
+	r =  z*(R02+z*(R03+z*(R04+z*R05)));
+	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
+	if(ix < 0x3F800000) {	/* |x| < 1.00 */
+	    return one + z*((float)-0.25+(r/s));
+	} else {
+	    u = (float)0.5*x;
+	    return((one+u)*(one-u)+z*(r/s));
+	}
+}
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+u00  = -7.3804296553e-02, /* 0xbd9726b5 */
+u01  =  1.7666645348e-01, /* 0x3e34e80d */
+u02  = -1.3818567619e-02, /* 0xbc626746 */
+u03  =  3.4745343146e-04, /* 0x39b62a69 */
+u04  = -3.8140706238e-06, /* 0xb67ff53c */
+u05  =  1.9559013964e-08, /* 0x32a802ba */
+u06  = -3.9820518410e-11, /* 0xae2f21eb */
+v01  =  1.2730483897e-02, /* 0x3c509385 */
+v02  =  7.6006865129e-05, /* 0x389f65e0 */
+v03  =  2.5915085189e-07, /* 0x348b216c */
+v04  =  4.4111031494e-10; /* 0x2ff280c2 */
+
+#ifdef __STDC__
+	float __ieee754_y0f(float x) 
+#else
+	float __ieee754_y0f(x) 
+	float x;
+#endif
+{
+	float z, s,c,ss,cc,u,v;
+	int32_t hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+        ix = 0x7fffffff&hx;
+    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
+	if(ix>=0x7f800000) return  one/(x+x*x); 
+        if(ix==0) return -one/zero;
+        if(hx<0) return zero/zero;
+        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
+        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
+         * where x0 = x-pi/4
+         *      Better formula:
+         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+         *                      =  1/sqrt(2) * (sin(x) + cos(x))
+         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+         *                      =  1/sqrt(2) * (sin(x) - cos(x))
+         * To avoid cancellation, use
+         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+         * to compute the worse one.
+         */
+                s = __sinf(x);
+                c = __cosf(x);
+                ss = s-c;
+                cc = s+c;
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+                if(ix<0x7f000000) {  /* make sure x+x not overflow */
+                    z = -__cosf(x+x);
+                    if ((s*c)<zero) cc = z/ss;
+                    else            ss = z/cc;
+                }
+                if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x);
+                else {
+                    u = pzerof(x); v = qzerof(x);
+                    z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
+                }
+                return z;
+	}
+	if(ix<=0x32000000) {	/* x < 2**-27 */
+	    return(u00 + tpi*__ieee754_logf(x));
+	}
+	z = x*x;
+	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
+	return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
+}
+
+/* The asymptotic expansions of pzero is
+ *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * 	pzero(x) = 1 + (R/S)
+ * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
+ */
+#ifdef __STDC__
+static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.0000000000e+00, /* 0x00000000 */
+ -7.0312500000e-02, /* 0xbd900000 */
+ -8.0816707611e+00, /* 0xc1014e86 */
+ -2.5706311035e+02, /* 0xc3808814 */
+ -2.4852163086e+03, /* 0xc51b5376 */
+ -5.2530439453e+03, /* 0xc5a4285a */
+};
+#ifdef __STDC__
+static const float pS8[5] = {
+#else
+static float pS8[5] = {
+#endif
+  1.1653436279e+02, /* 0x42e91198 */
+  3.8337448730e+03, /* 0x456f9beb */
+  4.0597855469e+04, /* 0x471e95db */
+  1.1675296875e+05, /* 0x47e4087c */
+  4.7627726562e+04, /* 0x473a0bba */
+};
+#ifdef __STDC__
+static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ -1.1412546255e-11, /* 0xad48c58a */
+ -7.0312492549e-02, /* 0xbd8fffff */
+ -4.1596107483e+00, /* 0xc0851b88 */
+ -6.7674766541e+01, /* 0xc287597b */
+ -3.3123129272e+02, /* 0xc3a59d9b */
+ -3.4643338013e+02, /* 0xc3ad3779 */
+};
+#ifdef __STDC__
+static const float pS5[5] = {
+#else
+static float pS5[5] = {
+#endif
+  6.0753936768e+01, /* 0x42730408 */
+  1.0512523193e+03, /* 0x44836813 */
+  5.9789707031e+03, /* 0x45bad7c4 */
+  9.6254453125e+03, /* 0x461665c8 */
+  2.4060581055e+03, /* 0x451660ee */
+};
+
+#ifdef __STDC__
+static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#else
+static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ -2.5470459075e-09, /* 0xb12f081b */
+ -7.0311963558e-02, /* 0xbd8fffb8 */
+ -2.4090321064e+00, /* 0xc01a2d95 */
+ -2.1965976715e+01, /* 0xc1afba52 */
+ -5.8079170227e+01, /* 0xc2685112 */
+ -3.1447946548e+01, /* 0xc1fb9565 */
+};
+#ifdef __STDC__
+static const float pS3[5] = {
+#else
+static float pS3[5] = {
+#endif
+  3.5856033325e+01, /* 0x420f6c94 */
+  3.6151397705e+02, /* 0x43b4c1ca */
+  1.1936077881e+03, /* 0x44953373 */
+  1.1279968262e+03, /* 0x448cffe6 */
+  1.7358093262e+02, /* 0x432d94b8 */
+};
+
+#ifdef __STDC__
+static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ -8.8753431271e-08, /* 0xb3be98b7 */
+ -7.0303097367e-02, /* 0xbd8ffb12 */
+ -1.4507384300e+00, /* 0xbfb9b1cc */
+ -7.6356959343e+00, /* 0xc0f4579f */
+ -1.1193166733e+01, /* 0xc1331736 */
+ -3.2336456776e+00, /* 0xc04ef40d */
+};
+#ifdef __STDC__
+static const float pS2[5] = {
+#else
+static float pS2[5] = {
+#endif
+  2.2220300674e+01, /* 0x41b1c32d */
+  1.3620678711e+02, /* 0x430834f0 */
+  2.7047027588e+02, /* 0x43873c32 */
+  1.5387539673e+02, /* 0x4319e01a */
+  1.4657617569e+01, /* 0x416a859a */
+};
+
+#ifdef __STDC__
+	static float pzerof(float x)
+#else
+	static float pzerof(x)
+	float x;
+#endif
+{
+#ifdef __STDC__
+	const float *p,*q;
+#else
+	float *p,*q;
+#endif
+	float z,r,s;
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x41000000)     {p = pR8; q= pS8;}
+	else if(ix>=0x40f71c58){p = pR5; q= pS5;}
+	else if(ix>=0x4036db68){p = pR3; q= pS3;}
+	else if(ix>=0x40000000){p = pR2; q= pS2;}
+	z = one/(x*x);
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+	return one+ r/s;
+}
+		
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * 	qzero(x) = s*(-1.25 + (R/S))
+ * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
+ */
+#ifdef __STDC__
+static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.0000000000e+00, /* 0x00000000 */
+  7.3242187500e-02, /* 0x3d960000 */
+  1.1768206596e+01, /* 0x413c4a93 */
+  5.5767340088e+02, /* 0x440b6b19 */
+  8.8591972656e+03, /* 0x460a6cca */
+  3.7014625000e+04, /* 0x471096a0 */
+};
+#ifdef __STDC__
+static const float qS8[6] = {
+#else
+static float qS8[6] = {
+#endif
+  1.6377603149e+02, /* 0x4323c6aa */
+  8.0983447266e+03, /* 0x45fd12c2 */
+  1.4253829688e+05, /* 0x480b3293 */
+  8.0330925000e+05, /* 0x49441ed4 */
+  8.4050156250e+05, /* 0x494d3359 */
+ -3.4389928125e+05, /* 0xc8a7eb69 */
+};
+
+#ifdef __STDC__
+static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+  1.8408595828e-11, /* 0x2da1ec79 */
+  7.3242180049e-02, /* 0x3d95ffff */
+  5.8356351852e+00, /* 0x40babd86 */
+  1.3511157227e+02, /* 0x43071c90 */
+  1.0272437744e+03, /* 0x448067cd */
+  1.9899779053e+03, /* 0x44f8bf4b */
+};
+#ifdef __STDC__
+static const float qS5[6] = {
+#else
+static float qS5[6] = {
+#endif
+  8.2776611328e+01, /* 0x42a58da0 */
+  2.0778142090e+03, /* 0x4501dd07 */
+  1.8847289062e+04, /* 0x46933e94 */
+  5.6751113281e+04, /* 0x475daf1d */
+  3.5976753906e+04, /* 0x470c88c1 */
+ -5.3543427734e+03, /* 0xc5a752be */
+};
+
+#ifdef __STDC__
+static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#else
+static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+  4.3774099900e-09, /* 0x3196681b */
+  7.3241114616e-02, /* 0x3d95ff70 */
+  3.3442313671e+00, /* 0x405607e3 */
+  4.2621845245e+01, /* 0x422a7cc5 */
+  1.7080809021e+02, /* 0x432acedf */
+  1.6673394775e+02, /* 0x4326bbe4 */
+};
+#ifdef __STDC__
+static const float qS3[6] = {
+#else
+static float qS3[6] = {
+#endif
+  4.8758872986e+01, /* 0x42430916 */
+  7.0968920898e+02, /* 0x44316c1c */
+  3.7041481934e+03, /* 0x4567825f */
+  6.4604252930e+03, /* 0x45c9e367 */
+  2.5163337402e+03, /* 0x451d4557 */
+ -1.4924745178e+02, /* 0xc3153f59 */
+};
+
+#ifdef __STDC__
+static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+  1.5044444979e-07, /* 0x342189db */
+  7.3223426938e-02, /* 0x3d95f62a */
+  1.9981917143e+00, /* 0x3fffc4bf */
+  1.4495602608e+01, /* 0x4167edfd */
+  3.1666231155e+01, /* 0x41fd5471 */
+  1.6252708435e+01, /* 0x4182058c */
+};
+#ifdef __STDC__
+static const float qS2[6] = {
+#else
+static float qS2[6] = {
+#endif
+  3.0365585327e+01, /* 0x41f2ecb8 */
+  2.6934811401e+02, /* 0x4386ac8f */
+  8.4478375244e+02, /* 0x44533229 */
+  8.8293585205e+02, /* 0x445cbbe5 */
+  2.1266638184e+02, /* 0x4354aa98 */
+ -5.3109550476e+00, /* 0xc0a9f358 */
+};
+
+#ifdef __STDC__
+	static float qzerof(float x)
+#else
+	static float qzerof(x)
+	float x;
+#endif
+{
+#ifdef __STDC__
+	const float *p,*q;
+#else
+	float *p,*q;
+#endif
+	float s,r,z;
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x41000000)     {p = qR8; q= qS8;}
+	else if(ix>=0x40f71c58){p = qR5; q= qS5;}
+	else if(ix>=0x4036db68){p = qR3; q= qS3;}
+	else if(ix>=0x40000000){p = qR2; q= qS2;}
+	z = one/(x*x);
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+	return (-(float).125 + r/s)/x;
+}
diff --git a/sysdeps/ieee754/flt-32/e_j1f.c b/sysdeps/ieee754/flt-32/e_j1f.c
new file mode 100644
index 0000000000..e6f14a16ac
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_j1f.c
@@ -0,0 +1,444 @@
+/* e_j1f.c -- float version of e_j1.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_j1f.c,v 1.4 1995/05/10 20:45:31 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static float ponef(float), qonef(float);
+#else
+static float ponef(), qonef();
+#endif
+
+#ifdef __STDC__
+static const float 
+#else
+static float 
+#endif
+huge    = 1e30,
+one	= 1.0,
+invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
+tpi      =  6.3661974669e-01, /* 0x3f22f983 */
+	/* R0/S0 on [0,2] */
+r00  = -6.2500000000e-02, /* 0xbd800000 */
+r01  =  1.4070566976e-03, /* 0x3ab86cfd */
+r02  = -1.5995563444e-05, /* 0xb7862e36 */
+r03  =  4.9672799207e-08, /* 0x335557d2 */
+s01  =  1.9153760746e-02, /* 0x3c9ce859 */
+s02  =  1.8594678841e-04, /* 0x3942fab6 */
+s03  =  1.1771846857e-06, /* 0x359dffc2 */
+s04  =  5.0463624390e-09, /* 0x31ad6446 */
+s05  =  1.2354227016e-11; /* 0x2d59567e */
+
+#ifdef __STDC__
+static const float zero    = 0.0;
+#else
+static float zero    = 0.0;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_j1f(float x) 
+#else
+	float __ieee754_j1f(x) 
+	float x;
+#endif
+{
+	float z, s,c,ss,cc,r,u,v,y;
+	int32_t hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7f800000) return one/x;
+	y = fabsf(x);
+	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
+		s = __sinf(y);
+		c = __cosf(y);
+		ss = -s-c;
+		cc = s-c;
+		if(ix<0x7f000000) {  /* make sure y+y not overflow */
+		    z = __cosf(y+y);
+		    if ((s*c)>zero) cc = z/ss;
+		    else 	    ss = z/cc;
+		}
+	/*
+	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
+	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
+	 */
+		if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrtf(y);
+		else {
+		    u = ponef(y); v = qonef(y);
+		    z = invsqrtpi*(u*cc-v*ss)/__sqrtf(y);
+		}
+		if(hx<0) return -z;
+		else  	 return  z;
+	}
+	if(ix<0x32000000) {	/* |x|<2**-27 */
+	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
+	}
+	z = x*x;
+	r =  z*(r00+z*(r01+z*(r02+z*r03)));
+	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
+	r *= x;
+	return(x*(float)0.5+r/s);
+}
+
+#ifdef __STDC__
+static const float U0[5] = {
+#else
+static float U0[5] = {
+#endif
+ -1.9605709612e-01, /* 0xbe48c331 */
+  5.0443872809e-02, /* 0x3d4e9e3c */
+ -1.9125689287e-03, /* 0xbafaaf2a */
+  2.3525259166e-05, /* 0x37c5581c */
+ -9.1909917899e-08, /* 0xb3c56003 */
+};
+#ifdef __STDC__
+static const float V0[5] = {
+#else
+static float V0[5] = {
+#endif
+  1.9916731864e-02, /* 0x3ca3286a */
+  2.0255257550e-04, /* 0x3954644b */
+  1.3560879779e-06, /* 0x35b602d4 */
+  6.2274145840e-09, /* 0x31d5f8eb */
+  1.6655924903e-11, /* 0x2d9281cf */
+};
+
+#ifdef __STDC__
+	float __ieee754_y1f(float x) 
+#else
+	float __ieee754_y1f(x) 
+	float x;
+#endif
+{
+	float z, s,c,ss,cc,u,v;
+	int32_t hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+        ix = 0x7fffffff&hx;
+    /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
+	if(ix>=0x7f800000) return  one/(x+x*x); 
+        if(ix==0) return -one/zero;
+        if(hx<0) return zero/zero;
+        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
+                s = __sinf(x);
+                c = __cosf(x);
+                ss = -s-c;
+                cc = s-c;
+                if(ix<0x7f000000) {  /* make sure x+x not overflow */
+                    z = __cosf(x+x);
+                    if ((s*c)>zero) cc = z/ss;
+                    else            ss = z/cc;
+                }
+        /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
+         * where x0 = x-3pi/4
+         *      Better formula:
+         *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+         *                      =  1/sqrt(2) * (sin(x) - cos(x))
+         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+         *                      = -1/sqrt(2) * (cos(x) + sin(x))
+         * To avoid cancellation, use
+         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+         * to compute the worse one.
+         */
+                if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x);
+                else {
+                    u = ponef(x); v = qonef(x);
+                    z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
+                }
+                return z;
+        } 
+        if(ix<=0x24800000) {    /* x < 2**-54 */
+            return(-tpi/x);
+        } 
+        z = x*x;
+        u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
+        v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
+        return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
+ * We approximate pone by
+ * 	pone(x) = 1 + (R/S)
+ * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
+ */
+
+#ifdef __STDC__
+static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.0000000000e+00, /* 0x00000000 */
+  1.1718750000e-01, /* 0x3df00000 */
+  1.3239480972e+01, /* 0x4153d4ea */
+  4.1205184937e+02, /* 0x43ce06a3 */
+  3.8747453613e+03, /* 0x45722bed */
+  7.9144794922e+03, /* 0x45f753d6 */
+};
+#ifdef __STDC__
+static const float ps8[5] = {
+#else
+static float ps8[5] = {
+#endif
+  1.1420736694e+02, /* 0x42e46a2c */
+  3.6509309082e+03, /* 0x45642ee5 */
+  3.6956207031e+04, /* 0x47105c35 */
+  9.7602796875e+04, /* 0x47bea166 */
+  3.0804271484e+04, /* 0x46f0a88b */
+};
+
+#ifdef __STDC__
+static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+  1.3199052094e-11, /* 0x2d68333f */
+  1.1718749255e-01, /* 0x3defffff */
+  6.8027510643e+00, /* 0x40d9b023 */
+  1.0830818176e+02, /* 0x42d89dca */
+  5.1763616943e+02, /* 0x440168b7 */
+  5.2871520996e+02, /* 0x44042dc6 */
+};
+#ifdef __STDC__
+static const float ps5[5] = {
+#else
+static float ps5[5] = {
+#endif
+  5.9280597687e+01, /* 0x426d1f55 */
+  9.9140142822e+02, /* 0x4477d9b1 */
+  5.3532670898e+03, /* 0x45a74a23 */
+  7.8446904297e+03, /* 0x45f52586 */
+  1.5040468750e+03, /* 0x44bc0180 */
+};
+
+#ifdef __STDC__
+static const float pr3[6] = {
+#else
+static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+  3.0250391081e-09, /* 0x314fe10d */
+  1.1718686670e-01, /* 0x3defffab */
+  3.9329774380e+00, /* 0x407bb5e7 */
+  3.5119403839e+01, /* 0x420c7a45 */
+  9.1055007935e+01, /* 0x42b61c2a */
+  4.8559066772e+01, /* 0x42423c7c */
+};
+#ifdef __STDC__
+static const float ps3[5] = {
+#else
+static float ps3[5] = {
+#endif
+  3.4791309357e+01, /* 0x420b2a4d */
+  3.3676245117e+02, /* 0x43a86198 */
+  1.0468714600e+03, /* 0x4482dbe3 */
+  8.9081134033e+02, /* 0x445eb3ed */
+  1.0378793335e+02, /* 0x42cf936c */
+};
+
+#ifdef __STDC__
+static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+  1.0771083225e-07, /* 0x33e74ea8 */
+  1.1717621982e-01, /* 0x3deffa16 */
+  2.3685150146e+00, /* 0x401795c0 */
+  1.2242610931e+01, /* 0x4143e1bc */
+  1.7693971634e+01, /* 0x418d8d41 */
+  5.0735230446e+00, /* 0x40a25a4d */
+};
+#ifdef __STDC__
+static const float ps2[5] = {
+#else
+static float ps2[5] = {
+#endif
+  2.1436485291e+01, /* 0x41ab7dec */
+  1.2529022980e+02, /* 0x42fa9499 */
+  2.3227647400e+02, /* 0x436846c7 */
+  1.1767937469e+02, /* 0x42eb5bd7 */
+  8.3646392822e+00, /* 0x4105d590 */
+};
+
+#ifdef __STDC__
+	static float ponef(float x)
+#else
+	static float ponef(x)
+	float x;
+#endif
+{
+#ifdef __STDC__
+	const float *p,*q;
+#else
+	float *p,*q;
+#endif
+	float z,r,s;
+        int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+        if(ix>=0x41000000)     {p = pr8; q= ps8;}
+        else if(ix>=0x40f71c58){p = pr5; q= ps5;}
+        else if(ix>=0x4036db68){p = pr3; q= ps3;}
+        else if(ix>=0x40000000){p = pr2; q= ps2;}
+        z = one/(x*x);
+        r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+        return one+ r/s;
+}
+		
+
+/* For x >= 8, the asymptotic expansions of qone is
+ *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ * 	qone(x) = s*(0.375 + (R/S))
+ * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
+ */
+
+#ifdef __STDC__
+static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.0000000000e+00, /* 0x00000000 */
+ -1.0253906250e-01, /* 0xbdd20000 */
+ -1.6271753311e+01, /* 0xc1822c8d */
+ -7.5960174561e+02, /* 0xc43de683 */
+ -1.1849806641e+04, /* 0xc639273a */
+ -4.8438511719e+04, /* 0xc73d3683 */
+};
+#ifdef __STDC__
+static const float qs8[6] = {
+#else
+static float qs8[6] = {
+#endif
+  1.6139537048e+02, /* 0x43216537 */
+  7.8253862305e+03, /* 0x45f48b17 */
+  1.3387534375e+05, /* 0x4802bcd6 */
+  7.1965775000e+05, /* 0x492fb29c */
+  6.6660125000e+05, /* 0x4922be94 */
+ -2.9449025000e+05, /* 0xc88fcb48 */
+};
+
+#ifdef __STDC__
+static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ -2.0897993405e-11, /* 0xadb7d219 */
+ -1.0253904760e-01, /* 0xbdd1fffe */
+ -8.0564479828e+00, /* 0xc100e736 */
+ -1.8366960144e+02, /* 0xc337ab6b */
+ -1.3731937256e+03, /* 0xc4aba633 */
+ -2.6124443359e+03, /* 0xc523471c */
+};
+#ifdef __STDC__
+static const float qs5[6] = {
+#else
+static float qs5[6] = {
+#endif
+  8.1276550293e+01, /* 0x42a28d98 */
+  1.9917987061e+03, /* 0x44f8f98f */
+  1.7468484375e+04, /* 0x468878f8 */
+  4.9851425781e+04, /* 0x4742bb6d */
+  2.7948074219e+04, /* 0x46da5826 */
+ -4.7191835938e+03, /* 0xc5937978 */
+};
+
+#ifdef __STDC__
+static const float qr3[6] = {
+#else
+static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ -5.0783124372e-09, /* 0xb1ae7d4f */
+ -1.0253783315e-01, /* 0xbdd1ff5b */
+ -4.6101160049e+00, /* 0xc0938612 */
+ -5.7847221375e+01, /* 0xc267638e */
+ -2.2824453735e+02, /* 0xc3643e9a */
+ -2.1921012878e+02, /* 0xc35b35cb */
+};
+#ifdef __STDC__
+static const float qs3[6] = {
+#else
+static float qs3[6] = {
+#endif
+  4.7665153503e+01, /* 0x423ea91e */
+  6.7386511230e+02, /* 0x4428775e */
+  3.3801528320e+03, /* 0x45534272 */
+  5.5477290039e+03, /* 0x45ad5dd5 */
+  1.9031191406e+03, /* 0x44ede3d0 */
+ -1.3520118713e+02, /* 0xc3073381 */
+};
+
+#ifdef __STDC__
+static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ -1.7838172539e-07, /* 0xb43f8932 */
+ -1.0251704603e-01, /* 0xbdd1f475 */
+ -2.7522056103e+00, /* 0xc0302423 */
+ -1.9663616180e+01, /* 0xc19d4f16 */
+ -4.2325313568e+01, /* 0xc2294d1f */
+ -2.1371921539e+01, /* 0xc1aaf9b2 */
+};
+#ifdef __STDC__
+static const float qs2[6] = {
+#else
+static float qs2[6] = {
+#endif
+  2.9533363342e+01, /* 0x41ec4454 */
+  2.5298155212e+02, /* 0x437cfb47 */
+  7.5750280762e+02, /* 0x443d602e */
+  7.3939318848e+02, /* 0x4438d92a */
+  1.5594900513e+02, /* 0x431bf2f2 */
+ -4.9594988823e+00, /* 0xc09eb437 */
+};
+
+#ifdef __STDC__
+	static float qonef(float x)
+#else
+	static float qonef(x)
+	float x;
+#endif
+{
+#ifdef __STDC__
+	const float *p,*q;
+#else
+	float *p,*q;
+#endif
+	float  s,r,z;
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x40200000)     {p = qr8; q= qs8;}
+	else if(ix>=0x40f71c58){p = qr5; q= qs5;}
+	else if(ix>=0x4036db68){p = qr3; q= qs3;}
+	else if(ix>=0x40000000){p = qr2; q= qs2;}
+	z = one/(x*x);
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+	return ((float).375 + r/s)/x;
+}
diff --git a/sysdeps/ieee754/flt-32/e_jnf.c b/sysdeps/ieee754/flt-32/e_jnf.c
new file mode 100644
index 0000000000..9e5279c30a
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_jnf.c
@@ -0,0 +1,213 @@
+/* e_jnf.c -- float version of e_jn.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_jnf.c,v 1.5 1995/05/10 20:45:37 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
+two   =  2.0000000000e+00, /* 0x40000000 */
+one   =  1.0000000000e+00; /* 0x3F800000 */
+
+#ifdef __STDC__
+static const float zero  =  0.0000000000e+00;
+#else
+static float zero  =  0.0000000000e+00;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_jnf(int n, float x)
+#else
+	float __ieee754_jnf(n,x)
+	int n; float x;
+#endif
+{
+	int32_t i,hx,ix, sgn;
+	float a, b, temp, di;
+	float z, w;
+
+    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+     * Thus, J(-n,x) = J(n,-x)
+     */
+	GET_FLOAT_WORD(hx,x);
+	ix = 0x7fffffff&hx;
+    /* if J(n,NaN) is NaN */
+	if(ix>0x7f800000) return x+x;
+	if(n<0){
+		n = -n;
+		x = -x;
+		hx ^= 0x80000000;
+	}
+	if(n==0) return(__ieee754_j0f(x));
+	if(n==1) return(__ieee754_j1f(x));
+	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
+	x = fabsf(x);
+	if(ix==0||ix>=0x7f800000) 	/* if x is 0 or inf */
+	    b = zero;
+	else if((float)n<=x) {
+		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+	    a = __ieee754_j0f(x);
+	    b = __ieee754_j1f(x);
+	    for(i=1;i<n;i++){
+		temp = b;
+		b = b*((float)(i+i)/x) - a; /* avoid underflow */
+		a = temp;
+	    }
+	} else {
+	    if(ix<0x30800000) {	/* x < 2**-29 */
+    /* x is tiny, return the first Taylor expansion of J(n,x)
+     * J(n,x) = 1/n!*(x/2)^n  - ...
+     */
+		if(n>33)	/* underflow */
+		    b = zero;
+		else {
+		    temp = x*(float)0.5; b = temp;
+		    for (a=one,i=2;i<=n;i++) {
+			a *= (float)i;		/* a = n! */
+			b *= temp;		/* b = (x/2)^n */
+		    }
+		    b = b/a;
+		}
+	    } else {
+		/* use backward recurrence */
+		/* 			x      x^2      x^2
+		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+		 *			2n  - 2(n+1) - 2(n+2)
+		 *
+		 * 			1      1        1
+		 *  (for large x)   =  ----  ------   ------   .....
+		 *			2n   2(n+1)   2(n+2)
+		 *			-- - ------ - ------ -
+		 *			 x     x         x
+		 *
+		 * Let w = 2n/x and h=2/x, then the above quotient
+		 * is equal to the continued fraction:
+		 *		    1
+		 *	= -----------------------
+		 *		       1
+		 *	   w - -----------------
+		 *			  1
+		 * 	        w+h - ---------
+		 *		       w+2h - ...
+		 *
+		 * To determine how many terms needed, let
+		 * Q(0) = w, Q(1) = w(w+h) - 1,
+		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+		 * When Q(k) > 1e4	good for single
+		 * When Q(k) > 1e9	good for double
+		 * When Q(k) > 1e17	good for quadruple
+		 */
+	    /* determine k */
+		float t,v;
+		float q0,q1,h,tmp; int32_t k,m;
+		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
+		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
+		while(q1<(float)1.0e9) {
+			k += 1; z += h;
+			tmp = z*q1 - q0;
+			q0 = q1;
+			q1 = tmp;
+		}
+		m = n+n;
+		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
+		a = t;
+		b = one;
+		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+		 *  Hence, if n*(log(2n/x)) > ...
+		 *  single 8.8722839355e+01
+		 *  double 7.09782712893383973096e+02
+		 *  long double 1.1356523406294143949491931077970765006170e+04
+		 *  then recurrent value may overflow and the result is
+		 *  likely underflow to zero
+		 */
+		tmp = n;
+		v = two/x;
+		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
+		if(tmp<(float)8.8721679688e+01) {
+	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
+		        temp = b;
+			b *= di;
+			b  = b/x - a;
+		        a = temp;
+			di -= two;
+	     	    }
+		} else {
+	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
+		        temp = b;
+			b *= di;
+			b  = b/x - a;
+		        a = temp;
+			di -= two;
+		    /* scale b to avoid spurious overflow */
+			if(b>(float)1e10) {
+			    a /= b;
+			    t /= b;
+			    b  = one;
+			}
+	     	    }
+		}
+	    	b = (t*__ieee754_j0f(x)/b);
+	    }
+	}
+	if(sgn==1) return -b; else return b;
+}
+
+#ifdef __STDC__
+	float __ieee754_ynf(int n, float x)
+#else
+	float __ieee754_ynf(n,x)
+	int n; float x;
+#endif
+{
+	int32_t i,hx,ix;
+	u_int32_t ib;
+	int32_t sign;
+	float a, b, temp;
+
+	GET_FLOAT_WORD(hx,x);
+	ix = 0x7fffffff&hx;
+    /* if Y(n,NaN) is NaN */
+	if(ix>0x7f800000) return x+x;
+	if(ix==0) return -one/zero;
+	if(hx<0) return zero/zero;
+	sign = 1;
+	if(n<0){
+		n = -n;
+		sign = 1 - ((n&1)<<1);
+	}
+	if(n==0) return(__ieee754_y0f(x));
+	if(n==1) return(sign*__ieee754_y1f(x));
+	if(ix==0x7f800000) return zero;
+
+	a = __ieee754_y0f(x);
+	b = __ieee754_y1f(x);
+	/* quit if b is -inf */
+	GET_FLOAT_WORD(ib,b);
+	for(i=1;i<n&&ib!=0xff800000;i++){
+	    temp = b;
+	    b = ((float)(i+i)/x)*b - a;
+	    GET_FLOAT_WORD(ib,b);
+	    a = temp;
+	}
+	if(sign>0) return b; else return -b;
+}
diff --git a/sysdeps/ieee754/flt-32/e_lgammaf_r.c b/sysdeps/ieee754/flt-32/e_lgammaf_r.c
new file mode 100644
index 0000000000..f744d5320e
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_lgammaf_r.c
@@ -0,0 +1,250 @@
+/* e_lgammaf_r.c -- float version of e_lgamma_r.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_lgammaf_r.c,v 1.3 1995/05/10 20:45:47 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+two23=  8.3886080000e+06, /* 0x4b000000 */
+half=  5.0000000000e-01, /* 0x3f000000 */
+one =  1.0000000000e+00, /* 0x3f800000 */
+pi  =  3.1415927410e+00, /* 0x40490fdb */
+a0  =  7.7215664089e-02, /* 0x3d9e233f */
+a1  =  3.2246702909e-01, /* 0x3ea51a66 */
+a2  =  6.7352302372e-02, /* 0x3d89f001 */
+a3  =  2.0580807701e-02, /* 0x3ca89915 */
+a4  =  7.3855509982e-03, /* 0x3bf2027e */
+a5  =  2.8905137442e-03, /* 0x3b3d6ec6 */
+a6  =  1.1927076848e-03, /* 0x3a9c54a1 */
+a7  =  5.1006977446e-04, /* 0x3a05b634 */
+a8  =  2.2086278477e-04, /* 0x39679767 */
+a9  =  1.0801156895e-04, /* 0x38e28445 */
+a10 =  2.5214456400e-05, /* 0x37d383a2 */
+a11 =  4.4864096708e-05, /* 0x383c2c75 */
+tc  =  1.4616321325e+00, /* 0x3fbb16c3 */
+tf  = -1.2148628384e-01, /* 0xbdf8cdcd */
+/* tt = -(tail of tf) */
+tt  =  6.6971006518e-09, /* 0x31e61c52 */
+t0  =  4.8383611441e-01, /* 0x3ef7b95e */
+t1  = -1.4758771658e-01, /* 0xbe17213c */
+t2  =  6.4624942839e-02, /* 0x3d845a15 */
+t3  = -3.2788541168e-02, /* 0xbd064d47 */
+t4  =  1.7970675603e-02, /* 0x3c93373d */
+t5  = -1.0314224288e-02, /* 0xbc28fcfe */
+t6  =  6.1005386524e-03, /* 0x3bc7e707 */
+t7  = -3.6845202558e-03, /* 0xbb7177fe */
+t8  =  2.2596477065e-03, /* 0x3b141699 */
+t9  = -1.4034647029e-03, /* 0xbab7f476 */
+t10 =  8.8108185446e-04, /* 0x3a66f867 */
+t11 = -5.3859531181e-04, /* 0xba0d3085 */
+t12 =  3.1563205994e-04, /* 0x39a57b6b */
+t13 = -3.1275415677e-04, /* 0xb9a3f927 */
+t14 =  3.3552918467e-04, /* 0x39afe9f7 */
+u0  = -7.7215664089e-02, /* 0xbd9e233f */
+u1  =  6.3282704353e-01, /* 0x3f2200f4 */
+u2  =  1.4549225569e+00, /* 0x3fba3ae7 */
+u3  =  9.7771751881e-01, /* 0x3f7a4bb2 */
+u4  =  2.2896373272e-01, /* 0x3e6a7578 */
+u5  =  1.3381091878e-02, /* 0x3c5b3c5e */
+v1  =  2.4559779167e+00, /* 0x401d2ebe */
+v2  =  2.1284897327e+00, /* 0x4008392d */
+v3  =  7.6928514242e-01, /* 0x3f44efdf */
+v4  =  1.0422264785e-01, /* 0x3dd572af */
+v5  =  3.2170924824e-03, /* 0x3b52d5db */
+s0  = -7.7215664089e-02, /* 0xbd9e233f */
+s1  =  2.1498242021e-01, /* 0x3e5c245a */
+s2  =  3.2577878237e-01, /* 0x3ea6cc7a */
+s3  =  1.4635047317e-01, /* 0x3e15dce6 */
+s4  =  2.6642270386e-02, /* 0x3cda40e4 */
+s5  =  1.8402845599e-03, /* 0x3af135b4 */
+s6  =  3.1947532989e-05, /* 0x3805ff67 */
+r1  =  1.3920053244e+00, /* 0x3fb22d3b */
+r2  =  7.2193557024e-01, /* 0x3f38d0c5 */
+r3  =  1.7193385959e-01, /* 0x3e300f6e */
+r4  =  1.8645919859e-02, /* 0x3c98bf54 */
+r5  =  7.7794247773e-04, /* 0x3a4beed6 */
+r6  =  7.3266842264e-06, /* 0x36f5d7bd */
+w0  =  4.1893854737e-01, /* 0x3ed67f1d */
+w1  =  8.3333335817e-02, /* 0x3daaaaab */
+w2  = -2.7777778450e-03, /* 0xbb360b61 */
+w3  =  7.9365057172e-04, /* 0x3a500cfd */
+w4  = -5.9518753551e-04, /* 0xba1c065c */
+w5  =  8.3633989561e-04, /* 0x3a5b3dd2 */
+w6  = -1.6309292987e-03; /* 0xbad5c4e8 */
+
+#ifdef __STDC__
+static const float zero=  0.0000000000e+00;
+#else
+static float zero=  0.0000000000e+00;
+#endif
+
+#ifdef __STDC__
+	static float sin_pif(float x)
+#else
+	static float sin_pif(x)
+	float x;
+#endif
+{
+	float y,z;
+	int n,ix;
+
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+
+	if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0);
+	y = -x;		/* x is assume negative */
+
+    /*
+     * argument reduction, make sure inexact flag not raised if input
+     * is an integer
+     */
+	z = __floorf(y);
+	if(z!=y) {				/* inexact anyway */
+	    y  *= (float)0.5;
+	    y   = (float)2.0*(y - __floorf(y));	/* y = |x| mod 2.0 */
+	    n   = (int) (y*(float)4.0);
+	} else {
+            if(ix>=0x4b800000) {
+                y = zero; n = 0;                 /* y must be even */
+            } else {
+                if(ix<0x4b000000) z = y+two23;	/* exact */
+		GET_FLOAT_WORD(n,z);
+		n &= 1;
+                y  = n;
+                n<<= 2;
+            }
+        }
+	switch (n) {
+	    case 0:   y =  __kernel_sinf(pi*y,zero,0); break;
+	    case 1:
+	    case 2:   y =  __kernel_cosf(pi*((float)0.5-y),zero); break;
+	    case 3:
+	    case 4:   y =  __kernel_sinf(pi*(one-y),zero,0); break;
+	    case 5:
+	    case 6:   y = -__kernel_cosf(pi*(y-(float)1.5),zero); break;
+	    default:  y =  __kernel_sinf(pi*(y-(float)2.0),zero,0); break;
+	    }
+	return -y;
+}
+
+
+#ifdef __STDC__
+	float __ieee754_lgammaf_r(float x, int *signgamp)
+#else
+	float __ieee754_lgammaf_r(x,signgamp)
+	float x; int *signgamp;
+#endif
+{
+	float t,y,z,nadj,p,p1,p2,p3,q,r,w;
+	int i,hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+
+    /* purge off +-inf, NaN, +-0, and negative arguments */
+	*signgamp = 1;
+	if ((unsigned int)hx==0xff800000)
+	  return x-x;
+	ix = hx&0x7fffffff;
+	if(ix>=0x7f800000) return x*x;
+	if(ix==0) return one/fabsf(x);
+	if(ix<0x1c800000) {	/* |x|<2**-70, return -log(|x|) */
+	    if(hx<0) {
+	        *signgamp = -1;
+	        return -__ieee754_logf(-x);
+	    } else return -__ieee754_logf(x);
+	}
+	if(hx<0) {
+	    if(ix>=0x4b000000) 	/* |x|>=2**23, must be -integer */
+		return x/zero;
+	    t = sin_pif(x);
+	    if(t==zero) return one/fabsf(t); /* -integer */
+	    nadj = __ieee754_logf(pi/fabsf(t*x));
+	    if(t<zero) *signgamp = -1;
+	    x = -x;
+	}
+
+    /* purge off 1 and 2 */
+	if (ix==0x3f800000||ix==0x40000000) r = 0;
+    /* for x < 2.0 */
+	else if(ix<0x40000000) {
+	    if(ix<=0x3f666666) { 	/* lgamma(x) = lgamma(x+1)-log(x) */
+		r = -__ieee754_logf(x);
+		if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
+		else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
+	  	else {y = x; i=2;}
+	    } else {
+	  	r = zero;
+	        if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
+	        else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
+		else {y=x-one;i=2;}
+	    }
+	    switch(i) {
+	      case 0:
+		z = y*y;
+		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
+		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
+		p  = y*p1+p2;
+		r  += (p-(float)0.5*y); break;
+	      case 1:
+		z = y*y;
+		w = z*y;
+		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */
+		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
+		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
+		p  = z*p1-(tt-w*(p2+y*p3));
+		r += (tf + p); break;
+	      case 2:
+		p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
+		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
+		r += (-(float)0.5*y + p1/p2);
+	    }
+	}
+	else if(ix<0x41000000) { 			/* x < 8.0 */
+	    i = (int)x;
+	    t = zero;
+	    y = x-(float)i;
+	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
+	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
+	    r = half*y+p/q;
+	    z = one;	/* lgamma(1+s) = log(s) + lgamma(s) */
+	    switch(i) {
+	    case 7: z *= (y+(float)6.0);	/* FALLTHRU */
+	    case 6: z *= (y+(float)5.0);	/* FALLTHRU */
+	    case 5: z *= (y+(float)4.0);	/* FALLTHRU */
+	    case 4: z *= (y+(float)3.0);	/* FALLTHRU */
+	    case 3: z *= (y+(float)2.0);	/* FALLTHRU */
+		    r += __ieee754_logf(z); break;
+	    }
+    /* 8.0 <= x < 2**58 */
+	} else if (ix < 0x5c800000) {
+	    t = __ieee754_logf(x);
+	    z = one/x;
+	    y = z*z;
+	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
+	    r = (x-half)*(t-one)+w;
+	} else
+    /* 2**58 <= x <= inf */
+	    r =  x*(__ieee754_logf(x)-one);
+	if(hx<0) r = nadj - r;
+	return r;
+}
diff --git a/sysdeps/ieee754/flt-32/e_log10f.c b/sysdeps/ieee754/flt-32/e_log10f.c
new file mode 100644
index 0000000000..cea3d9156b
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_log10f.c
@@ -0,0 +1,67 @@
+/* e_log10f.c -- float version of e_log10.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_log10f.c,v 1.5 1995/05/10 20:45:53 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+two25      =  3.3554432000e+07, /* 0x4c000000 */
+ivln10     =  4.3429449201e-01, /* 0x3ede5bd9 */
+log10_2hi  =  3.0102920532e-01, /* 0x3e9a2080 */
+log10_2lo  =  7.9034151668e-07; /* 0x355427db */
+
+#ifdef __STDC__
+static const float zero   =  0.0;
+#else
+static float zero   =  0.0;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_log10f(float x)
+#else
+	float __ieee754_log10f(x)
+	float x;
+#endif
+{
+	float y,z;
+	int32_t i,k,hx;
+
+	GET_FLOAT_WORD(hx,x);
+
+        k=0;
+        if (hx < 0x00800000) {			/* x < 2**-126  */
+            if ((hx&0x7fffffff)==0)
+                return -two25/(x-x);		/* log(+-0)=-inf */
+            if (hx<0) return (x-x)/(x-x);	/* log(-#) = NaN */
+            k -= 25; x *= two25; /* subnormal number, scale up x */
+	    GET_FLOAT_WORD(hx,x);
+        }
+	if (hx >= 0x7f800000) return x+x;
+	k += (hx>>23)-127;
+	i  = ((u_int32_t)k&0x80000000)>>31;
+        hx = (hx&0x007fffff)|((0x7f-i)<<23);
+        y  = (float)(k+i);
+	SET_FLOAT_WORD(x,hx);
+	z  = y*log10_2lo + ivln10*__ieee754_logf(x);
+	return  z+y*log10_2hi;
+}
diff --git a/sysdeps/ieee754/flt-32/e_logf.c b/sysdeps/ieee754/flt-32/e_logf.c
new file mode 100644
index 0000000000..de8f869df4
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_logf.c
@@ -0,0 +1,99 @@
+/* e_logf.c -- float version of e_log.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_logf.c,v 1.4 1995/05/10 20:45:54 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+ln2_hi =   6.9313812256e-01,	/* 0x3f317180 */
+ln2_lo =   9.0580006145e-06,	/* 0x3717f7d1 */
+two25 =    3.355443200e+07,	/* 0x4c000000 */
+Lg1 = 6.6666668653e-01,	/* 3F2AAAAB */
+Lg2 = 4.0000000596e-01,	/* 3ECCCCCD */
+Lg3 = 2.8571429849e-01, /* 3E924925 */
+Lg4 = 2.2222198546e-01, /* 3E638E29 */
+Lg5 = 1.8183572590e-01, /* 3E3A3325 */
+Lg6 = 1.5313838422e-01, /* 3E1CD04F */
+Lg7 = 1.4798198640e-01; /* 3E178897 */
+
+#ifdef __STDC__
+static const float zero   =  0.0;
+#else
+static float zero   =  0.0;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_logf(float x)
+#else
+	float __ieee754_logf(x)
+	float x;
+#endif
+{
+	float hfsq,f,s,z,R,w,t1,t2,dk;
+	int32_t k,ix,i,j;
+
+	GET_FLOAT_WORD(ix,x);
+
+	k=0;
+	if (ix < 0x00800000) {			/* x < 2**-126  */
+	    if ((ix&0x7fffffff)==0)
+		return -two25/(x-x);		/* log(+-0)=-inf */
+	    if (ix<0) return (x-x)/(x-x);	/* log(-#) = NaN */
+	    k -= 25; x *= two25; /* subnormal number, scale up x */
+	    GET_FLOAT_WORD(ix,x);
+	}
+	if (ix >= 0x7f800000) return x+x;
+	k += (ix>>23)-127;
+	ix &= 0x007fffff;
+	i = (ix+(0x95f64<<3))&0x800000;
+	SET_FLOAT_WORD(x,ix|(i^0x3f800000));	/* normalize x or x/2 */
+	k += (i>>23);
+	f = x-(float)1.0;
+	if((0x007fffff&(15+ix))<16) {	/* |f| < 2**-20 */
+	    if(f==zero) {
+	      if(k==0) return zero;  else {dk=(float)k;
+					   return dk*ln2_hi+dk*ln2_lo;}
+	    }
+	    R = f*f*((float)0.5-(float)0.33333333333333333*f);
+	    if(k==0) return f-R; else {dk=(float)k;
+	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
+	}
+ 	s = f/((float)2.0+f);
+	dk = (float)k;
+	z = s*s;
+	i = ix-(0x6147a<<3);
+	w = z*z;
+	j = (0x6b851<<3)-ix;
+	t1= w*(Lg2+w*(Lg4+w*Lg6));
+	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+	i |= j;
+	R = t2+t1;
+	if(i>0) {
+	    hfsq=(float)0.5*f*f;
+	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
+		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
+	} else {
+	    if(k==0) return f-s*(f-R); else
+		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
+	}
+}
diff --git a/sysdeps/ieee754/flt-32/e_powf.c b/sysdeps/ieee754/flt-32/e_powf.c
new file mode 100644
index 0000000000..4798340c84
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_powf.c
@@ -0,0 +1,253 @@
+/* e_powf.c -- float version of e_pow.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_powf.c,v 1.7 1996/04/08 15:43:44 phil Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+static const float huge = 1.0e+30, tiny = 1.0e-30;
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+bp[] = {1.0, 1.5,},
+dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
+dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
+zero    =  0.0,
+one	=  1.0,
+two	=  2.0,
+two24	=  16777216.0,	/* 0x4b800000 */
+	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+L1  =  6.0000002384e-01, /* 0x3f19999a */
+L2  =  4.2857143283e-01, /* 0x3edb6db7 */
+L3  =  3.3333334327e-01, /* 0x3eaaaaab */
+L4  =  2.7272811532e-01, /* 0x3e8ba305 */
+L5  =  2.3066075146e-01, /* 0x3e6c3255 */
+L6  =  2.0697501302e-01, /* 0x3e53f142 */
+P1   =  1.6666667163e-01, /* 0x3e2aaaab */
+P2   = -2.7777778450e-03, /* 0xbb360b61 */
+P3   =  6.6137559770e-05, /* 0x388ab355 */
+P4   = -1.6533901999e-06, /* 0xb5ddea0e */
+P5   =  4.1381369442e-08, /* 0x3331bb4c */
+lg2  =  6.9314718246e-01, /* 0x3f317218 */
+lg2_h  =  6.93145752e-01, /* 0x3f317200 */
+lg2_l  =  1.42860654e-06, /* 0x35bfbe8c */
+ovt =  4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
+cp    =  9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
+cp_h  =  9.6179199219e-01, /* 0x3f763800 =head of cp */
+cp_l  =  4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
+ivln2    =  1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
+ivln2_h  =  1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
+ivln2_l  =  7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
+
+#ifdef __STDC__
+	float __ieee754_powf(float x, float y)
+#else
+	float __ieee754_powf(x,y)
+	float x, y;
+#endif
+{
+	float z,ax,z_h,z_l,p_h,p_l;
+	float y1,t1,t2,r,s,t,u,v,w;
+	int32_t i,j,k,yisint,n;
+	int32_t hx,hy,ix,iy,is;
+
+	GET_FLOAT_WORD(hx,x);
+	GET_FLOAT_WORD(hy,y);
+	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
+
+    /* y==zero: x**0 = 1 */
+	if(iy==0) return one;
+
+    /* +-NaN return x+y */
+	if(ix > 0x7f800000 ||
+	   iy > 0x7f800000)
+		return x+y;
+
+    /* determine if y is an odd int when x < 0
+     * yisint = 0	... y is not an integer
+     * yisint = 1	... y is an odd int
+     * yisint = 2	... y is an even int
+     */
+	yisint  = 0;
+	if(hx<0) {
+	    if(iy>=0x4b800000) yisint = 2; /* even integer y */
+	    else if(iy>=0x3f800000) {
+		k = (iy>>23)-0x7f;	   /* exponent */
+		j = iy>>(23-k);
+		if((j<<(23-k))==iy) yisint = 2-(j&1);
+	    }
+	}
+
+    /* special value of y */
+	if (iy==0x7f800000) {	/* y is +-inf */
+	    if (ix==0x3f800000)
+	        return  y - y;	/* inf**+-1 is NaN */
+	    else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
+	        return (hy>=0)? y: zero;
+	    else			/* (|x|<1)**-,+inf = inf,0 */
+	        return (hy<0)?-y: zero;
+	}
+	if(iy==0x3f800000) {	/* y is  +-1 */
+	    if(hy<0) return one/x; else return x;
+	}
+	if(hy==0x40000000) return x*x; /* y is  2 */
+	if(hy==0x3f000000) {	/* y is  0.5 */
+	    if(hx>=0)	/* x >= +0 */
+	    return __ieee754_sqrtf(x);
+	}
+
+	ax   = fabsf(x);
+    /* special value of x */
+	if(ix==0x7f800000||ix==0||ix==0x3f800000){
+	    z = ax;			/*x is +-0,+-inf,+-1*/
+	    if(hy<0) z = one/z;	/* z = (1/|x|) */
+	    if(hx<0) {
+		if(((ix-0x3f800000)|yisint)==0) {
+		    z = (z-z)/(z-z); /* (-1)**non-int is NaN */
+		} else if(yisint==1)
+		    z = -z;		/* (x<0)**odd = -(|x|**odd) */
+	    }
+	    return z;
+	}
+
+    /* (x<0)**(non-int) is NaN */
+	if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
+
+    /* |y| is huge */
+	if(iy>0x4d000000) { /* if |y| > 2**27 */
+	/* over/underflow if x is not close to one */
+	    if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny;
+	    if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny;
+	/* now |1-x| is tiny <= 2**-20, suffice to compute
+	   log(x) by x-x^2/2+x^3/3-x^4/4 */
+	    t = x-1;		/* t has 20 trailing zeros */
+	    w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
+	    u = ivln2_h*t;	/* ivln2_h has 16 sig. bits */
+	    v = t*ivln2_l-w*ivln2;
+	    t1 = u+v;
+	    GET_FLOAT_WORD(is,t1);
+	    SET_FLOAT_WORD(t1,is&0xfffff000);
+	    t2 = v-(t1-u);
+	} else {
+	    float s2,s_h,s_l,t_h,t_l;
+	    n = 0;
+	/* take care subnormal number */
+	    if(ix<0x00800000)
+		{ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
+	    n  += ((ix)>>23)-0x7f;
+	    j  = ix&0x007fffff;
+	/* determine interval */
+	    ix = j|0x3f800000;		/* normalize ix */
+	    if(j<=0x1cc471) k=0;	/* |x|<sqrt(3/2) */
+	    else if(j<0x5db3d7) k=1;	/* |x|<sqrt(3)   */
+	    else {k=0;n+=1;ix -= 0x00800000;}
+	    SET_FLOAT_WORD(ax,ix);
+
+	/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
+	    v = one/(ax+bp[k]);
+	    s = u*v;
+	    s_h = s;
+	    GET_FLOAT_WORD(is,s_h);
+	    SET_FLOAT_WORD(s_h,is&0xfffff000);
+	/* t_h=ax+bp[k] High */
+	    SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21));
+	    t_l = ax - (t_h-bp[k]);
+	    s_l = v*((u-s_h*t_h)-s_h*t_l);
+	/* compute log(ax) */
+	    s2 = s*s;
+	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
+	    r += s_l*(s_h+s);
+	    s2  = s_h*s_h;
+	    t_h = (float)3.0+s2+r;
+	    GET_FLOAT_WORD(is,t_h);
+	    SET_FLOAT_WORD(t_h,is&0xfffff000);
+	    t_l = r-((t_h-(float)3.0)-s2);
+	/* u+v = s*(1+...) */
+	    u = s_h*t_h;
+	    v = s_l*t_h+t_l*s;
+	/* 2/(3log2)*(s+...) */
+	    p_h = u+v;
+	    GET_FLOAT_WORD(is,p_h);
+	    SET_FLOAT_WORD(p_h,is&0xfffff000);
+	    p_l = v-(p_h-u);
+	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
+	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
+	/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+	    t = (float)n;
+	    t1 = (((z_h+z_l)+dp_h[k])+t);
+	    GET_FLOAT_WORD(is,t1);
+	    SET_FLOAT_WORD(t1,is&0xfffff000);
+	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
+	}
+
+	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
+	if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
+	    s = -one;	/* (-ve)**(odd int) */
+
+    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+	GET_FLOAT_WORD(is,y);
+	SET_FLOAT_WORD(y1,is&0xfffff000);
+	p_l = (y-y1)*t1+y*t2;
+	p_h = y1*t1;
+	z = p_l+p_h;
+	GET_FLOAT_WORD(j,z);
+	if (j>0x43000000)				/* if z > 128 */
+	    return s*huge*huge;				/* overflow */
+	else if (j==0x43000000) {			/* if z == 128 */
+	    if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
+	}
+	else if ((j&0x7fffffff)>0x43160000)		/* z <= -150 */
+	    return s*tiny*tiny;				/* underflow */
+	else if ((u_int32_t) j==0xc3160000){		/* z == -150 */
+	    if(p_l<=z-p_h) return s*tiny*tiny;		/* underflow */
+	}
+    /*
+     * compute 2**(p_h+p_l)
+     */
+	i = j&0x7fffffff;
+	k = (i>>23)-0x7f;
+	n = 0;
+	if(i>0x3f000000) {		/* if |z| > 0.5, set n = [z+0.5] */
+	    n = j+(0x00800000>>(k+1));
+	    k = ((n&0x7fffffff)>>23)-0x7f;	/* new k for n */
+	    SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
+	    n = ((n&0x007fffff)|0x00800000)>>(23-k);
+	    if(j<0) n = -n;
+	    p_h -= t;
+	}
+	t = p_l+p_h;
+	GET_FLOAT_WORD(is,t);
+	SET_FLOAT_WORD(t,is&0xfffff000);
+	u = t*lg2_h;
+	v = (p_l-(t-p_h))*lg2+t*lg2_l;
+	z = u+v;
+	w = v-(z-u);
+	t  = z*z;
+	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+	r  = (z*t1)/(t1-two)-(w+z*w);
+	z  = one-(r-z);
+	GET_FLOAT_WORD(j,z);
+	j += (n<<23);
+	if((j>>23)<=0) z = __scalbnf(z,n);	/* subnormal output */
+	else SET_FLOAT_WORD(z,j);
+	return s*z;
+}
diff --git a/sysdeps/ieee754/flt-32/e_rem_pio2f.c b/sysdeps/ieee754/flt-32/e_rem_pio2f.c
new file mode 100644
index 0000000000..4b8c4466bd
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_rem_pio2f.c
@@ -0,0 +1,196 @@
+/* e_rem_pio2f.c -- float version of e_rem_pio2.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_rem_pio2f.c,v 1.5 1995/05/10 20:46:03 jtc Exp $";
+#endif
+
+/* __ieee754_rem_pio2f(x,y)
+ *
+ * return the remainder of x rem pi/2 in y[0]+y[1]
+ * use __kernel_rem_pio2f()
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+/*
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+ */
+#ifdef __STDC__
+static const int32_t two_over_pi[] = {
+#else
+static int32_t two_over_pi[] = {
+#endif
+0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC,
+0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62,
+0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63,
+0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A,
+0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09,
+0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29,
+0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44,
+0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41,
+0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C,
+0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8,
+0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11,
+0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF,
+0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E,
+0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5,
+0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92,
+0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08,
+0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0,
+0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3,
+0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85,
+0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80,
+0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA,
+0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B,
+};
+
+/* This array is like the one in e_rem_pio2.c, but the numbers are
+   single precision and the last 8 bits are forced to 0.  */
+#ifdef __STDC__
+static const int32_t npio2_hw[] = {
+#else
+static int32_t npio2_hw[] = {
+#endif
+0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00,
+0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00,
+0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100,
+0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00,
+0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00,
+0x4242c700, 0x42490f00
+};
+
+/*
+ * invpio2:  24 bits of 2/pi
+ * pio2_1:   first  17 bit of pi/2
+ * pio2_1t:  pi/2 - pio2_1
+ * pio2_2:   second 17 bit of pi/2
+ * pio2_2t:  pi/2 - (pio2_1+pio2_2)
+ * pio2_3:   third  17 bit of pi/2
+ * pio2_3t:  pi/2 - (pio2_1+pio2_2+pio2_3)
+ */
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+zero =  0.0000000000e+00, /* 0x00000000 */
+half =  5.0000000000e-01, /* 0x3f000000 */
+two8 =  2.5600000000e+02, /* 0x43800000 */
+invpio2 =  6.3661980629e-01, /* 0x3f22f984 */
+pio2_1  =  1.5707855225e+00, /* 0x3fc90f80 */
+pio2_1t =  1.0804334124e-05, /* 0x37354443 */
+pio2_2  =  1.0804273188e-05, /* 0x37354400 */
+pio2_2t =  6.0770999344e-11, /* 0x2e85a308 */
+pio2_3  =  6.0770943833e-11, /* 0x2e85a300 */
+pio2_3t =  6.1232342629e-17; /* 0x248d3132 */
+
+#ifdef __STDC__
+	int32_t __ieee754_rem_pio2f(float x, float *y)
+#else
+	int32_t __ieee754_rem_pio2f(x,y)
+	float x,y[];
+#endif
+{
+	float z,w,t,r,fn;
+	float tx[3];
+	int32_t e0,i,j,nx,n,ix,hx;
+
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix<=0x3f490fd8)   /* |x| ~<= pi/4 , no need for reduction */
+	    {y[0] = x; y[1] = 0; return 0;}
+	if(ix<0x4016cbe4) {  /* |x| < 3pi/4, special case with n=+-1 */
+	    if(hx>0) {
+		z = x - pio2_1;
+		if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
+		    y[0] = z - pio2_1t;
+		    y[1] = (z-y[0])-pio2_1t;
+		} else {		/* near pi/2, use 24+24+24 bit pi */
+		    z -= pio2_2;
+		    y[0] = z - pio2_2t;
+		    y[1] = (z-y[0])-pio2_2t;
+		}
+		return 1;
+	    } else {	/* negative x */
+		z = x + pio2_1;
+		if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
+		    y[0] = z + pio2_1t;
+		    y[1] = (z-y[0])+pio2_1t;
+		} else {		/* near pi/2, use 24+24+24 bit pi */
+		    z += pio2_2;
+		    y[0] = z + pio2_2t;
+		    y[1] = (z-y[0])+pio2_2t;
+		}
+		return -1;
+	    }
+	}
+	if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */
+	    t  = fabsf(x);
+	    n  = (int32_t) (t*invpio2+half);
+	    fn = (float)n;
+	    r  = t-fn*pio2_1;
+	    w  = fn*pio2_1t;	/* 1st round good to 40 bit */
+	    if(n<32&&(int32_t)(ix&0xffffff00)!=npio2_hw[n-1]) {
+		y[0] = r-w;	/* quick check no cancellation */
+	    } else {
+	        u_int32_t high;
+	        j  = ix>>23;
+	        y[0] = r-w;
+		GET_FLOAT_WORD(high,y[0]);
+	        i = j-((high>>23)&0xff);
+	        if(i>8) {  /* 2nd iteration needed, good to 57 */
+		    t  = r;
+		    w  = fn*pio2_2;
+		    r  = t-w;
+		    w  = fn*pio2_2t-((t-r)-w);
+		    y[0] = r-w;
+		    GET_FLOAT_WORD(high,y[0]);
+		    i = j-((high>>23)&0xff);
+		    if(i>25)  {	/* 3rd iteration need, 74 bits acc */
+		    	t  = r;	/* will cover all possible cases */
+		    	w  = fn*pio2_3;
+		    	r  = t-w;
+		    	w  = fn*pio2_3t-((t-r)-w);
+		    	y[0] = r-w;
+		    }
+		}
+	    }
+	    y[1] = (r-y[0])-w;
+	    if(hx<0) 	{y[0] = -y[0]; y[1] = -y[1]; return -n;}
+	    else	 return n;
+	}
+    /*
+     * all other (large) arguments
+     */
+	if(ix>=0x7f800000) {		/* x is inf or NaN */
+	    y[0]=y[1]=x-x; return 0;
+	}
+    /* set z = scalbn(|x|,ilogb(x)-7) */
+	e0 	= (ix>>23)-134;		/* e0 = ilogb(z)-7; */
+	SET_FLOAT_WORD(z, ix - ((int32_t)(e0<<23)));
+	for(i=0;i<2;i++) {
+		tx[i] = (float)((int32_t)(z));
+		z     = (z-tx[i])*two8;
+	}
+	tx[2] = z;
+	nx = 3;
+	while(tx[nx-1]==zero) nx--;	/* skip zero term */
+	n  =  __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi);
+	if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+	return n;
+}
diff --git a/sysdeps/ieee754/flt-32/e_remainderf.c b/sysdeps/ieee754/flt-32/e_remainderf.c
new file mode 100644
index 0000000000..90d0d366d4
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_remainderf.c
@@ -0,0 +1,73 @@
+/* e_remainderf.c -- float version of e_remainder.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_remainderf.c,v 1.4 1995/05/10 20:46:08 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float zero = 0.0;
+#else
+static float zero = 0.0;
+#endif
+
+
+#ifdef __STDC__
+	float __ieee754_remainderf(float x, float p)
+#else
+	float __ieee754_remainderf(x,p)
+	float x,p;
+#endif
+{
+	int32_t hx,hp;
+	u_int32_t sx;
+	float p_half;
+
+	GET_FLOAT_WORD(hx,x);
+	GET_FLOAT_WORD(hp,p);
+	sx = hx&0x80000000;
+	hp &= 0x7fffffff;
+	hx &= 0x7fffffff;
+
+    /* purge off exception values */
+	if(hp==0) return (x*p)/(x*p);	 	/* p = 0 */
+	if((hx>=0x7f800000)||			/* x not finite */
+	  ((hp>0x7f800000)))			/* p is NaN */
+	    return (x*p)/(x*p);
+
+
+	if (hp<=0x7effffff) x = __ieee754_fmodf(x,p+p);	/* now x < 2p */
+	if ((hx-hp)==0) return zero*x;
+	x  = fabsf(x);
+	p  = fabsf(p);
+	if (hp<0x01000000) {
+	    if(x+x>p) {
+		x-=p;
+		if(x+x>=p) x -= p;
+	    }
+	} else {
+	    p_half = (float)0.5*p;
+	    if(x>p_half) {
+		x-=p;
+		if(x>=p_half) x -= p;
+	    }
+	}
+	GET_FLOAT_WORD(hx,x);
+	SET_FLOAT_WORD(x,hx^sx);
+	return x;
+}
diff --git a/sysdeps/ieee754/flt-32/e_sinhf.c b/sysdeps/ieee754/flt-32/e_sinhf.c
new file mode 100644
index 0000000000..045f6f121e
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_sinhf.c
@@ -0,0 +1,68 @@
+/* e_sinhf.c -- float version of e_sinh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_sinhf.c,v 1.4 1995/05/10 20:46:15 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float one = 1.0, shuge = 1.0e37;
+#else
+static float one = 1.0, shuge = 1.0e37;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_sinhf(float x)
+#else
+	float __ieee754_sinhf(x)
+	float x;
+#endif
+{	
+	float t,w,h;
+	int32_t ix,jx;
+
+	GET_FLOAT_WORD(jx,x);
+	ix = jx&0x7fffffff;
+
+    /* x is INF or NaN */
+	if(ix>=0x7f800000) return x+x;	
+
+	h = 0.5;
+	if (jx<0) h = -h;
+    /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
+	if (ix < 0x41b00000) {		/* |x|<22 */
+	    if (ix<0x31800000) 		/* |x|<2**-28 */
+		if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
+	    t = __expm1f(fabsf(x));
+	    if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one));
+	    return h*(t+t/(t+one));
+	}
+
+    /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
+	if (ix < 0x42b17180)  return h*__ieee754_expf(fabsf(x));
+
+    /* |x| in [log(maxdouble), overflowthresold] */
+	if (ix<=0x42b2d4fc) {
+	    w = __ieee754_expf((float)0.5*fabsf(x));
+	    t = h*w;
+	    return t*w;
+	}
+
+    /* |x| > overflowthresold, sinh(x) overflow */
+	return x*shuge;
+}
diff --git a/sysdeps/ieee754/flt-32/e_sqrtf.c b/sysdeps/ieee754/flt-32/e_sqrtf.c
new file mode 100644
index 0000000000..7648ef4bca
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_sqrtf.c
@@ -0,0 +1,97 @@
+/* e_sqrtf.c -- float version of e_sqrt.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_sqrtf.c,v 1.4 1995/05/10 20:46:19 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static	const float	one	= 1.0, tiny=1.0e-30;
+#else
+static	float	one	= 1.0, tiny=1.0e-30;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_sqrtf(float x)
+#else
+	float __ieee754_sqrtf(x)
+	float x;
+#endif
+{
+	float z;
+	int32_t sign = (int)0x80000000; 
+	int32_t ix,s,q,m,t,i;
+	u_int32_t r;
+
+	GET_FLOAT_WORD(ix,x);
+
+    /* take care of Inf and NaN */
+	if((ix&0x7f800000)==0x7f800000) {			
+	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
+					   sqrt(-inf)=sNaN */
+	} 
+    /* take care of zero */
+	if(ix<=0) {
+	    if((ix&(~sign))==0) return x;/* sqrt(+-0) = +-0 */
+	    else if(ix<0)
+		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
+	}
+    /* normalize x */
+	m = (ix>>23);
+	if(m==0) {				/* subnormal x */
+	    for(i=0;(ix&0x00800000)==0;i++) ix<<=1;
+	    m -= i-1;
+	}
+	m -= 127;	/* unbias exponent */
+	ix = (ix&0x007fffff)|0x00800000;
+	if(m&1)	/* odd m, double x to make it even */
+	    ix += ix;
+	m >>= 1;	/* m = [m/2] */
+
+    /* generate sqrt(x) bit by bit */
+	ix += ix;
+	q = s = 0;		/* q = sqrt(x) */
+	r = 0x01000000;		/* r = moving bit from right to left */
+
+	while(r!=0) {
+	    t = s+r; 
+	    if(t<=ix) { 
+		s    = t+r; 
+		ix  -= t; 
+		q   += r; 
+	    } 
+	    ix += ix;
+	    r>>=1;
+	}
+
+    /* use floating add to find out rounding direction */
+	if(ix!=0) {
+	    z = one-tiny; /* trigger inexact flag */
+	    if (z>=one) {
+	        z = one+tiny;
+		if (z>one)
+		    q += 2;
+		else
+		    q += (q&1);
+	    }
+	}
+	ix = (q>>1)+0x3f000000;
+	ix += (m <<23);
+	SET_FLOAT_WORD(z,ix);
+	return z;
+}
diff --git a/sysdeps/ieee754/flt-32/k_cosf.c b/sysdeps/ieee754/flt-32/k_cosf.c
new file mode 100644
index 0000000000..b232cab11f
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/k_cosf.c
@@ -0,0 +1,64 @@
+/* k_cosf.c -- float version of k_cos.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_cosf.c,v 1.4 1995/05/10 20:46:23 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float 
+#else
+static float 
+#endif
+one =  1.0000000000e+00, /* 0x3f800000 */
+C1  =  4.1666667908e-02, /* 0x3d2aaaab */
+C2  = -1.3888889225e-03, /* 0xbab60b61 */
+C3  =  2.4801587642e-05, /* 0x37d00d01 */
+C4  = -2.7557314297e-07, /* 0xb493f27c */
+C5  =  2.0875723372e-09, /* 0x310f74f6 */
+C6  = -1.1359647598e-11; /* 0xad47d74e */
+
+#ifdef __STDC__
+	float __kernel_cosf(float x, float y)
+#else
+	float __kernel_cosf(x, y)
+	float x,y;
+#endif
+{
+	float a,hz,z,r,qx;
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;			/* ix = |x|'s high word*/
+	if(ix<0x32000000) {			/* if x < 2**27 */
+	    if(((int)x)==0) return one;		/* generate inexact */
+	}
+	z  = x*x;
+	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
+	if(ix < 0x3e99999a) 			/* if |x| < 0.3 */ 
+	    return one - ((float)0.5*z - (z*r - x*y));
+	else {
+	    if(ix > 0x3f480000) {		/* x > 0.78125 */
+		qx = (float)0.28125;
+	    } else {
+	        SET_FLOAT_WORD(qx,ix-0x01000000);	/* x/4 */
+	    }
+	    hz = (float)0.5*z-qx;
+	    a  = one-qx;
+	    return a - (hz - (z*r-x*y));
+	}
+}
diff --git a/sysdeps/ieee754/flt-32/k_rem_pio2f.c b/sysdeps/ieee754/flt-32/k_rem_pio2f.c
new file mode 100644
index 0000000000..2783480fcb
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/k_rem_pio2f.c
@@ -0,0 +1,213 @@
+/* k_rem_pio2f.c -- float version of k_rem_pio2.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_rem_pio2f.c,v 1.4 1995/05/10 20:46:28 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+/* In the float version, the input parameter x contains 8 bit
+   integers, not 24 bit integers.  113 bit precision is not supported.  */
+
+#ifdef __STDC__
+static const int init_jk[] = {4,7,9}; /* initial value for jk */
+#else
+static int init_jk[] = {4,7,9}; 
+#endif
+
+#ifdef __STDC__
+static const float PIo2[] = {
+#else
+static float PIo2[] = {
+#endif
+  1.5703125000e+00, /* 0x3fc90000 */
+  4.5776367188e-04, /* 0x39f00000 */
+  2.5987625122e-05, /* 0x37da0000 */
+  7.5437128544e-08, /* 0x33a20000 */
+  6.0026650317e-11, /* 0x2e840000 */
+  7.3896444519e-13, /* 0x2b500000 */
+  5.3845816694e-15, /* 0x27c20000 */
+  5.6378512969e-18, /* 0x22d00000 */
+  8.3009228831e-20, /* 0x1fc40000 */
+  3.2756352257e-22, /* 0x1bc60000 */
+  6.3331015649e-25, /* 0x17440000 */
+};
+
+#ifdef __STDC__
+static const float			
+#else
+static float			
+#endif
+zero   = 0.0,
+one    = 1.0,
+two8   =  2.5600000000e+02, /* 0x43800000 */
+twon8  =  3.9062500000e-03; /* 0x3b800000 */
+
+#ifdef __STDC__
+	int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const int32_t *ipio2) 
+#else
+	int __kernel_rem_pio2f(x,y,e0,nx,prec,ipio2) 	
+	float x[], y[]; int e0,nx,prec; int32_t ipio2[];
+#endif
+{
+	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
+	float z,fw,f[20],fq[20],q[20];
+
+    /* initialize jk*/
+	jk = init_jk[prec];
+	jp = jk;
+
+    /* determine jx,jv,q0, note that 3>q0 */
+	jx =  nx-1;
+	jv = (e0-3)/8; if(jv<0) jv=0;
+	q0 =  e0-8*(jv+1);
+
+    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+	j = jv-jx; m = jx+jk;
+	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j];
+
+    /* compute q[0],q[1],...q[jk] */
+	for (i=0;i<=jk;i++) {
+	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
+	}
+
+	jz = jk;
+recompute:
+    /* distill q[] into iq[] reversingly */
+	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
+	    fw    =  (float)((int32_t)(twon8* z));
+	    iq[i] =  (int32_t)(z-two8*fw);
+	    z     =  q[j-1]+fw;
+	}
+
+    /* compute n */
+	z  = __scalbnf(z,q0);		/* actual value of z */
+	z -= (float)8.0*__floorf(z*(float)0.125);	/* trim off integer >= 8 */
+	n  = (int32_t) z;
+	z -= (float)n;
+	ih = 0;
+	if(q0>0) {	/* need iq[jz-1] to determine n */
+	    i  = (iq[jz-1]>>(8-q0)); n += i;
+	    iq[jz-1] -= i<<(8-q0);
+	    ih = iq[jz-1]>>(7-q0);
+	} 
+	else if(q0==0) ih = iq[jz-1]>>8;
+	else if(z>=(float)0.5) ih=2;
+
+	if(ih>0) {	/* q > 0.5 */
+	    n += 1; carry = 0;
+	    for(i=0;i<jz ;i++) {	/* compute 1-q */
+		j = iq[i];
+		if(carry==0) {
+		    if(j!=0) {
+			carry = 1; iq[i] = 0x100- j;
+		    }
+		} else  iq[i] = 0xff - j;
+	    }
+	    if(q0>0) {		/* rare case: chance is 1 in 12 */
+	        switch(q0) {
+	        case 1:
+	    	   iq[jz-1] &= 0x7f; break;
+	    	case 2:
+	    	   iq[jz-1] &= 0x3f; break;
+	        }
+	    }
+	    if(ih==2) {
+		z = one - z;
+		if(carry!=0) z -= __scalbnf(one,q0);
+	    }
+	}
+
+    /* check if recomputation is needed */
+	if(z==zero) {
+	    j = 0;
+	    for (i=jz-1;i>=jk;i--) j |= iq[i];
+	    if(j==0) { /* need recomputation */
+		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
+
+		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
+		    f[jx+i] = (float) ipio2[jv+i];
+		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
+		    q[i] = fw;
+		}
+		jz += k;
+		goto recompute;
+	    }
+	}
+
+    /* chop off zero terms */
+	if(z==(float)0.0) {
+	    jz -= 1; q0 -= 8;
+	    while(iq[jz]==0) { jz--; q0-=8;}
+	} else { /* break z into 8-bit if necessary */
+	    z = __scalbnf(z,-q0);
+	    if(z>=two8) { 
+		fw = (float)((int32_t)(twon8*z));
+		iq[jz] = (int32_t)(z-two8*fw);
+		jz += 1; q0 += 8;
+		iq[jz] = (int32_t) fw;
+	    } else iq[jz] = (int32_t) z ;
+	}
+
+    /* convert integer "bit" chunk to floating-point value */
+	fw = __scalbnf(one,q0);
+	for(i=jz;i>=0;i--) {
+	    q[i] = fw*(float)iq[i]; fw*=twon8;
+	}
+
+    /* compute PIo2[0,...,jp]*q[jz,...,0] */
+	for(i=jz;i>=0;i--) {
+	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
+	    fq[jz-i] = fw;
+	}
+
+    /* compress fq[] into y[] */
+	switch(prec) {
+	    case 0:
+		fw = 0.0;
+		for (i=jz;i>=0;i--) fw += fq[i];
+		y[0] = (ih==0)? fw: -fw; 
+		break;
+	    case 1:
+	    case 2:
+		fw = 0.0;
+		for (i=jz;i>=0;i--) fw += fq[i]; 
+		y[0] = (ih==0)? fw: -fw; 
+		fw = fq[0]-fw;
+		for (i=1;i<=jz;i++) fw += fq[i];
+		y[1] = (ih==0)? fw: -fw; 
+		break;
+	    case 3:	/* painful */
+		for (i=jz;i>0;i--) {
+		    fw      = fq[i-1]+fq[i]; 
+		    fq[i]  += fq[i-1]-fw;
+		    fq[i-1] = fw;
+		}
+		for (i=jz;i>1;i--) {
+		    fw      = fq[i-1]+fq[i]; 
+		    fq[i]  += fq[i-1]-fw;
+		    fq[i-1] = fw;
+		}
+		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; 
+		if(ih==0) {
+		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
+		} else {
+		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
+		}
+	}
+	return n&7;
+}
diff --git a/sysdeps/ieee754/flt-32/k_sinf.c b/sysdeps/ieee754/flt-32/k_sinf.c
new file mode 100644
index 0000000000..4fec15e830
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/k_sinf.c
@@ -0,0 +1,54 @@
+/* k_sinf.c -- float version of k_sin.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_sinf.c,v 1.4 1995/05/10 20:46:33 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float 
+#else
+static float 
+#endif
+half =  5.0000000000e-01,/* 0x3f000000 */
+S1  = -1.6666667163e-01, /* 0xbe2aaaab */
+S2  =  8.3333337680e-03, /* 0x3c088889 */
+S3  = -1.9841270114e-04, /* 0xb9500d01 */
+S4  =  2.7557314297e-06, /* 0x3638ef1b */
+S5  = -2.5050759689e-08, /* 0xb2d72f34 */
+S6  =  1.5896910177e-10; /* 0x2f2ec9d3 */
+
+#ifdef __STDC__
+	float __kernel_sinf(float x, float y, int iy)
+#else
+	float __kernel_sinf(x, y, iy)
+	float x,y; int iy;		/* iy=0 if y is zero */
+#endif
+{
+	float z,r,v;
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;			/* high word of x */
+	if(ix<0x32000000)			/* |x| < 2**-27 */
+	   {if((int)x==0) return x;}		/* generate inexact */
+	z	=  x*x;
+	v	=  z*x;
+	r	=  S2+z*(S3+z*(S4+z*(S5+z*S6)));
+	if(iy==0) return x+v*(S1+z*r);
+	else      return x-((z*(half*y-v*r)-y)-v*S1);
+}
diff --git a/sysdeps/ieee754/flt-32/k_tanf.c b/sysdeps/ieee754/flt-32/k_tanf.c
new file mode 100644
index 0000000000..eb1a670939
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/k_tanf.c
@@ -0,0 +1,101 @@
+/* k_tanf.c -- float version of k_tan.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_tanf.c,v 1.4 1995/05/10 20:46:39 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+#ifdef __STDC__
+static const float 
+#else
+static float 
+#endif
+one   =  1.0000000000e+00, /* 0x3f800000 */
+pio4  =  7.8539812565e-01, /* 0x3f490fda */
+pio4lo=  3.7748947079e-08, /* 0x33222168 */
+T[] =  {
+  3.3333334327e-01, /* 0x3eaaaaab */
+  1.3333334029e-01, /* 0x3e088889 */
+  5.3968254477e-02, /* 0x3d5d0dd1 */
+  2.1869488060e-02, /* 0x3cb327a4 */
+  8.8632395491e-03, /* 0x3c11371f */
+  3.5920790397e-03, /* 0x3b6b6916 */
+  1.4562094584e-03, /* 0x3abede48 */
+  5.8804126456e-04, /* 0x3a1a26c8 */
+  2.4646313977e-04, /* 0x398137b9 */
+  7.8179444245e-05, /* 0x38a3f445 */
+  7.1407252108e-05, /* 0x3895c07a */
+ -1.8558637748e-05, /* 0xb79bae5f */
+  2.5907305826e-05, /* 0x37d95384 */
+};
+
+#ifdef __STDC__
+	float __kernel_tanf(float x, float y, int iy)
+#else
+	float __kernel_tanf(x, y, iy)
+	float x,y; int iy;
+#endif
+{
+	float z,r,v,w,s;
+	int32_t ix,hx;
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;	/* high word of |x| */
+	if(ix<0x31800000)			/* x < 2**-28 */
+	    {if((int)x==0) {			/* generate inexact */
+		if((ix|(iy+1))==0) return one/fabsf(x);
+		else return (iy==1)? x: -one/x;
+	    }
+	    }
+	if(ix>=0x3f2ca140) { 			/* |x|>=0.6744 */
+	    if(hx<0) {x = -x; y = -y;}
+	    z = pio4-x;
+	    w = pio4lo-y;
+	    x = z+w; y = 0.0;
+	}
+	z	=  x*x;
+	w 	=  z*z;
+    /* Break x^5*(T[1]+x^2*T[2]+...) into
+     *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+     *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+     */
+	r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
+	v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
+	s = z*x;
+	r = y + z*(s*(r+v)+y);
+	r += T[0]*s;
+	w = x+r;
+	if(ix>=0x3f2ca140) {
+	    v = (float)iy;
+	    return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r)));
+	}
+	if(iy==1) return w;
+	else {		/* if allow error up to 2 ulp, 
+			   simply return -1.0/(x+r) here */
+     /*  compute -1.0/(x+r) accurately */
+	    float a,t;
+	    int32_t i;
+	    z  = w;
+	    GET_FLOAT_WORD(i,z);
+	    SET_FLOAT_WORD(z,i&0xfffff000);
+	    v  = r-(z - x); 	/* z+v = r+x */
+	    t = a  = -(float)1.0/w;	/* a = -1.0/w */
+	    GET_FLOAT_WORD(i,t);
+	    SET_FLOAT_WORD(t,i&0xfffff000);
+	    s  = (float)1.0+t*z;
+	    return t+a*(s+t*v);
+	}
+}
diff --git a/sysdeps/ieee754/mpn2flt.c b/sysdeps/ieee754/flt-32/mpn2flt.c
index a409b456b0..a409b456b0 100644
--- a/sysdeps/ieee754/mpn2flt.c
+++ b/sysdeps/ieee754/flt-32/mpn2flt.c
diff --git a/sysdeps/ieee754/flt-32/s_asinhf.c b/sysdeps/ieee754/flt-32/s_asinhf.c
new file mode 100644
index 0000000000..fac256d37a
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_asinhf.c
@@ -0,0 +1,58 @@
+/* s_asinhf.c -- float version of s_asinh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_asinhf.c,v 1.5 1995/05/12 04:57:39 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+one =  1.0000000000e+00, /* 0x3F800000 */
+ln2 =  6.9314718246e-01, /* 0x3f317218 */
+huge=  1.0000000000e+30;
+
+#ifdef __STDC__
+	float __asinhf(float x)
+#else
+	float __asinhf(x)
+	float x;
+#endif
+{
+	float t,w;
+	int32_t hx,ix;
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7f800000) return x+x;	/* x is inf or NaN */
+	if(ix< 0x38000000) {	/* |x|<2**-14 */
+	    if(huge+x>one) return x;	/* return x inexact except 0 */
+	}
+	if(ix>0x47000000) {	/* |x| > 2**14 */
+	    w = __ieee754_logf(fabsf(x))+ln2;
+	} else if (ix>0x40000000) {	/* 2**14 > |x| > 2.0 */
+	    t = fabsf(x);
+	    w = __ieee754_logf((float)2.0*t+one/(__ieee754_sqrtf(x*x+one)+t));
+	} else {		/* 2.0 > |x| > 2**-14 */
+	    t = x*x;
+	    w =__log1pf(fabsf(x)+t/(one+__ieee754_sqrtf(one+t)));
+	}
+	if(hx>0) return w; else return -w;
+}
+weak_alias (__asinhf, asinhf)
diff --git a/sysdeps/ieee754/flt-32/s_atanf.c b/sysdeps/ieee754/flt-32/s_atanf.c
new file mode 100644
index 0000000000..a68933fa6a
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_atanf.c
@@ -0,0 +1,120 @@
+/* s_atanf.c -- float version of s_atan.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_atanf.c,v 1.4 1995/05/10 20:46:47 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float atanhi[] = {
+#else
+static float atanhi[] = {
+#endif
+  4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
+  7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
+  9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
+  1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
+};
+
+#ifdef __STDC__
+static const float atanlo[] = {
+#else
+static float atanlo[] = {
+#endif
+  5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
+  3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
+  3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
+  7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
+};
+
+#ifdef __STDC__
+static const float aT[] = {
+#else
+static float aT[] = {
+#endif
+  3.3333334327e-01, /* 0x3eaaaaaa */
+ -2.0000000298e-01, /* 0xbe4ccccd */
+  1.4285714924e-01, /* 0x3e124925 */
+ -1.1111110449e-01, /* 0xbde38e38 */
+  9.0908870101e-02, /* 0x3dba2e6e */
+ -7.6918758452e-02, /* 0xbd9d8795 */
+  6.6610731184e-02, /* 0x3d886b35 */
+ -5.8335702866e-02, /* 0xbd6ef16b */
+  4.9768779427e-02, /* 0x3d4bda59 */
+ -3.6531571299e-02, /* 0xbd15a221 */
+  1.6285819933e-02, /* 0x3c8569d7 */
+};
+
+#ifdef __STDC__
+	static const float 
+#else
+	static float 
+#endif
+one   = 1.0,
+huge   = 1.0e30;
+
+#ifdef __STDC__
+	float __atanf(float x)
+#else
+	float __atanf(x)
+	float x;
+#endif
+{
+	float w,s1,s2,z;
+	int32_t ix,hx,id;
+
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x50800000) {	/* if |x| >= 2^34 */
+	    if(ix>0x7f800000)
+		return x+x;		/* NaN */
+	    if(hx>0) return  atanhi[3]+atanlo[3];
+	    else     return -atanhi[3]-atanlo[3];
+	} if (ix < 0x3ee00000) {	/* |x| < 0.4375 */
+	    if (ix < 0x31000000) {	/* |x| < 2^-29 */
+		if(huge+x>one) return x;	/* raise inexact */
+	    }
+	    id = -1;
+	} else {
+	x = fabsf(x);
+	if (ix < 0x3f980000) {		/* |x| < 1.1875 */
+	    if (ix < 0x3f300000) {	/* 7/16 <=|x|<11/16 */
+		id = 0; x = ((float)2.0*x-one)/((float)2.0+x); 
+	    } else {			/* 11/16<=|x|< 19/16 */
+		id = 1; x  = (x-one)/(x+one); 
+	    }
+	} else {
+	    if (ix < 0x401c0000) {	/* |x| < 2.4375 */
+		id = 2; x  = (x-(float)1.5)/(one+(float)1.5*x);
+	    } else {			/* 2.4375 <= |x| < 2^66 */
+		id = 3; x  = -(float)1.0/x;
+	    }
+	}}
+    /* end of argument reduction */
+	z = x*x;
+	w = z*z;
+    /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+	s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
+	s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
+	if (id<0) return x - x*(s1+s2);
+	else {
+	    z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
+	    return (hx<0)? -z:z;
+	}
+}
+weak_alias (__atanf, atanf)
diff --git a/sysdeps/ieee754/flt-32/s_cbrtf.c b/sysdeps/ieee754/flt-32/s_cbrtf.c
new file mode 100644
index 0000000000..fa0fef9987
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_cbrtf.c
@@ -0,0 +1,64 @@
+/* Compute cubic root of float value.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Dirk Alboth <dirka@uni-paderborn.de> and
+   Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include "math.h"
+#include "math_private.h"
+
+
+#define CBRT2 1.2599210498948731648		/* 2^(1/3) */
+#define SQR_CBRT2 1.5874010519681994748		/* 2^(2/3) */
+
+static const double factor[5] =
+{
+  1.0 / SQR_CBRT2,
+  1.0 / CBRT2,
+  1.0,
+  CBRT2,
+  SQR_CBRT2
+};
+
+
+float
+__cbrtf (float x)
+{
+  float xm, ym, u, t2;
+  int xe;
+
+  /* Reduce X.  XM now is an range 1.0 to 0.5.  */
+  xm = __frexpf (fabsf (x), &xe);
+
+  /* If X is not finite or is null return it (with raising exceptions
+     if necessary.
+     Note: *Our* version of `frexp' sets XE to zero if the argument is
+     Inf or NaN.  This is not portable but faster.  */
+  if (xe == 0 && fpclassify (x) <= FP_ZERO)
+    return x + x;
+
+  u = (0.492659620528969547 + (0.697570460207922770
+			       - 0.191502161678719066 * xm) * xm);
+
+  t2 = u * u * u;
+
+  ym = u * (t2 + 2.0 * xm) / (2.0 * t2 + xm) * factor[2 + xe % 3];
+
+  return __ldexpf (x > 0.0 ? ym : -ym, xe / 3);
+}
+weak_alias (__cbrtf, cbrtf)
diff --git a/sysdeps/ieee754/flt-32/s_ceilf.c b/sysdeps/ieee754/flt-32/s_ceilf.c
new file mode 100644
index 0000000000..29ccadb049
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_ceilf.c
@@ -0,0 +1,62 @@
+/* s_ceilf.c -- float version of s_ceil.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_ceilf.c,v 1.4 1995/05/10 20:46:55 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float huge = 1.0e30;
+#else
+static float huge = 1.0e30;
+#endif
+
+#ifdef __STDC__
+	float __ceilf(float x)
+#else
+	float __ceilf(x)
+	float x;
+#endif
+{
+	int32_t i0,j0;
+	u_int32_t i;
+
+	GET_FLOAT_WORD(i0,x);
+	j0 = ((i0>>23)&0xff)-0x7f;
+	if(j0<23) {
+	    if(j0<0) { 	/* raise inexact if x != 0 */
+		if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
+		    if(i0<0) {i0=0x80000000;} 
+		    else if(i0!=0) { i0=0x3f800000;}
+		}
+	    } else {
+		i = (0x007fffff)>>j0;
+		if((i0&i)==0) return x; /* x is integral */
+		if(huge+x>(float)0.0) {	/* raise inexact flag */
+		    if(i0>0) i0 += (0x00800000)>>j0;
+		    i0 &= (~i);
+		}
+	    }
+	} else {
+	    if(j0==0x80) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	}
+	SET_FLOAT_WORD(x,i0);
+	return x;
+}
+weak_alias (__ceilf, ceilf)
diff --git a/sysdeps/ieee754/flt-32/s_copysignf.c b/sysdeps/ieee754/flt-32/s_copysignf.c
new file mode 100644
index 0000000000..a4e84e5397
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_copysignf.c
@@ -0,0 +1,42 @@
+/* s_copysignf.c -- float version of s_copysign.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_copysignf.c,v 1.4 1995/05/10 20:46:59 jtc Exp $";
+#endif
+
+/*
+ * copysignf(float x, float y)
+ * copysignf(x,y) returns a value with the magnitude of x and
+ * with the sign bit of y.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	float __copysignf(float x, float y)
+#else
+	float __copysignf(x,y)
+	float x,y;
+#endif
+{
+	u_int32_t ix,iy;
+	GET_FLOAT_WORD(ix,x);
+	GET_FLOAT_WORD(iy,y);
+	SET_FLOAT_WORD(x,(ix&0x7fffffff)|(iy&0x80000000));
+        return x;
+}
+weak_alias (__copysignf, copysignf)
diff --git a/sysdeps/ieee754/flt-32/s_cosf.c b/sysdeps/ieee754/flt-32/s_cosf.c
new file mode 100644
index 0000000000..86c59d440c
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_cosf.c
@@ -0,0 +1,60 @@
+/* s_cosf.c -- float version of s_cos.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_cosf.c,v 1.4 1995/05/10 20:47:03 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float one=1.0;
+#else
+static float one=1.0;
+#endif
+
+#ifdef __STDC__
+	float __cosf(float x)
+#else
+	float __cosf(x)
+	float x;
+#endif
+{
+	float y[2],z=0.0;
+	int32_t n,ix;
+
+	GET_FLOAT_WORD(ix,x);
+
+    /* |x| ~< pi/4 */
+	ix &= 0x7fffffff;
+	if(ix <= 0x3f490fd8) return __kernel_cosf(x,z);
+
+    /* cos(Inf or NaN) is NaN */
+	else if (ix>=0x7f800000) return x-x;
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2f(x,y);
+	    switch(n&3) {
+		case 0: return  __kernel_cosf(y[0],y[1]);
+		case 1: return -__kernel_sinf(y[0],y[1],1);
+		case 2: return -__kernel_cosf(y[0],y[1]);
+		default:
+		        return  __kernel_sinf(y[0],y[1],1);
+	    }
+	}
+}
+weak_alias (__cosf, cosf)
diff --git a/sysdeps/ieee754/flt-32/s_erff.c b/sysdeps/ieee754/flt-32/s_erff.c
new file mode 100644
index 0000000000..774714cfd1
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_erff.c
@@ -0,0 +1,225 @@
+/* s_erff.c -- float version of s_erf.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_erff.c,v 1.4 1995/05/10 20:47:07 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+tiny	    = 1e-30,
+half=  5.0000000000e-01, /* 0x3F000000 */
+one =  1.0000000000e+00, /* 0x3F800000 */
+two =  2.0000000000e+00, /* 0x40000000 */
+	/* c = (subfloat)0.84506291151 */
+erx =  8.4506291151e-01, /* 0x3f58560b */
+/*
+ * Coefficients for approximation to  erf on [0,0.84375]
+ */
+efx =  1.2837916613e-01, /* 0x3e0375d4 */
+efx8=  1.0270333290e+00, /* 0x3f8375d4 */
+pp0  =  1.2837916613e-01, /* 0x3e0375d4 */
+pp1  = -3.2504209876e-01, /* 0xbea66beb */
+pp2  = -2.8481749818e-02, /* 0xbce9528f */
+pp3  = -5.7702702470e-03, /* 0xbbbd1489 */
+pp4  = -2.3763017452e-05, /* 0xb7c756b1 */
+qq1  =  3.9791721106e-01, /* 0x3ecbbbce */
+qq2  =  6.5022252500e-02, /* 0x3d852a63 */
+qq3  =  5.0813062117e-03, /* 0x3ba68116 */
+qq4  =  1.3249473704e-04, /* 0x390aee49 */
+qq5  = -3.9602282413e-06, /* 0xb684e21a */
+/*
+ * Coefficients for approximation to  erf  in [0.84375,1.25] 
+ */
+pa0  = -2.3621185683e-03, /* 0xbb1acdc6 */
+pa1  =  4.1485610604e-01, /* 0x3ed46805 */
+pa2  = -3.7220788002e-01, /* 0xbebe9208 */
+pa3  =  3.1834661961e-01, /* 0x3ea2fe54 */
+pa4  = -1.1089469492e-01, /* 0xbde31cc2 */
+pa5  =  3.5478305072e-02, /* 0x3d1151b3 */
+pa6  = -2.1663755178e-03, /* 0xbb0df9c0 */
+qa1  =  1.0642088205e-01, /* 0x3dd9f331 */
+qa2  =  5.4039794207e-01, /* 0x3f0a5785 */
+qa3  =  7.1828655899e-02, /* 0x3d931ae7 */
+qa4  =  1.2617121637e-01, /* 0x3e013307 */
+qa5  =  1.3637083583e-02, /* 0x3c5f6e13 */
+qa6  =  1.1984500103e-02, /* 0x3c445aa3 */
+/*
+ * Coefficients for approximation to  erfc in [1.25,1/0.35]
+ */
+ra0  = -9.8649440333e-03, /* 0xbc21a093 */
+ra1  = -6.9385856390e-01, /* 0xbf31a0b7 */
+ra2  = -1.0558626175e+01, /* 0xc128f022 */
+ra3  = -6.2375331879e+01, /* 0xc2798057 */
+ra4  = -1.6239666748e+02, /* 0xc322658c */
+ra5  = -1.8460508728e+02, /* 0xc3389ae7 */
+ra6  = -8.1287437439e+01, /* 0xc2a2932b */
+ra7  = -9.8143291473e+00, /* 0xc11d077e */
+sa1  =  1.9651271820e+01, /* 0x419d35ce */
+sa2  =  1.3765776062e+02, /* 0x4309a863 */
+sa3  =  4.3456588745e+02, /* 0x43d9486f */
+sa4  =  6.4538726807e+02, /* 0x442158c9 */
+sa5  =  4.2900814819e+02, /* 0x43d6810b */
+sa6  =  1.0863500214e+02, /* 0x42d9451f */
+sa7  =  6.5702495575e+00, /* 0x40d23f7c */
+sa8  = -6.0424413532e-02, /* 0xbd777f97 */
+/*
+ * Coefficients for approximation to  erfc in [1/.35,28]
+ */
+rb0  = -9.8649431020e-03, /* 0xbc21a092 */
+rb1  = -7.9928326607e-01, /* 0xbf4c9dd4 */
+rb2  = -1.7757955551e+01, /* 0xc18e104b */
+rb3  = -1.6063638306e+02, /* 0xc320a2ea */
+rb4  = -6.3756646729e+02, /* 0xc41f6441 */
+rb5  = -1.0250950928e+03, /* 0xc480230b */
+rb6  = -4.8351919556e+02, /* 0xc3f1c275 */
+sb1  =  3.0338060379e+01, /* 0x41f2b459 */
+sb2  =  3.2579251099e+02, /* 0x43a2e571 */
+sb3  =  1.5367296143e+03, /* 0x44c01759 */
+sb4  =  3.1998581543e+03, /* 0x4547fdbb */
+sb5  =  2.5530502930e+03, /* 0x451f90ce */
+sb6  =  4.7452853394e+02, /* 0x43ed43a7 */
+sb7  = -2.2440952301e+01; /* 0xc1b38712 */
+
+#ifdef __STDC__
+	float __erff(float x)
+#else
+	float __erff(x)
+	float x;
+#endif
+{
+	int32_t hx,ix,i;
+	float R,S,P,Q,s,y,z,r;
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7f800000) {		/* erf(nan)=nan */
+	    i = ((u_int32_t)hx>>31)<<1;
+	    return (float)(1-i)+one/x;	/* erf(+-inf)=+-1 */
+	}
+
+	if(ix < 0x3f580000) {		/* |x|<0.84375 */
+	    if(ix < 0x31800000) { 	/* |x|<2**-28 */
+	        if (ix < 0x04000000) 
+		    /*avoid underflow */
+		    return (float)0.125*((float)8.0*x+efx8*x);
+		return x + efx*x;
+	    }
+	    z = x*x;
+	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+	    y = r/s;
+	    return x + x*y;
+	}
+	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
+	    s = fabsf(x)-one;
+	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+	}
+	if (ix >= 0x40c00000) {		/* inf>|x|>=6 */
+	    if(hx>=0) return one-tiny; else return tiny-one;
+	}
+	x = fabsf(x);
+ 	s = one/(x*x);
+	if(ix< 0x4036DB6E) {	/* |x| < 1/0.35 */
+	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+				ra5+s*(ra6+s*ra7))))));
+	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+				sa5+s*(sa6+s*(sa7+s*sa8)))))));
+	} else {	/* |x| >= 1/0.35 */
+	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+				rb5+s*rb6)))));
+	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+				sb5+s*(sb6+s*sb7))))));
+	}
+	GET_FLOAT_WORD(ix,x);
+	SET_FLOAT_WORD(z,ix&0xfffff000);
+	r  =  __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S);
+	if(hx>=0) return one-r/x; else return  r/x-one;
+}
+weak_alias (__erff, erff)
+
+#ifdef __STDC__
+	float __erfcf(float x)
+#else
+	float __erfcf(x)
+	float x;
+#endif
+{
+	int32_t hx,ix;
+	float R,S,P,Q,s,y,z,r;
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7f800000) {			/* erfc(nan)=nan */
+						/* erfc(+-inf)=0,2 */
+	    return (float)(((u_int32_t)hx>>31)<<1)+one/x;
+	}
+
+	if(ix < 0x3f580000) {		/* |x|<0.84375 */
+	    if(ix < 0x23800000)  	/* |x|<2**-56 */
+		return one-x;
+	    z = x*x;
+	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+	    y = r/s;
+	    if(hx < 0x3e800000) {  	/* x<1/4 */
+		return one-(x+x*y);
+	    } else {
+		r = x*y;
+		r += (x-half);
+	        return half - r ;
+	    }
+	}
+	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
+	    s = fabsf(x)-one;
+	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+	    if(hx>=0) {
+	        z  = one-erx; return z - P/Q; 
+	    } else {
+		z = erx+P/Q; return one+z;
+	    }
+	}
+	if (ix < 0x41e00000) {		/* |x|<28 */
+	    x = fabsf(x);
+ 	    s = one/(x*x);
+	    if(ix< 0x4036DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
+	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+				ra5+s*(ra6+s*ra7))))));
+	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+				sa5+s*(sa6+s*(sa7+s*sa8)))))));
+	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
+		if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
+	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+				rb5+s*rb6)))));
+	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+				sb5+s*(sb6+s*sb7))))));
+	    }
+	    GET_FLOAT_WORD(ix,x);
+	    SET_FLOAT_WORD(z,ix&0xfffff000);
+	    r  =  __ieee754_expf(-z*z-(float)0.5625)*
+			__ieee754_expf((z-x)*(z+x)+R/S);
+	    if(hx>0) return r/x; else return two-r/x;
+	} else {
+	    if(hx>0) return tiny*tiny; else return two-tiny;
+	}
+}
+weak_alias (__erfcf, erfcf)
diff --git a/sysdeps/ieee754/flt-32/s_exp2f.c b/sysdeps/ieee754/flt-32/s_exp2f.c
new file mode 100644
index 0000000000..8229885453
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_exp2f.c
@@ -0,0 +1,127 @@
+/* Single-precision floating point 2^x.
+   Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* The basic design here is from
+   Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
+   Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
+   17 (1), March 1991, pp. 26-45.
+   It has been slightly modified to compute 2^x instead of e^x, and for
+   single-precision.
+   */
+#ifndef _GNU_SOURCE
+# define _GNU_SOURCE
+#endif
+#include <float.h>
+#include <ieee754.h>
+#include <math.h>
+#include <fenv.h>
+#include <inttypes.h>
+#include <math_private.h>
+
+#include "t_exp2f.h"
+
+static const volatile float TWOM100 = 7.88860905e-31;
+static const volatile float TWO127 = 1.7014118346e+38;
+
+float
+__ieee754_exp2f (float x)
+{
+  static const float himark = (float) FLT_MAX_EXP;
+  static const float lomark = (float) (FLT_MIN_EXP - FLT_MANT_DIG - 1) - 1.0;
+
+  /* Check for usual case.  */
+  if (isless (x, himark) && isgreater (x, lomark))
+    {
+      static const float THREEp14 = 49152.0;
+      int tval, unsafe;
+      float rx, x22, result;
+      union ieee754_float ex2_u, scale_u;
+      fenv_t oldenv;
+
+      feholdexcept (&oldenv);
+#ifdef FE_TONEAREST
+      /* If we don't have this, it's too bad.  */
+      fesetround (FE_TONEAREST);
+#endif
+
+      /* 1. Argument reduction.
+	 Choose integers ex, -128 <= t < 128, and some real
+	 -1/512 <= x1 <= 1/512 so that
+	 x = ex + t/512 + x1.
+
+	 First, calculate rx = ex + t/256.  */
+      rx = x + THREEp14;
+      rx -= THREEp14;
+      x -= rx;  /* Compute x=x1. */
+      /* Compute tval = (ex*256 + t)+128.
+	 Now, t = (tval mod 256)-128 and ex=tval/256  [that's mod, NOT %; and
+	 /-round-to-nearest not the usual c integer /].  */
+      tval = (int) (rx * 256.0f + 128.0f);
+
+      /* 2. Adjust for accurate table entry.
+	 Find e so that
+	 x = ex + t/256 + e + x2
+	 where -7e-4 < e < 7e-4, and
+	 (float)(2^(t/256+e))
+	 is accurate to one part in 2^-64.  */
+
+      /* 'tval & 255' is the same as 'tval%256' except that it's always
+	 positive.
+	 Compute x = x2.  */
+      x -= __exp2f_deltatable[tval & 255];
+
+      /* 3. Compute ex2 = 2^(t/255+e+ex).  */
+      ex2_u.f = __exp2f_atable[tval & 255];
+      tval >>= 8;
+      unsafe = abs(tval) >= -FLT_MIN_EXP - 1;
+      ex2_u.ieee.exponent += tval >> unsafe;
+      scale_u.f = 1.0;
+      scale_u.ieee.exponent += tval - (tval >> unsafe);
+
+      /* 4. Approximate 2^x2 - 1, using a second-degree polynomial,
+	 with maximum error in [-2^-9 - 2^-14, 2^-9 + 2^-14]
+	 less than 1.3e-10.  */
+
+      x22 = (.24022656679f * x + .69314736128f) * ex2_u.f;
+
+      /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex).  */
+      fesetenv (&oldenv);
+
+      result = x22 * x + ex2_u.f;
+
+      if (!unsafe)
+	return result;
+      else
+	return result * scale_u.f;
+    }
+  /* Exceptional cases:  */
+  else if (isless (x, himark))
+    {
+      if (__isinff (x))
+	/* e^-inf == 0, with no error.  */
+	return 0;
+      else
+	/* Underflow */
+	return TWOM100 * TWOM100;
+    }
+  else
+    /* Return x, if x is a NaN or Inf; or overflow, otherwise.  */
+    return TWO127*x;
+}
diff --git a/sysdeps/ieee754/flt-32/s_expm1f.c b/sysdeps/ieee754/flt-32/s_expm1f.c
new file mode 100644
index 0000000000..375e334c38
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_expm1f.c
@@ -0,0 +1,135 @@
+/* s_expm1f.c -- float version of s_expm1.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_expm1f.c,v 1.5 1995/05/10 20:47:11 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+static const volatile float huge = 1.0e+30, tiny = 1.0e-30;
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+one		= 1.0,
+o_threshold	= 8.8721679688e+01,/* 0x42b17180 */
+ln2_hi		= 6.9313812256e-01,/* 0x3f317180 */
+ln2_lo		= 9.0580006145e-06,/* 0x3717f7d1 */
+invln2		= 1.4426950216e+00,/* 0x3fb8aa3b */
+	/* scaled coefficients related to expm1 */
+Q1  =  -3.3333335072e-02, /* 0xbd088889 */
+Q2  =   1.5873016091e-03, /* 0x3ad00d01 */
+Q3  =  -7.9365076090e-05, /* 0xb8a670cd */
+Q4  =   4.0082177293e-06, /* 0x36867e54 */
+Q5  =  -2.0109921195e-07; /* 0xb457edbb */
+
+#ifdef __STDC__
+	float __expm1f(float x)
+#else
+	float __expm1f(x)
+	float x;
+#endif
+{
+	float y,hi,lo,c,t,e,hxs,hfx,r1;
+	int32_t k,xsb;
+	u_int32_t hx;
+
+	GET_FLOAT_WORD(hx,x);
+	xsb = hx&0x80000000;		/* sign bit of x */
+	if(xsb==0) y=x; else y= -x;	/* y = |x| */
+	hx &= 0x7fffffff;		/* high word of |x| */
+
+    /* filter out huge and non-finite argument */
+	if(hx >= 0x4195b844) {			/* if |x|>=27*ln2 */
+	    if(hx >= 0x42b17218) {		/* if |x|>=88.721... */
+                if(hx>0x7f800000)
+		    return x+x; 	 /* NaN */
+		if(hx==0x7f800000)
+		    return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
+	        if(x > o_threshold) return huge*huge; /* overflow */
+	    }
+	    if(xsb!=0) { /* x < -27*ln2, return -1.0 with inexact */
+		if(x+tiny<(float)0.0)	/* raise inexact */
+		return tiny-one;	/* return -1 */
+	    }
+	}
+
+    /* argument reduction */
+	if(hx > 0x3eb17218) {		/* if  |x| > 0.5 ln2 */ 
+	    if(hx < 0x3F851592) {	/* and |x| < 1.5 ln2 */
+		if(xsb==0)
+		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
+		else
+		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
+	    } else {
+		k  = invln2*x+((xsb==0)?(float)0.5:(float)-0.5);
+		t  = k;
+		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
+		lo = t*ln2_lo;
+	    }
+	    x  = hi - lo;
+	    c  = (hi-x)-lo;
+	} 
+	else if(hx < 0x33000000) {  	/* when |x|<2**-25, return x */
+	    t = huge+x;	/* return x with inexact flags when x!=0 */
+	    return x - (t-(huge+x));	
+	}
+	else k = 0;
+
+    /* x is now in primary range */
+	hfx = (float)0.5*x;
+	hxs = x*hfx;
+	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
+	t  = (float)3.0-r1*hfx;
+	e  = hxs*((r1-t)/((float)6.0 - x*t));
+	if(k==0) return x - (x*e-hxs);		/* c is 0 */
+	else {
+	    e  = (x*(e-c)-c);
+	    e -= hxs;
+	    if(k== -1) return (float)0.5*(x-e)-(float)0.5;
+	    if(k==1) {
+	       	if(x < (float)-0.25) return -(float)2.0*(e-(x+(float)0.5));
+	       	else 	      return  one+(float)2.0*(x-e);
+	    }
+	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
+	        int32_t i;
+	        y = one-(e-x);
+		GET_FLOAT_WORD(i,y);
+		SET_FLOAT_WORD(y,i+(k<<23));	/* add k to y's exponent */
+	        return y-one;
+	    }
+	    t = one;
+	    if(k<23) {
+	        int32_t i;
+	        SET_FLOAT_WORD(t,0x3f800000 - (0x1000000>>k)); /* t=1-2^-k */
+	       	y = t-(e-x);
+		GET_FLOAT_WORD(i,y);
+		SET_FLOAT_WORD(y,i+(k<<23));	/* add k to y's exponent */
+	   } else {
+	        int32_t i;
+		SET_FLOAT_WORD(t,((0x7f-k)<<23));	/* 2^-k */
+	       	y = x-(e+t);
+	       	y += one;
+		GET_FLOAT_WORD(i,y);
+		SET_FLOAT_WORD(y,i+(k<<23));	/* add k to y's exponent */
+	    }
+	}
+	return y;
+}
+weak_alias (__expm1f, expm1f)
diff --git a/sysdeps/ieee754/flt-32/s_fabsf.c b/sysdeps/ieee754/flt-32/s_fabsf.c
new file mode 100644
index 0000000000..6b1451379f
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_fabsf.c
@@ -0,0 +1,39 @@
+/* s_fabsf.c -- float version of s_fabs.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_fabsf.c,v 1.4 1995/05/10 20:47:15 jtc Exp $";
+#endif
+
+/*
+ * fabsf(x) returns the absolute value of x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	float __fabsf(float x)
+#else
+	float __fabsf(x)
+	float x;
+#endif
+{
+	u_int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	SET_FLOAT_WORD(x,ix&0x7fffffff);
+        return x;
+}
+weak_alias (__fabsf, fabsf)
diff --git a/sysdeps/ieee754/flt-32/s_finitef.c b/sysdeps/ieee754/flt-32/s_finitef.c
new file mode 100644
index 0000000000..baafc31aec
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_finitef.c
@@ -0,0 +1,39 @@
+/* s_finitef.c -- float version of s_finite.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_finitef.c,v 1.4 1995/05/10 20:47:18 jtc Exp $";
+#endif
+
+/*
+ * finitef(x) returns 1 is x is finite, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __finitef(float x)
+#else
+	int __finitef(x)
+	float x;
+#endif
+{
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	return (int)((u_int32_t)((ix&0x7fffffff)-0x7f800000)>>31);
+}
+weak_alias (__finitef, finitef)
diff --git a/sysdeps/ieee754/flt-32/s_floorf.c b/sysdeps/ieee754/flt-32/s_floorf.c
new file mode 100644
index 0000000000..e8822b0884
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_floorf.c
@@ -0,0 +1,71 @@
+/* s_floorf.c -- float version of s_floor.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_floorf.c,v 1.4 1995/05/10 20:47:22 jtc Exp $";
+#endif
+
+/*
+ * floorf(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ *	Bit twiddling.
+ * Exception:
+ *	Inexact flag raised if x not equal to floorf(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float huge = 1.0e30;
+#else
+static float huge = 1.0e30;
+#endif
+
+#ifdef __STDC__
+	float __floorf(float x)
+#else
+	float __floorf(x)
+	float x;
+#endif
+{
+	int32_t i0,j0;
+	u_int32_t i;
+	GET_FLOAT_WORD(i0,x);
+	j0 = ((i0>>23)&0xff)-0x7f;
+	if(j0<23) {
+	    if(j0<0) { 	/* raise inexact if x != 0 */
+		if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
+		    if(i0>=0) {i0=0;} 
+		    else if((i0&0x7fffffff)!=0)
+			{ i0=0xbf800000;}
+		}
+	    } else {
+		i = (0x007fffff)>>j0;
+		if((i0&i)==0) return x; /* x is integral */
+		if(huge+x>(float)0.0) {	/* raise inexact flag */
+		    if(i0<0) i0 += (0x00800000)>>j0;
+		    i0 &= (~i);
+		}
+	    }
+	} else {
+	    if(j0==0x80) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	}
+	SET_FLOAT_WORD(x,i0);
+	return x;
+}
+weak_alias (__floorf, floorf)
diff --git a/sysdeps/ieee754/flt-32/s_fpclassifyf.c b/sysdeps/ieee754/flt-32/s_fpclassifyf.c
new file mode 100644
index 0000000000..a6b35cfe1b
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_fpclassifyf.c
@@ -0,0 +1,42 @@
+/* Return classification value corresponding to argument.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+int
+__fpclassifyf (float x)
+{
+  u_int32_t wx;
+  int retval = FP_NORMAL;
+
+  GET_FLOAT_WORD (wx, x);
+  wx &= 0x7fffffff;
+  if (wx == 0)
+    retval = FP_ZERO;
+  else if (wx < 0x1000000)
+    retval = FP_SUBNORMAL;
+  else if (wx >= 0x7f800000)
+    retval = wx > 0x7f800000 ? FP_NAN : FP_INFINITE;
+
+  return retval;
+}
diff --git a/sysdeps/ieee754/flt-32/s_frexpf.c b/sysdeps/ieee754/flt-32/s_frexpf.c
new file mode 100644
index 0000000000..a984457a87
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_frexpf.c
@@ -0,0 +1,53 @@
+/* s_frexpf.c -- float version of s_frexp.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_frexpf.c,v 1.5 1995/05/10 20:47:26 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+two25 =  3.3554432000e+07; /* 0x4c000000 */
+
+#ifdef __STDC__
+	float __frexpf(float x, int *eptr)
+#else
+	float __frexpf(x, eptr)
+	float x; int *eptr;
+#endif
+{
+	int32_t hx,ix;
+	GET_FLOAT_WORD(hx,x);
+	ix = 0x7fffffff&hx;
+	*eptr = 0;
+	if(ix>=0x7f800000||(ix==0)) return x;	/* 0,inf,nan */
+	if (ix<0x00800000) {		/* subnormal */
+	    x *= two25;
+	    GET_FLOAT_WORD(hx,x);
+	    ix = hx&0x7fffffff;
+	    *eptr = -25;
+	}
+	*eptr += (ix>>23)-126;
+	hx = (hx&0x807fffff)|0x3f000000;
+	*(int*)&x = hx;
+	return x;
+}
+weak_alias (__frexpf, frexpf)
diff --git a/sysdeps/ieee754/flt-32/s_ilogbf.c b/sysdeps/ieee754/flt-32/s_ilogbf.c
new file mode 100644
index 0000000000..e652b93619
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_ilogbf.c
@@ -0,0 +1,44 @@
+/* s_ilogbf.c -- float version of s_ilogb.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_ilogbf.c,v 1.4 1995/05/10 20:47:31 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __ilogbf(float x)
+#else
+	int __ilogbf(x)
+	float x;
+#endif
+{
+	int32_t hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+	hx &= 0x7fffffff;
+	if(hx<0x00800000) {
+	    if(hx==0)
+		return FP_ILOGB0;	/* ilogb(0) = FP_ILOGB0 */
+	    else			/* subnormal x */
+	        for (ix = -126,hx<<=8; hx>0; hx<<=1) ix -=1;
+	    return ix;
+	}
+	else if (hx<0x7f800000) return (hx>>23)-127;
+	else return FP_ILOGBNAN;
+}
+weak_alias (__ilogbf, ilogbf)
diff --git a/sysdeps/ieee754/flt-32/s_isinff.c b/sysdeps/ieee754/flt-32/s_isinff.c
new file mode 100644
index 0000000000..efc0935251
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_isinff.c
@@ -0,0 +1,28 @@
+/*
+ * Written by J.T. Conklin <jtc@netbsd.org>.
+ * Public domain.
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_isinff.c,v 1.3 1995/05/11 23:20:21 jtc Exp $";
+#endif
+
+/*
+ * isinff(x) returns 1 if x is inf, -1 if x is -inf, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+int
+__isinff (float x)
+{
+	int32_t ix,t;
+	GET_FLOAT_WORD(ix,x);
+	t = ix & 0x7fffffff;
+	t ^= 0x7f800000;
+	t |= -t;
+	return ~(t >> 31) & (ix >> 30);
+}
+weak_alias (__isinff, isinff)
diff --git a/sysdeps/ieee754/flt-32/s_isnanf.c b/sysdeps/ieee754/flt-32/s_isnanf.c
new file mode 100644
index 0000000000..9ec412fd66
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_isnanf.c
@@ -0,0 +1,41 @@
+/* s_isnanf.c -- float version of s_isnan.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_isnanf.c,v 1.4 1995/05/10 20:47:38 jtc Exp $";
+#endif
+
+/*
+ * isnanf(x) returns 1 is x is nan, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __isnanf(float x)
+#else
+	int __isnanf(x)
+	float x;
+#endif
+{
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+	ix = 0x7f800000 - ix;
+	return (int)(((u_int32_t)(ix))>>31);
+}
+weak_alias (__isnanf, isnanf)
diff --git a/sysdeps/ieee754/flt-32/s_llrintf.c b/sysdeps/ieee754/flt-32/s_llrintf.c
new file mode 100644
index 0000000000..a812377d19
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_llrintf.c
@@ -0,0 +1,78 @@
+/* Round argument to nearest integral value according to current rounding
+   direction.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const double two23[2] =
+{
+  8.3886080000e+06, /* 0x4B000000 */
+ -8.3886080000e+06, /* 0xCB000000 */
+};
+
+
+long long int
+__llrintf (float x)
+{
+  int32_t j0;
+  u_int32_t i0;
+  volatile float w;
+  float t;
+  long long int result;
+  int sx;
+
+  GET_FLOAT_WORD (i0, x);
+
+  sx = i0 >> 31;
+  j0 = ((i0 >> 23) & 0xff) - 0x7f;
+  i0 &= 0x7fffff;
+  i0 |= 0x800000;
+
+  if (j0 < (int32_t) (sizeof (long long int) * 8) - 1)
+    {
+      if (j0 < -1)
+	return 0;
+      else if (j0 >= 23)
+	result = (long long int) i0 << (j0 - 23);
+      else
+	{
+	  w = two23[sx] + x;
+	  t = w - two23[sx];
+	  GET_FLOAT_WORD (i0, t);
+	  j0 = ((i0 >> 23) & 0xff) - 0x7f;
+	  i0 &= 0x7fffff;
+	  i0 |= 0x800000;
+
+	  result = i0 >> (23 - j0);
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long long int) x;
+    }
+
+  return sx ? -result : result;
+}
+
+weak_alias (__llrintf, llrintf)
diff --git a/sysdeps/ieee754/flt-32/s_llroundf.c b/sysdeps/ieee754/flt-32/s_llroundf.c
new file mode 100644
index 0000000000..9aad81fd45
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_llroundf.c
@@ -0,0 +1,63 @@
+/* Round float value to long long int.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long long int
+__llroundf (float x)
+{
+  int32_t j0;
+  u_int32_t i;
+  long long int result;
+  int sign;
+
+  GET_FLOAT_WORD (i, x);
+  j0 = ((i >> 23) & 0xff) - 0x7f;
+  sign = (i & 0x80000000) != 0 ? -1 : 1;
+  i &= 0x7fffff;
+  i |= 0x800000;
+
+  if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
+    {
+      if (j0 < 0)
+	return j0 < -1 ? 0 : sign;
+      else if (j0 >= 23)
+	result = (long long int) i << (j0 - 23);
+      else
+	{
+	  i += 0x400000 >> j0;
+
+	  result = i >> (23 - j0);
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long long int) x;
+    }
+
+  return sign * result;
+}
+
+weak_alias (__llroundf, llroundf)
diff --git a/sysdeps/ieee754/flt-32/s_log1pf.c b/sysdeps/ieee754/flt-32/s_log1pf.c
new file mode 100644
index 0000000000..bd3d57635c
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_log1pf.c
@@ -0,0 +1,115 @@
+/* s_log1pf.c -- float version of s_log1p.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_log1pf.c,v 1.4 1995/05/10 20:47:48 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+ln2_hi =   6.9313812256e-01,	/* 0x3f317180 */
+ln2_lo =   9.0580006145e-06,	/* 0x3717f7d1 */
+two25 =    3.355443200e+07,	/* 0x4c000000 */
+Lp1 = 6.6666668653e-01,	/* 3F2AAAAB */
+Lp2 = 4.0000000596e-01,	/* 3ECCCCCD */
+Lp3 = 2.8571429849e-01, /* 3E924925 */
+Lp4 = 2.2222198546e-01, /* 3E638E29 */
+Lp5 = 1.8183572590e-01, /* 3E3A3325 */
+Lp6 = 1.5313838422e-01, /* 3E1CD04F */
+Lp7 = 1.4798198640e-01; /* 3E178897 */
+
+#ifdef __STDC__
+static const float zero = 0.0;
+#else
+static float zero = 0.0;
+#endif
+
+#ifdef __STDC__
+	float __log1pf(float x)
+#else
+	float __log1pf(x)
+	float x;
+#endif
+{
+	float hfsq,f,c,s,z,R,u;
+	int32_t k,hx,hu,ax;
+
+	GET_FLOAT_WORD(hx,x);
+	ax = hx&0x7fffffff;
+
+	k = 1;
+	if (hx < 0x3ed413d7) {			/* x < 0.41422  */
+	    if(ax>=0x3f800000) {		/* x <= -1.0 */
+		if(x==(float)-1.0) return -two25/(x-x); /* log1p(-1)=+inf */
+		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
+	    }
+	    if(ax<0x31000000) {			/* |x| < 2**-29 */
+		if(two25+x>zero			/* raise inexact */
+	            &&ax<0x24800000) 		/* |x| < 2**-54 */
+		    return x;
+		else
+		    return x - x*x*(float)0.5;
+	    }
+	    if(hx>0||hx<=((int32_t)0xbe95f61f)) {
+		k=0;f=x;hu=1;}	/* -0.2929<x<0.41422 */
+	}
+	if (hx >= 0x7f800000) return x+x;
+	if(k!=0) {
+	    if(hx<0x5a000000) {
+		u  = (float)1.0+x;
+		GET_FLOAT_WORD(hu,u);
+	        k  = (hu>>23)-127;
+		/* correction term */
+	        c  = (k>0)? (float)1.0-(u-x):x-(u-(float)1.0);
+		c /= u;
+	    } else {
+		u  = x;
+		GET_FLOAT_WORD(hu,u);
+	        k  = (hu>>23)-127;
+		c  = 0;
+	    }
+	    hu &= 0x007fffff;
+	    if(hu<0x3504f7) {
+	        SET_FLOAT_WORD(u,hu|0x3f800000);/* normalize u */
+	    } else {
+	        k += 1;
+		SET_FLOAT_WORD(u,hu|0x3f000000);	/* normalize u/2 */
+	        hu = (0x00800000-hu)>>2;
+	    }
+	    f = u-(float)1.0;
+	}
+	hfsq=(float)0.5*f*f;
+	if(hu==0) {	/* |f| < 2**-20 */
+	    if(f==zero) {
+	    	if(k==0) return zero;
+		else {c += k*ln2_lo; return k*ln2_hi+c;}
+	    }
+	    R = hfsq*((float)1.0-(float)0.66666666666666666*f);
+	    if(k==0) return f-R; else
+	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
+	}
+ 	s = f/((float)2.0+f);
+	z = s*s;
+	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
+	if(k==0) return f-(hfsq-s*(hfsq+R)); else
+		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
+}
+weak_alias (__log1pf, log1pf)
diff --git a/sysdeps/ieee754/flt-32/s_log2f.c b/sysdeps/ieee754/flt-32/s_log2f.c
new file mode 100644
index 0000000000..2377acd36a
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_log2f.c
@@ -0,0 +1,91 @@
+/* e_logf.c -- float version of e_log.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * adapted for log2 by Ulrich Drepper <drepper@cygnus.com>
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+ln2 = 0.69314718055994530942,
+two25 =    3.355443200e+07,	/* 0x4c000000 */
+Lg1 = 6.6666668653e-01,	/* 3F2AAAAB */
+Lg2 = 4.0000000596e-01,	/* 3ECCCCCD */
+Lg3 = 2.8571429849e-01, /* 3E924925 */
+Lg4 = 2.2222198546e-01, /* 3E638E29 */
+Lg5 = 1.8183572590e-01, /* 3E3A3325 */
+Lg6 = 1.5313838422e-01, /* 3E1CD04F */
+Lg7 = 1.4798198640e-01; /* 3E178897 */
+
+#ifdef __STDC__
+static const float zero   =  0.0;
+#else
+static float zero   =  0.0;
+#endif
+
+#ifdef __STDC__
+	float __log2f(float x)
+#else
+	float __log2f(x)
+	float x;
+#endif
+{
+	float hfsq,f,s,z,R,w,t1,t2,dk;
+	int32_t k,ix,i,j;
+
+	GET_FLOAT_WORD(ix,x);
+
+	k=0;
+	if (ix < 0x00800000) {			/* x < 2**-126  */
+	    if ((ix&0x7fffffff)==0)
+		return -two25/(x-x);		/* log(+-0)=-inf */
+	    if (ix<0) return (x-x)/(x-x);	/* log(-#) = NaN */
+	    k -= 25; x *= two25; /* subnormal number, scale up x */
+	    GET_FLOAT_WORD(ix,x);
+	}
+	if (ix >= 0x7f800000) return x+x;
+	k += (ix>>23)-127;
+	ix &= 0x007fffff;
+	i = (ix+(0x95f64<<3))&0x800000;
+	SET_FLOAT_WORD(x,ix|(i^0x3f800000));	/* normalize x or x/2 */
+	k += (i>>23);
+	dk = (float)k;
+	f = x-(float)1.0;
+	if((0x007fffff&(15+ix))<16) {	/* |f| < 2**-20 */
+	    if(f==zero) return dk;
+	    R = f*f*((float)0.5-(float)0.33333333333333333*f);
+	    return dk-(R-f)/ln2;
+	}
+ 	s = f/((float)2.0+f);
+	z = s*s;
+	i = ix-(0x6147a<<3);
+	w = z*z;
+	j = (0x6b851<<3)-ix;
+	t1= w*(Lg2+w*(Lg4+w*Lg6));
+	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+	i |= j;
+	R = t2+t1;
+	if(i>0) {
+	    hfsq=(float)0.5*f*f;
+	    return dk-((hfsq-(s*(hfsq+R)))-f)/ln2;
+	} else {
+	    return dk-((s*(f-R))-f)/ln2;
+	}
+}
+weak_alias (__log2f, log2f)
diff --git a/sysdeps/ieee754/flt-32/s_logbf.c b/sysdeps/ieee754/flt-32/s_logbf.c
new file mode 100644
index 0000000000..ade892a8f9
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_logbf.c
@@ -0,0 +1,40 @@
+/* s_logbf.c -- float version of s_logb.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_logbf.c,v 1.4 1995/05/10 20:47:51 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	float __logbf(float x)
+#else
+	float __logbf(x)
+	float x;
+#endif
+{
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;			/* high |x| */
+	if(ix==0) return (float)-1.0/fabsf(x);
+	if(ix>=0x7f800000) return x*x;
+	if((ix>>=23)==0) 			/* IEEE 754 logb */
+		return -126.0; 
+	else
+		return (float) (ix-127); 
+}
+weak_alias (__logbf, logbf)
diff --git a/sysdeps/ieee754/flt-32/s_lrintf.c b/sysdeps/ieee754/flt-32/s_lrintf.c
new file mode 100644
index 0000000000..210ffec501
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_lrintf.c
@@ -0,0 +1,78 @@
+/* Round argument to nearest integral value according to current rounding
+   direction.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const double two23[2] =
+{
+  8.3886080000e+06, /* 0x4B000000 */
+ -8.3886080000e+06, /* 0xCB000000 */
+};
+
+
+long int
+__lrintf (float x)
+{
+  int32_t j0;
+  u_int32_t i0;
+  volatile float w;
+  float t;
+  long int result;
+  int sx;
+
+  GET_FLOAT_WORD (i0, x);
+
+  sx = i0 >> 31;
+  j0 = ((i0 >> 23) & 0xff) - 0x7f;
+  i0 &= 0x7fffff;
+  i0 |= 0x800000;
+
+  if (j0 < (int32_t) (sizeof (long int) * 8) - 1)
+    {
+      if (j0 < -1)
+	return 0;
+      else if (j0 >= 23)
+	result = (long int) i0 << (j0 - 23);
+      else
+	{
+	  w = two23[sx] + x;
+	  t = w - two23[sx];
+	  GET_FLOAT_WORD (i0, t);
+	  j0 = ((i0 >> 23) & 0xff) - 0x7f;
+	  i0 &= 0x7fffff;
+	  i0 |= 0x800000;
+
+	  result = i0 >> (23 - j0);
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long int) x;
+    }
+
+  return sx ? -result : result;
+}
+
+weak_alias (__lrintf, lrintf)
diff --git a/sysdeps/ieee754/flt-32/s_lroundf.c b/sysdeps/ieee754/flt-32/s_lroundf.c
new file mode 100644
index 0000000000..df1d242e2a
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_lroundf.c
@@ -0,0 +1,63 @@
+/* Round float value to long int.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long int
+__lroundf (float x)
+{
+  int32_t j0;
+  u_int32_t i;
+  long int result;
+  int sign;
+
+  GET_FLOAT_WORD (i, x);
+  j0 = ((i >> 23) & 0xff) - 0x7f;
+  sign = (i & 0x80000000) != 0 ? -1 : 1;
+  i &= 0x7fffff;
+  i |= 0x800000;
+
+  if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
+    {
+      if (j0 < 0)
+	return j0 < -1 ? 0 : sign;
+      else if (j0 >= 23)
+	result = (long int) i << (j0 - 23);
+      else
+	{
+	  i += 0x400000 >> j0;
+
+	  result = i >> (23 - j0);
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long int) x;
+    }
+
+  return sign * result;
+}
+
+weak_alias (__lroundf, lroundf)
diff --git a/sysdeps/ieee754/flt-32/s_modff.c b/sysdeps/ieee754/flt-32/s_modff.c
new file mode 100644
index 0000000000..e6c22b2add
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_modff.c
@@ -0,0 +1,66 @@
+/* s_modff.c -- float version of s_modf.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_modff.c,v 1.4 1995/05/10 20:47:56 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float one = 1.0;
+#else
+static float one = 1.0;
+#endif
+
+#ifdef __STDC__
+	float __modff(float x, float *iptr)
+#else
+	float __modff(x, iptr)
+	float x,*iptr;
+#endif
+{
+	int32_t i0,j0;
+	u_int32_t i;
+	GET_FLOAT_WORD(i0,x);
+	j0 = ((i0>>23)&0xff)-0x7f;	/* exponent of x */
+	if(j0<23) {			/* integer part in x */
+	    if(j0<0) {			/* |x|<1 */
+	        SET_FLOAT_WORD(*iptr,i0&0x80000000);	/* *iptr = +-0 */
+		return x;
+	    } else {
+		i = (0x007fffff)>>j0;
+		if((i0&i)==0) {			/* x is integral */
+		    u_int32_t ix;
+		    *iptr = x;
+		    GET_FLOAT_WORD(ix,x);
+		    SET_FLOAT_WORD(x,ix&0x80000000);	/* return +-0 */
+		    return x;
+		} else {
+		    SET_FLOAT_WORD(*iptr,i0&(~i));
+		    return x - *iptr;
+		}
+	    }
+	} else {			/* no fraction part */
+	    *iptr = x*one;
+	    /* We must handle NaNs separately.  */
+	    if (j0 == 0x80 && (i0 & 0x7fffff))
+	      return x*one;
+	    SET_FLOAT_WORD(x,i0&0x80000000);	/* return +-0 */
+	    return x;
+	}
+}
+weak_alias (__modff, modff)
diff --git a/sysdeps/ieee754/flt-32/s_nearbyintf.c b/sysdeps/ieee754/flt-32/s_nearbyintf.c
new file mode 100644
index 0000000000..7d6f262f51
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_nearbyintf.c
@@ -0,0 +1,77 @@
+/* s_rintf.c -- float version of s_rint.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/* Adapted for use as nearbyint by Ulrich Drepper <drepper@cygnus.com>.  */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+
+#include <fenv.h>
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+TWO23[2]={
+  8.3886080000e+06, /* 0x4b000000 */
+ -8.3886080000e+06, /* 0xcb000000 */
+};
+
+#ifdef __STDC__
+	float __nearbyintf(float x)
+#else
+	float __nearbyintf(x)
+	float x;
+#endif
+{
+	fenv_t env;
+	int32_t i0,j0,sx;
+	u_int32_t i,i1;
+	float w,t;
+	GET_FLOAT_WORD(i0,x);
+	sx = (i0>>31)&1;
+	j0 = ((i0>>23)&0xff)-0x7f;
+	if(j0<23) {
+	    if(j0<0) {
+		if((i0&0x7fffffff)==0) return x;
+		i1 = (i0&0x07fffff);
+		i0 &= 0xfff00000;
+		i0 |= ((i1|-i1)>>9)&0x400000;
+		SET_FLOAT_WORD(x,i0);
+		feholdexcept (&env);
+	        w = TWO23[sx]+x;
+	        t =  w-TWO23[sx];
+		fesetenv (&env);
+		GET_FLOAT_WORD(i0,t);
+		SET_FLOAT_WORD(t,(i0&0x7fffffff)|(sx<<31));
+	        return t;
+	    } else {
+		i = (0x007fffff)>>j0;
+		if((i0&i)==0) return x; /* x is integral */
+		i>>=1;
+		if((i0&i)!=0) i0 = (i0&(~i))|((0x100000)>>j0);
+	    }
+	} else {
+	    if(j0==0x80) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	}
+	SET_FLOAT_WORD(x,i0);
+	feholdexcept (&env);
+	w = TWO23[sx]+x;
+	t = w-TWO23[sx];
+	fesetenv (&env);
+	return t;
+}
+weak_alias (__nearbyintf, nearbyintf)
diff --git a/sysdeps/ieee754/flt-32/s_nextafterf.c b/sysdeps/ieee754/flt-32/s_nextafterf.c
new file mode 100644
index 0000000000..611742bdf4
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_nextafterf.c
@@ -0,0 +1,71 @@
+/* s_nextafterf.c -- float version of s_nextafter.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_nextafterf.c,v 1.4 1995/05/10 20:48:01 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	float __nextafterf(float x, float y)
+#else
+	float __nextafterf(x,y)
+	float x,y;
+#endif
+{
+	int32_t hx,hy,ix,iy;
+
+	GET_FLOAT_WORD(hx,x);
+	GET_FLOAT_WORD(hy,y);
+	ix = hx&0x7fffffff;		/* |x| */
+	iy = hy&0x7fffffff;		/* |y| */
+
+	if((ix>0x7f800000) ||   /* x is nan */
+	   (iy>0x7f800000))     /* y is nan */
+	   return x+y;
+	if(x==y) return y;		/* x=y, return y */
+	if(ix==0) {				/* x == 0 */
+	    SET_FLOAT_WORD(x,(hy&0x80000000)|1);/* return +-minsubnormal */
+	    y = x*x;
+	    if(y==x) return y; else return x;	/* raise underflow flag */
+	}
+	if(hx>=0) {				/* x > 0 */
+	    if(hx>hy) {				/* x > y, x -= ulp */
+		hx -= 1;
+	    } else {				/* x < y, x += ulp */
+		hx += 1;
+	    }
+	} else {				/* x < 0 */
+	    if(hy>=0||hx>hy){			/* x < y, x -= ulp */
+		hx -= 1;
+	    } else {				/* x > y, x += ulp */
+		hx += 1;
+	    }
+	}
+	hy = hx&0x7f800000;
+	if(hy>=0x7f800000) return x+x;	/* overflow  */
+	if(hy<0x00800000) {		/* underflow */
+	    y = x*x;
+	    if(y!=x) {		/* raise underflow flag */
+	        SET_FLOAT_WORD(y,hx);
+		return y;
+	    }
+	}
+	SET_FLOAT_WORD(x,hx);
+	return x;
+}
+weak_alias (__nextafterf, nextafterf)
diff --git a/sysdeps/ieee754/flt-32/s_remquof.c b/sysdeps/ieee754/flt-32/s_remquof.c
new file mode 100644
index 0000000000..2ffd16c903
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_remquof.c
@@ -0,0 +1,108 @@
+/* Compute remainder and a congruent to the quotient.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const float zero = 0.0;
+
+
+float
+__remquof (float x, float y, int *quo)
+{
+  int32_t hx,hy;
+  u_int32_t sx;
+  int cquo, qs;
+
+  GET_FLOAT_WORD (hx, x);
+  GET_FLOAT_WORD (hy, y);
+  sx = hx & 0x80000000;
+  qs = sx ^ (hy & 0x80000000);
+  hy &= 0x7fffffff;
+  hx &= 0x7fffffff;
+
+  /* Purge off exception values.  */
+  if (hy == 0)
+    return (x * y) / (x * y); 			/* y = 0 */
+  if ((hx >= 0x7f800000)			/* x not finite */
+      || (hy > 0x7f800000))			/* y is NaN */
+    return (x * y) / (x * y);
+
+  if (hy <= 0x7dffffff)
+    x = __ieee754_fmodf (x, 8 * y);		/* now x < 8y */
+
+  if ((hx - hy) == 0)
+    {
+      *quo = qs ? -1 : 1;
+      return zero * x;
+    }
+
+  x  = fabsf (x);
+  y  = fabsf (y);
+  cquo = 0;
+
+  if (x >= 4 * y)
+    {
+      x -= 4 * y;
+      cquo += 4;
+    }
+  if (x >= 2 * y)
+    {
+      x -= 2 * y;
+      cquo += 2;
+    }
+
+  if (hy < 0x01000000)
+    {
+      if (x + x > y)
+	{
+	  x -= y;
+	  ++cquo;
+	  if (x + x >= y)
+	    {
+	      x -= y;
+	      ++cquo;
+	    }
+	}
+    }
+  else
+    {
+      float y_half = 0.5 * y;
+      if (x > y_half)
+	{
+	  x -= y;
+	  ++cquo;
+	  if (x >= y_half)
+	    {
+	      x -= y;
+	      ++cquo;
+	    }
+	}
+    }
+
+  *quo = qs ? -cquo : cquo;
+
+  if (sx)
+    x = -x;
+  return x;
+}
+weak_alias (__remquof, remquof)
diff --git a/sysdeps/ieee754/flt-32/s_rintf.c b/sysdeps/ieee754/flt-32/s_rintf.c
new file mode 100644
index 0000000000..4e5b409b29
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_rintf.c
@@ -0,0 +1,72 @@
+/* s_rintf.c -- float version of s_rint.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_rintf.c,v 1.4 1995/05/10 20:48:06 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float 
+#endif
+TWO23[2]={
+  8.3886080000e+06, /* 0x4b000000 */
+ -8.3886080000e+06, /* 0xcb000000 */
+};
+
+#ifdef __STDC__
+	float __rintf(float x)
+#else
+	float __rintf(x)
+	float x;
+#endif
+{
+	int32_t i0,j0,sx;
+	u_int32_t i,i1;
+	float w,t;
+	GET_FLOAT_WORD(i0,x);
+	sx = (i0>>31)&1;
+	j0 = ((i0>>23)&0xff)-0x7f;
+	if(j0<23) {
+	    if(j0<0) { 	
+		if((i0&0x7fffffff)==0) return x;
+		i1 = (i0&0x07fffff);
+		i0 &= 0xfff00000;
+		i0 |= ((i1|-i1)>>9)&0x400000;
+		SET_FLOAT_WORD(x,i0);
+	        w = TWO23[sx]+x;
+	        t =  w-TWO23[sx];
+		GET_FLOAT_WORD(i0,t);
+		SET_FLOAT_WORD(t,(i0&0x7fffffff)|(sx<<31));
+	        return t;
+	    } else {
+		i = (0x007fffff)>>j0;
+		if((i0&i)==0) return x; /* x is integral */
+		i>>=1;
+		if((i0&i)!=0) i0 = (i0&(~i))|((0x100000)>>j0);
+	    }
+	} else {
+	    if(j0==0x80) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	}
+	SET_FLOAT_WORD(x,i0);
+	w = TWO23[sx]+x;
+	return w-TWO23[sx];
+}
+weak_alias (__rintf, rintf)
diff --git a/sysdeps/ieee754/flt-32/s_roundf.c b/sysdeps/ieee754/flt-32/s_roundf.c
new file mode 100644
index 0000000000..5dc0e368ff
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_roundf.c
@@ -0,0 +1,73 @@
+/* Round float to integer away from zero.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const float huge = 1.0e30;
+
+
+float
+__roundf (float x)
+{
+  int32_t i0, j0;
+
+  GET_FLOAT_WORD (i0, x);
+  j0 = ((i0 >> 23) & 0xff) - 0x7f;
+  if (j0 < 23)
+    {
+      if (j0 < 0)
+	{
+	  if (huge + x > 0.0F)
+	    {
+	      i0 &= 0x80000000;
+	      if (j0 == -1)
+		i0 |= 0x3f800000;
+	    }
+	}
+      else
+	{
+	  u_int32_t i = 0x007fffff >> j0;
+	  if ((i0 & i) == 0)
+	    /* X is integral.  */
+	    return x;
+	  if (huge + x > 0.0F)
+	    {
+	      /* Raise inexact if x != 0.  */
+	      i0 += 0x00400000 >> j0;
+	      i0 &= ~i;
+	    }
+	}
+    }
+  else
+    {
+      if (j0 == 0x80)
+	/* Inf or NaN.  */
+	return x + x;
+      else
+	return x;
+    }
+
+  SET_FLOAT_WORD (x, i0);
+  return x;
+}
+weak_alias (__roundf, roundf)
diff --git a/sysdeps/ieee754/flt-32/s_scalblnf.c b/sysdeps/ieee754/flt-32/s_scalblnf.c
new file mode 100644
index 0000000000..4ed48733cf
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_scalblnf.c
@@ -0,0 +1,63 @@
+/* s_scalbnf.c -- float version of s_scalbn.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_scalbnf.c,v 1.4 1995/05/10 20:48:10 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+two25   =  3.355443200e+07,	/* 0x4c000000 */
+twom25  =  2.9802322388e-08,	/* 0x33000000 */
+huge   = 1.0e+30,
+tiny   = 1.0e-30;
+
+#ifdef __STDC__
+	float __scalblnf (float x, long int n)
+#else
+	float __scalblnf (x,n)
+	float x; long int n;
+#endif
+{
+	int32_t k,ix;
+	GET_FLOAT_WORD(ix,x);
+        k = (ix&0x7f800000)>>23;		/* extract exponent */
+        if (k==0) {				/* 0 or subnormal x */
+            if ((ix&0x7fffffff)==0) return x; /* +-0 */
+	    x *= two25;
+	    GET_FLOAT_WORD(ix,x);
+	    k = ((ix&0x7f800000)>>23) - 25;
+	    }
+        if (k==0xff) return x+x;		/* NaN or Inf */
+        k = k+n;
+        if (n> 50000 || k >  0xfe)
+	  return huge*copysignf(huge,x); /* overflow  */
+	if (n< -50000)
+	  return tiny*copysignf(tiny,x);	/*underflow*/
+        if (k > 0) 				/* normal result */
+	    {SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23)); return x;}
+        if (k <= -25)
+	    return tiny*copysignf(tiny,x);	/*underflow*/
+        k += 25;				/* subnormal result */
+	SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23));
+        return x*twom25;
+}
+weak_alias (__scalblnf, scalblnf)
diff --git a/sysdeps/ieee754/flt-32/s_scalbnf.c b/sysdeps/ieee754/flt-32/s_scalbnf.c
new file mode 100644
index 0000000000..11b77bd6c2
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_scalbnf.c
@@ -0,0 +1,63 @@
+/* s_scalbnf.c -- float version of s_scalbn.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_scalbnf.c,v 1.4 1995/05/10 20:48:10 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+two25   =  3.355443200e+07,	/* 0x4c000000 */
+twom25  =  2.9802322388e-08,	/* 0x33000000 */
+huge   = 1.0e+30,
+tiny   = 1.0e-30;
+
+#ifdef __STDC__
+	float __scalbnf (float x, int n)
+#else
+	float __scalbnf (x,n)
+	float x; int n;
+#endif
+{
+	int32_t k,ix;
+	GET_FLOAT_WORD(ix,x);
+        k = (ix&0x7f800000)>>23;		/* extract exponent */
+        if (k==0) {				/* 0 or subnormal x */
+            if ((ix&0x7fffffff)==0) return x; /* +-0 */
+	    x *= two25;
+	    GET_FLOAT_WORD(ix,x);
+	    k = ((ix&0x7f800000)>>23) - 25;
+	    }
+        if (k==0xff) return x+x;		/* NaN or Inf */
+        k = k+n;
+        if (n> 50000 || k >  0xfe)
+	  return huge*copysignf(huge,x); /* overflow  */
+	if (n< -50000)
+	  return tiny*copysignf(tiny,x);	/*underflow*/
+        if (k > 0) 				/* normal result */
+	    {SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23)); return x;}
+        if (k <= -25)
+	    return tiny*copysignf(tiny,x);	/*underflow*/
+        k += 25;				/* subnormal result */
+	SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23));
+        return x*twom25;
+}
+weak_alias (__scalbnf, scalbnf)
diff --git a/sysdeps/ieee754/flt-32/s_signbitf.c b/sysdeps/ieee754/flt-32/s_signbitf.c
new file mode 100644
index 0000000000..85418ea73f
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_signbitf.c
@@ -0,0 +1,32 @@
+/* Return nonzero value if number is negative.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+int
+__signbitf (float x)
+{
+  int32_t hx;
+
+  GET_FLOAT_WORD (hx, x);
+  return hx & 0x80000000;
+}
diff --git a/sysdeps/ieee754/flt-32/s_sincosf.c b/sysdeps/ieee754/flt-32/s_sincosf.c
new file mode 100644
index 0000000000..0fd7b0ca8b
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_sincosf.c
@@ -0,0 +1,74 @@
+/* Compute sine and cosine of argument.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+void
+__sincosf (float x, float *sinx, float *cosx)
+{
+  int32_t ix;
+
+  /* High word of x. */
+  GET_FLOAT_WORD (ix, x);
+
+  /* |x| ~< pi/4 */
+  ix &= 0x7fffffff;
+  if (ix <= 0x3f490fd8)
+    {
+      *sinx = __kernel_sinf (x, 0.0, 0);
+      *cosx = __kernel_cosf (x, 0.0);
+    }
+  else if (ix>=0x7ff00000)
+    {
+      /* sin(Inf or NaN) is NaN */
+      *sinx = *cosx = x - x;
+    }
+  else
+    {
+      /* Argument reduction needed.  */
+      float y[2];
+      int n;
+
+      n = __ieee754_rem_pio2f (x, y);
+      switch (n & 3)
+	{
+	case 0:
+	  *sinx = __kernel_sinf (y[0], y[1], 1);
+	  *cosx = __kernel_cosf (y[0], y[1]);
+	  break;
+	case 1:
+	  *sinx = __kernel_cosf (y[0], y[1]);
+	  *cosx = -__kernel_sinf (y[0], y[1], 1);
+	  break;
+	case 2:
+	  *sinx = -__kernel_sinf (y[0], y[1], 1);
+	  *cosx = -__kernel_cosf (y[0], y[1]);
+	  break;
+	default:
+	  *sinx = -__kernel_cosf (y[0], y[1]);
+	  *cosx = __kernel_sinf (y[0], y[1], 1);
+	  break;
+	}
+    }
+}
+weak_alias (__sincosf, sincosf)
diff --git a/sysdeps/ieee754/flt-32/s_sinf.c b/sysdeps/ieee754/flt-32/s_sinf.c
new file mode 100644
index 0000000000..76a7c21fcb
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_sinf.c
@@ -0,0 +1,54 @@
+/* s_sinf.c -- float version of s_sin.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_sinf.c,v 1.4 1995/05/10 20:48:16 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	float __sinf(float x)
+#else
+	float __sinf(x)
+	float x;
+#endif
+{
+	float y[2],z=0.0;
+	int32_t n, ix;
+
+	GET_FLOAT_WORD(ix,x);
+
+    /* |x| ~< pi/4 */
+	ix &= 0x7fffffff;
+	if(ix <= 0x3f490fd8) return __kernel_sinf(x,z,0);
+
+    /* sin(Inf or NaN) is NaN */
+	else if (ix>=0x7f800000) return x-x;
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2f(x,y);
+	    switch(n&3) {
+		case 0: return  __kernel_sinf(y[0],y[1],1);
+		case 1: return  __kernel_cosf(y[0],y[1]);
+		case 2: return -__kernel_sinf(y[0],y[1],1);
+		default:
+			return -__kernel_cosf(y[0],y[1]);
+	    }
+	}
+}
+weak_alias (__sinf, sinf)
diff --git a/sysdeps/ieee754/flt-32/s_tanf.c b/sysdeps/ieee754/flt-32/s_tanf.c
new file mode 100644
index 0000000000..e8f6016c32
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_tanf.c
@@ -0,0 +1,49 @@
+/* s_tanf.c -- float version of s_tan.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_tanf.c,v 1.4 1995/05/10 20:48:20 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	float __tanf(float x)
+#else
+	float __tanf(x)
+	float x;
+#endif
+{
+	float y[2],z=0.0;
+	int32_t n, ix;
+
+	GET_FLOAT_WORD(ix,x);
+
+    /* |x| ~< pi/4 */
+	ix &= 0x7fffffff;
+	if(ix <= 0x3f490fda) return __kernel_tanf(x,z,1);
+
+    /* tan(Inf or NaN) is NaN */
+	else if (ix>=0x7f800000) return x-x;		/* NaN */
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2f(x,y);
+	    return __kernel_tanf(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
+							      -1 -- n odd */
+	}
+}
+weak_alias (__tanf, tanf)
diff --git a/sysdeps/ieee754/flt-32/s_tanhf.c b/sysdeps/ieee754/flt-32/s_tanhf.c
new file mode 100644
index 0000000000..2a0ca9f3df
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_tanhf.c
@@ -0,0 +1,67 @@
+/* s_tanhf.c -- float version of s_tanh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_tanhf.c,v 1.4 1995/05/10 20:48:24 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float one=1.0, two=2.0, tiny = 1.0e-30;
+#else
+static float one=1.0, two=2.0, tiny = 1.0e-30;
+#endif
+
+#ifdef __STDC__
+	float __tanhf(float x)
+#else
+	float __tanhf(x)
+	float x;
+#endif
+{
+	float t,z;
+	int32_t jx,ix;
+
+	GET_FLOAT_WORD(jx,x);
+	ix = jx&0x7fffffff;
+
+    /* x is INF or NaN */
+	if(ix>=0x7f800000) {
+	    if (jx>=0) return one/x+one;    /* tanh(+-inf)=+-1 */
+	    else       return one/x-one;    /* tanh(NaN) = NaN */
+	}
+
+    /* |x| < 22 */
+	if (ix < 0x41b00000) {		/* |x|<22 */
+	    if (ix == 0)
+		return x;		/* x == +-0 */
+	    if (ix<0x24000000) 		/* |x|<2**-55 */
+		return x*(one+x);    	/* tanh(small) = small */
+	    if (ix>=0x3f800000) {	/* |x|>=1  */
+		t = __expm1f(two*fabsf(x));
+		z = one - two/(t+two);
+	    } else {
+	        t = __expm1f(-two*fabsf(x));
+	        z= -t/(t+two);
+	    }
+    /* |x| > 22, return +-1 */
+	} else {
+	    z = one - tiny;		/* raised inexact flag */
+	}
+	return (jx>=0)? z: -z;
+}
+weak_alias (__tanhf, tanhf)
diff --git a/sysdeps/ieee754/flt-32/s_truncf.c b/sysdeps/ieee754/flt-32/s_truncf.c
new file mode 100644
index 0000000000..feb6b6f23a
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/s_truncf.c
@@ -0,0 +1,52 @@
+/* Truncate argument to nearest integral value not larger than the argument.
+   Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+float
+__truncf (float x)
+{
+  int32_t i0, j0;
+  int sx;
+
+  GET_FLOAT_WORD (i0, x);
+  sx = i0 & 0x80000000;
+  j0 = ((i0 >> 23) & 0xff) - 0x7f;
+  if (j0 < 23)
+    {
+      if (j0 < 0)
+	/* The magnitude of the number is < 1 so the result is +-0.  */
+	SET_FLOAT_WORD (x, sx);
+      else
+	SET_FLOAT_WORD (x, sx | (i0 & ~(0x007fffff >> j0)));
+    }
+  else
+    {
+      if (j0 == 0x80)
+	/* x is inf or NaN.  */
+	return x + x;
+    }
+
+  return x;
+}
+weak_alias (__truncf, truncf)
diff --git a/sysdeps/ieee754/flt-32/t_exp2f.h b/sysdeps/ieee754/flt-32/t_exp2f.h
new file mode 100644
index 0000000000..e15d15787c
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/t_exp2f.h
@@ -0,0 +1,352 @@
+/* Accurate tables for exp2f().
+   Copyright (C) 1998 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* This table has the property that, for all integers -128 <= i <= 127,
+   exp(i/256.0 + __exp2f_deltatable[i-128]) == __exp2f_atable[i+128] + r
+   for some -2^-35 < r < 2^-35 (abs(r) < 2^-36 if i <= 0); and that
+   __exp2f_deltatable[i+128] == t * 2^-30
+   for integer t so that abs(t) <= 43447 * 2^0.  */
+
+#define W30 (9.31322575e-10)
+static const float __exp2f_deltatable[256] = {
+      -810*W30,       283*W30,     -1514*W30,      1304*W30,
+     -1148*W30,       -98*W30,      -744*W30,      -156*W30,
+      -419*W30,      -155*W30,       474*W30,       167*W30,
+     -1984*W30,      -826*W30,       692*W30,       781*W30,
+      -578*W30,      -411*W30,      -129*W30,     -1500*W30,
+       654*W30,      -141*W30,      -816*W30,       -53*W30,
+       148*W30,       493*W30,     -2214*W30,       760*W30,
+       260*W30,       750*W30,     -1300*W30,      1424*W30,
+     -1445*W30,      -339*W30,      -680*W30,      -349*W30,
+      -922*W30,       531*W30,       193*W30,     -2892*W30,
+       290*W30,     -2145*W30,      -276*W30,       485*W30,
+      -695*W30,       215*W30,     -7093*W30,       412*W30,
+     -4596*W30,       367*W30,       592*W30,      -615*W30,
+       -97*W30,     -1066*W30,       972*W30,      -226*W30,
+      -625*W30,      -374*W30,     -5647*W30,      -180*W30,
+     20349*W30,      -447*W30,       111*W30,     -4164*W30,
+       -87*W30,       -21*W30,      -251*W30,        66*W30,
+      -517*W30,      2093*W30,      -263*W30,       182*W30,
+      -601*W30,       475*W30,      -483*W30,     -1251*W30,
+      -373*W30,      1471*W30,       -92*W30,      -215*W30,
+       -97*W30,      -190*W30,         0*W30,      -290*W30,
+     -2647*W30,      1940*W30,      -582*W30,        28*W30,
+       833*W30,      1493*W30,        34*W30,       321*W30,
+      3327*W30,       -35*W30,       177*W30,      -135*W30,
+      -796*W30,      -428*W30,       129*W30,      9332*W30,
+       -12*W30,       -69*W30,     -1743*W30,      6508*W30,
+       -60*W30,       359*W30,     43447*W30,        15*W30,
+       -23*W30,      -305*W30,      -375*W30,      -652*W30,
+       667*W30,       269*W30,     -1575*W30,       185*W30,
+      -329*W30,       200*W30,      6002*W30,       163*W30,
+      -647*W30,        19*W30,      -603*W30,      -755*W30,
+       742*W30,      -438*W30,      3587*W30,      2560*W30,
+         0*W30,      -520*W30,      -241*W30,      -299*W30,
+     -1270*W30,      -991*W30,     -1138*W30,       255*W30,
+     -1192*W30,      1722*W30,      1023*W30,      3700*W30,
+     -1388*W30,     -1551*W30,     -2549*W30,        27*W30,
+       282*W30,       673*W30,       113*W30,      1561*W30,
+        72*W30,       873*W30,        87*W30,      -395*W30,
+      -433*W30,       629*W30,      3440*W30,      -284*W30,
+      -592*W30,      -103*W30,       -46*W30,     -3844*W30,
+      1712*W30,       303*W30,      1555*W30,      -631*W30,
+     -1400*W30,      -961*W30,      -854*W30,      -276*W30,
+       407*W30,       833*W30,      -345*W30,     -1501*W30,
+       121*W30,     -1581*W30,       400*W30,       150*W30,
+      1224*W30,      -139*W30,      -563*W30,       879*W30,
+       933*W30,      2939*W30,       788*W30,       211*W30,
+       530*W30,      -192*W30,       706*W30,    -13347*W30,
+      1065*W30,         3*W30,       111*W30,      -208*W30,
+      -360*W30,      -532*W30,      -291*W30,       483*W30,
+       987*W30,       -33*W30,     -1373*W30,      -166*W30,
+     -1174*W30,     -3955*W30,      1601*W30,      -280*W30,
+      1405*W30,       600*W30,     -1659*W30,       -23*W30,
+       390*W30,       449*W30,       570*W30,    -13143*W30,
+        -9*W30,     -1646*W30,      1201*W30,       294*W30,
+      2181*W30,     -1173*W30,      1388*W30,     -4504*W30,
+       190*W30,     -2304*W30,       211*W30,       239*W30,
+        48*W30,      -817*W30,      1018*W30,      1828*W30,
+      -663*W30,      1408*W30,       408*W30,       -36*W30,
+      1295*W30,      -230*W30,      1341*W30,         9*W30,
+        40*W30,       705*W30,       186*W30,       376*W30,
+       557*W30,      5866*W30,       363*W30,     -1558*W30,
+       718*W30,       669*W30,      1369*W30,     -2972*W30,
+      -468*W30,      -121*W30,      -219*W30,       667*W30,
+     29954*W30,       366*W30,        48*W30,      -203*W30
+};
+
+static const float __exp2f_atable[256] /* __attribute__((mode(SF))) */ = {
+ 0.707106411447, /* 0x0.b504ecfff */
+ 0.709024071690, /* 0x0.b58299fff */
+ 0.710945606239, /* 0x0.b60088000 */
+ 0.712874472142, /* 0x0.b67ef1000 */
+ 0.714806139464, /* 0x0.b6fd88fff */
+ 0.716744661340, /* 0x0.b77c94000 */
+ 0.718687653549, /* 0x0.b7fbea000 */
+ 0.720636486992, /* 0x0.b87ba1fff */
+ 0.722590208040, /* 0x0.b8fbabfff */
+ 0.724549472323, /* 0x0.b97c12fff */
+ 0.726514220228, /* 0x0.b9fcd5fff */
+ 0.728483855735, /* 0x0.ba7deb000 */
+ 0.730457961549, /* 0x0.baff4afff */
+ 0.732438981522, /* 0x0.bb811efff */
+ 0.734425544748, /* 0x0.bc0350000 */
+ 0.736416816713, /* 0x0.bc85d0000 */
+ 0.738412797450, /* 0x0.bd089efff */
+ 0.740414917465, /* 0x0.bd8bd4fff */
+ 0.742422521111, /* 0x0.be0f66fff */
+ 0.744434773914, /* 0x0.be9346fff */
+ 0.746454179287, /* 0x0.bf179f000 */
+ 0.748477637755, /* 0x0.bf9c3afff */
+ 0.750506639473, /* 0x0.c02133fff */
+ 0.752541840064, /* 0x0.c0a694fff */
+ 0.754582285889, /* 0x0.c12c4e000 */
+ 0.756628334525, /* 0x0.c1b265000 */
+ 0.758678436269, /* 0x0.c238bffff */
+ 0.760736882681, /* 0x0.c2bfa6fff */
+ 0.762799203401, /* 0x0.c346cf000 */
+ 0.764867603790, /* 0x0.c3ce5d000 */
+ 0.766940355298, /* 0x0.c45633fff */
+ 0.769021093841, /* 0x0.c4de90fff */
+ 0.771104693409, /* 0x0.c5671dfff */
+ 0.773195922364, /* 0x0.c5f02afff */
+ 0.775292098512, /* 0x0.c6798afff */
+ 0.777394294745, /* 0x0.c70350000 */
+ 0.779501736166, /* 0x0.c78d6d000 */
+ 0.781615912910, /* 0x0.c817fafff */
+ 0.783734917628, /* 0x0.c8a2d9fff */
+ 0.785858273516, /* 0x0.c92e02000 */
+ 0.787990570071, /* 0x0.c9b9c0000 */
+ 0.790125787245, /* 0x0.ca45aefff */
+ 0.792268991467, /* 0x0.cad223fff */
+ 0.794417440881, /* 0x0.cb5ef0fff */
+ 0.796570718287, /* 0x0.cbec0efff */
+ 0.798730909811, /* 0x0.cc79a0fff */
+ 0.800892710672, /* 0x0.cd074dfff */
+ 0.803068041795, /* 0x0.cd95ddfff */
+ 0.805242776881, /* 0x0.ce2464000 */
+ 0.807428598393, /* 0x0.ceb3a3fff */
+ 0.809617877002, /* 0x0.cf431dfff */
+ 0.811812341211, /* 0x0.cfd2eefff */
+ 0.814013659956, /* 0x0.d06333000 */
+ 0.816220164311, /* 0x0.d0f3ce000 */
+ 0.818434238424, /* 0x0.d184e7fff */
+ 0.820652604094, /* 0x0.d21649fff */
+ 0.822877407074, /* 0x0.d2a818000 */
+ 0.825108587751, /* 0x0.d33a51000 */
+ 0.827342867839, /* 0x0.d3ccbdfff */
+ 0.829588949684, /* 0x0.d45ff1000 */
+ 0.831849217401, /* 0x0.d4f411fff */
+ 0.834093391880, /* 0x0.d58724fff */
+ 0.836355149750, /* 0x0.d61b5f000 */
+ 0.838620424257, /* 0x0.d6afd3fff */
+ 0.840896368027, /* 0x0.d744fc000 */
+ 0.843176305293, /* 0x0.d7da66fff */
+ 0.845462262643, /* 0x0.d87037000 */
+ 0.847754716864, /* 0x0.d90673fff */
+ 0.850052893157, /* 0x0.d99d10fff */
+ 0.852359056469, /* 0x0.da3433fff */
+ 0.854668736446, /* 0x0.dacb91fff */
+ 0.856986224651, /* 0x0.db6373000 */
+ 0.859309315673, /* 0x0.dbfbb1fff */
+ 0.861639738080, /* 0x0.dc946bfff */
+ 0.863975346095, /* 0x0.dd2d7d000 */
+ 0.866317391394, /* 0x0.ddc6f9fff */
+ 0.868666708472, /* 0x0.de60f1000 */
+ 0.871022939695, /* 0x0.defb5c000 */
+ 0.873383641229, /* 0x0.df9611fff */
+ 0.875751554968, /* 0x0.e03141000 */
+ 0.878126025200, /* 0x0.e0ccde000 */
+ 0.880506813521, /* 0x0.e168e4fff */
+ 0.882894217966, /* 0x0.e2055afff */
+ 0.885287821299, /* 0x0.e2a239000 */
+ 0.887686729423, /* 0x0.e33f6ffff */
+ 0.890096127973, /* 0x0.e3dd56fff */
+ 0.892507970338, /* 0x0.e47b67000 */
+ 0.894928157336, /* 0x0.e51a03000 */
+ 0.897355020043, /* 0x0.e5b90efff */
+ 0.899788379682, /* 0x0.e65888000 */
+ 0.902227103705, /* 0x0.e6f85afff */
+ 0.904673457151, /* 0x0.e798ae000 */
+ 0.907128036008, /* 0x0.e8398afff */
+ 0.909585535528, /* 0x0.e8da99000 */
+ 0.912051796915, /* 0x0.e97c3a000 */
+ 0.914524436003, /* 0x0.ea1e46000 */
+ 0.917003571999, /* 0x0.eac0bf000 */
+ 0.919490039339, /* 0x0.eb63b2fff */
+ 0.921983361257, /* 0x0.ec071a000 */
+ 0.924488604054, /* 0x0.ecab48fff */
+ 0.926989555360, /* 0x0.ed4f30000 */
+ 0.929502844812, /* 0x0.edf3e6000 */
+ 0.932021975503, /* 0x0.ee98fdfff */
+ 0.934553921208, /* 0x0.ef3eecfff */
+ 0.937083780759, /* 0x0.efe4b8fff */
+ 0.939624726786, /* 0x0.f08b3f000 */
+ 0.942198514924, /* 0x0.f133ebfff */
+ 0.944726586343, /* 0x0.f1d99a000 */
+ 0.947287976728, /* 0x0.f28176fff */
+ 0.949856162070, /* 0x0.f329c5fff */
+ 0.952431440345, /* 0x0.f3d28bfff */
+ 0.955013573175, /* 0x0.f47bc5000 */
+ 0.957603693021, /* 0x0.f52584000 */
+ 0.960199773321, /* 0x0.f5cfa7000 */
+ 0.962801992906, /* 0x0.f67a31000 */
+ 0.965413510788, /* 0x0.f72556fff */
+ 0.968030691152, /* 0x0.f7d0dc000 */
+ 0.970655620084, /* 0x0.f87ce2fff */
+ 0.973290979849, /* 0x0.f92998fff */
+ 0.975926160805, /* 0x0.f9d64bfff */
+ 0.978571653370, /* 0x0.fa83ac000 */
+ 0.981225252139, /* 0x0.fb3193fff */
+ 0.983885228626, /* 0x0.fbdfe6fff */
+ 0.986552715296, /* 0x0.fc8eb7fff */
+ 0.989228487027, /* 0x0.fd3e14000 */
+ 0.991909801964, /* 0x0.fdedcd000 */
+ 0.994601726545, /* 0x0.fe9e38000 */
+ 0.997297704209, /* 0x0.ff4ee6fff */
+ 1.000000000000, /* 0x1.000000000 */
+ 1.002710938457, /* 0x1.00b1aa000 */
+ 1.005429744692, /* 0x1.0163d7ffe */
+ 1.008155703526, /* 0x1.02167dffe */
+ 1.010888457284, /* 0x1.02c995fff */
+ 1.013629436498, /* 0x1.037d38000 */
+ 1.016377568250, /* 0x1.043152000 */
+ 1.019134163841, /* 0x1.04e5f9ffe */
+ 1.021896362316, /* 0x1.059b00000 */
+ 1.024668931945, /* 0x1.0650b3ffe */
+ 1.027446627635, /* 0x1.0706be001 */
+ 1.030234098408, /* 0x1.07bd6bffe */
+ 1.033023953416, /* 0x1.087441ffe */
+ 1.035824656494, /* 0x1.092bce000 */
+ 1.038632392900, /* 0x1.09e3d0001 */
+ 1.041450142840, /* 0x1.0a9c79ffe */
+ 1.044273972530, /* 0x1.0b558a001 */
+ 1.047105550795, /* 0x1.0c0f1c001 */
+ 1.049944162390, /* 0x1.0cc924001 */
+ 1.052791833895, /* 0x1.0d83c4001 */
+ 1.055645227426, /* 0x1.0e3ec3fff */
+ 1.058507919326, /* 0x1.0efa60001 */
+ 1.061377286898, /* 0x1.0fb66bfff */
+ 1.064254641510, /* 0x1.1072fdffe */
+ 1.067140102389, /* 0x1.113018000 */
+ 1.070034146304, /* 0x1.11edc1fff */
+ 1.072937250162, /* 0x1.12ac04001 */
+ 1.075843691823, /* 0x1.136a7dfff */
+ 1.078760385496, /* 0x1.1429a3ffe */
+ 1.081685543070, /* 0x1.14e958000 */
+ 1.084618330005, /* 0x1.15a98c000 */
+ 1.087556362176, /* 0x1.166a18001 */
+ 1.090508937863, /* 0x1.172b98001 */
+ 1.093464612954, /* 0x1.17ed4bfff */
+ 1.096430182434, /* 0x1.18afa5ffe */
+ 1.099401354802, /* 0x1.19725e000 */
+ 1.102381587017, /* 0x1.1a35adfff */
+ 1.105370759965, /* 0x1.1af994000 */
+ 1.108367800686, /* 0x1.1bbdfdffe */
+ 1.111373305331, /* 0x1.1c82f6000 */
+ 1.114387035385, /* 0x1.1d4878001 */
+ 1.117408752440, /* 0x1.1e0e7ffff */
+ 1.120437502874, /* 0x1.1ed4fe000 */
+ 1.123474478729, /* 0x1.1f9c06000 */
+ 1.126521706601, /* 0x1.2063ba001 */
+ 1.129574775716, /* 0x1.212bd0001 */
+ 1.132638812065, /* 0x1.21f49e000 */
+ 1.135709524130, /* 0x1.22bddbffe */
+ 1.138789534565, /* 0x1.2387b5fff */
+ 1.141876101508, /* 0x1.2451fe000 */
+ 1.144971728301, /* 0x1.251cddffe */
+ 1.148077130296, /* 0x1.25e861ffe */
+ 1.151189923305, /* 0x1.26b462001 */
+ 1.154312610610, /* 0x1.278107ffe */
+ 1.157440662410, /* 0x1.284e08001 */
+ 1.160578370109, /* 0x1.291baa001 */
+ 1.163725256932, /* 0x1.29e9e6000 */
+ 1.166879892324, /* 0x1.2ab8a3ffe */
+ 1.170044302935, /* 0x1.2b8805fff */
+ 1.173205971694, /* 0x1.2c5739ffe */
+ 1.176397800428, /* 0x1.2d2867ffe */
+ 1.179586529747, /* 0x1.2df962001 */
+ 1.182784795737, /* 0x1.2ecafbffe */
+ 1.185991406414, /* 0x1.2f9d21ffe */
+ 1.189206838636, /* 0x1.306fdc001 */
+ 1.192430973067, /* 0x1.314328000 */
+ 1.195664167430, /* 0x1.32170c001 */
+ 1.198906540890, /* 0x1.32eb8a001 */
+ 1.202157497408, /* 0x1.33c098000 */
+ 1.205416083326, /* 0x1.349625fff */
+ 1.208683252332, /* 0x1.356c43fff */
+ 1.211961269402, /* 0x1.364318001 */
+ 1.215246438983, /* 0x1.371a64000 */
+ 1.218539118740, /* 0x1.37f22dffe */
+ 1.221847295770, /* 0x1.38cafc000 */
+ 1.225158572187, /* 0x1.39a3fdfff */
+ 1.228481650325, /* 0x1.3a7dc5ffe */
+ 1.231811761846, /* 0x1.3b5803fff */
+ 1.235149741144, /* 0x1.3c32c5ffe */
+ 1.238499879811, /* 0x1.3d0e53ffe */
+ 1.241858124726, /* 0x1.3dea69fff */
+ 1.245225191102, /* 0x1.3ec713fff */
+ 1.248601436624, /* 0x1.3fa458000 */
+ 1.251975655584, /* 0x1.40817a001 */
+ 1.255380749731, /* 0x1.4160a2001 */
+ 1.258783102010, /* 0x1.423f9bffe */
+ 1.262198328973, /* 0x1.431f6e000 */
+ 1.265619754780, /* 0x1.43ffa7fff */
+ 1.269052743928, /* 0x1.44e0a4001 */
+ 1.272490739830, /* 0x1.45c1f4000 */
+ 1.275942921659, /* 0x1.46a432001 */
+ 1.279397487615, /* 0x1.478697ffe */
+ 1.282870173427, /* 0x1.486a2dffe */
+ 1.286346316319, /* 0x1.494dfdffe */
+ 1.289836049094, /* 0x1.4a32b2001 */
+ 1.293333172770, /* 0x1.4b17e1ffe */
+ 1.296839594835, /* 0x1.4bfdadfff */
+ 1.300354957560, /* 0x1.4ce40fffe */
+ 1.303882122055, /* 0x1.4dcb38001 */
+ 1.307417988757, /* 0x1.4eb2f1ffe */
+ 1.310960650439, /* 0x1.4f9b1dfff */
+ 1.314516782746, /* 0x1.50842bfff */
+ 1.318079948424, /* 0x1.516daffff */
+ 1.321653246888, /* 0x1.5257de000 */
+ 1.325237751030, /* 0x1.5342c8001 */
+ 1.328829526907, /* 0x1.542e2c000 */
+ 1.332433700535, /* 0x1.551a5fffe */
+ 1.336045145966, /* 0x1.56070dffe */
+ 1.339667558645, /* 0x1.56f473ffe */
+ 1.343300342533, /* 0x1.57e287ffe */
+ 1.346941947961, /* 0x1.58d130001 */
+ 1.350594043714, /* 0x1.59c087ffe */
+ 1.354256033883, /* 0x1.5ab085fff */
+ 1.357932448365, /* 0x1.5ba175ffe */
+ 1.361609339707, /* 0x1.5c926dfff */
+ 1.365299344044, /* 0x1.5d8441ffe */
+ 1.369003057507, /* 0x1.5e76fc001 */
+ 1.372714757920, /* 0x1.5f6a3c000 */
+ 1.376437187179, /* 0x1.605e2fffe */
+ 1.380165219333, /* 0x1.615282001 */
+ 1.383909463864, /* 0x1.6247e3ffe */
+ 1.387661933907, /* 0x1.633dd0000 */
+ 1.391424179060, /* 0x1.64345fffe */
+ 1.395197510706, /* 0x1.652ba9fff */
+ 1.399006724329, /* 0x1.66254dffe */
+ 1.402773022651, /* 0x1.671c22000 */
+ 1.406576037403, /* 0x1.68155dfff */
+ 1.410389423392, /* 0x1.690f48001 */
+};
diff --git a/sysdeps/ieee754/flt-32/w_expf.c b/sysdeps/ieee754/flt-32/w_expf.c
new file mode 100644
index 0000000000..ad38fac0f3
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/w_expf.c
@@ -0,0 +1,59 @@
+/* w_expf.c -- float version of w_exp.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: w_expf.c,v 1.3 1995/05/10 20:48:53 jtc Exp $";
+#endif
+
+/* 
+ * wrapper expf(x)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+o_threshold=  8.8721679688e+01,  /* 0x42b17180 */
+u_threshold= -1.0397208405e+02;  /* 0xc2cff1b5 */
+
+#ifdef __STDC__
+	float __expf(float x)		/* wrapper expf */
+#else
+	float __expf(x)			/* wrapper expf */
+	float x;
+#endif
+{
+#ifdef _IEEE_LIBM
+	return __ieee754_expf(x);
+#else
+	float z;
+	z = __ieee754_expf(x);
+	if(_LIB_VERSION == _IEEE_) return z;
+	if(__finitef(x)) {
+	    if(x>o_threshold)
+	        /* exp overflow */
+	        return (float)__kernel_standard((double)x,(double)x,106);
+	    else if(x<u_threshold)
+	        /* exp underflow */
+	        return (float)__kernel_standard((double)x,(double)x,107);
+	} 
+	return z;
+#endif
+}
+weak_alias (__expf, expf)
diff --git a/sysdeps/ieee754/k_standard.c b/sysdeps/ieee754/k_standard.c
new file mode 100644
index 0000000000..22300652e9
--- /dev/null
+++ b/sysdeps/ieee754/k_standard.c
@@ -0,0 +1,943 @@
+/* @(#)k_standard.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_standard.c,v 1.6 1995/05/10 20:46:35 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+#include <errno.h>
+
+#include <assert.h>
+
+#ifndef _USE_WRITE
+#include <stdio.h>			/* fputs(), stderr */
+#define	WRITE2(u,v)	fputs(u, stderr)
+#else	/* !defined(_USE_WRITE) */
+#include <unistd.h>			/* write */
+#define	WRITE2(u,v)	write(2, u, v)
+#undef fflush
+#endif	/* !defined(_USE_WRITE) */
+
+/* XXX gcc versions until now don't delay the 0.0/0.0 division until
+   runtime but produce NaN at copile time.  This is wrong since the
+   exceptions are not set correctly.  */
+#if 0 && defined __STDC__
+static const double zero = 0.0;	/* used as const */
+#else
+static double zero = 0.0;	/* used as const */
+#endif
+
+/*
+ * Standard conformance (non-IEEE) on exception cases.
+ * Mapping:
+ *	1 -- acos(|x|>1)
+ *	2 -- asin(|x|>1)
+ *	3 -- atan2(+-0,+-0)
+ *	4 -- hypot overflow
+ *	5 -- cosh overflow
+ *	6 -- exp overflow
+ *	7 -- exp underflow
+ *	8 -- y0(0)
+ *	9 -- y0(-ve)
+ *	10-- y1(0)
+ *	11-- y1(-ve)
+ *	12-- yn(0)
+ *	13-- yn(-ve)
+ *	14-- lgamma(finite) overflow
+ *	15-- lgamma(-integer)
+ *	16-- log(0)
+ *	17-- log(x<0)
+ *	18-- log10(0)
+ *	19-- log10(x<0)
+ *	20-- pow(0.0,0.0)
+ *	21-- pow(x,y) overflow
+ *	22-- pow(x,y) underflow
+ *	23-- pow(0,negative)
+ *	24-- pow(neg,non-integral)
+ *	25-- sinh(finite) overflow
+ *	26-- sqrt(negative)
+ *      27-- fmod(x,0)
+ *      28-- remainder(x,0)
+ *	29-- acosh(x<1)
+ *	30-- atanh(|x|>1)
+ *	31-- atanh(|x|=1)
+ *	32-- scalb overflow
+ *	33-- scalb underflow
+ *	34-- j0(|x|>X_TLOSS)
+ *	35-- y0(x>X_TLOSS)
+ *	36-- j1(|x|>X_TLOSS)
+ *	37-- y1(x>X_TLOSS)
+ *	38-- jn(|x|>X_TLOSS, n)
+ *	39-- yn(x>X_TLOSS, n)
+ *	40-- tgamma(finite) overflow
+ *	41-- tgamma(-integer)
+ *	42-- pow(NaN,0.0)
+ *	43-- +0**neg
+ *	44-- exp2 overflow
+ *	45-- exp2 underflow
+ *	46-- exp10 overflow
+ *	47-- exp10 underflow
+ */
+
+
+#ifdef __STDC__
+	double __kernel_standard(double x, double y, int type)
+#else
+	double __kernel_standard(x,y,type)
+	double x,y; int type;
+#endif
+{
+	struct exception exc;
+#ifndef HUGE_VAL	/* this is the only routine that uses HUGE_VAL */
+#define HUGE_VAL inf
+	double inf = 0.0;
+
+	SET_HIGH_WORD(inf,0x7ff00000);	/* set inf to infinite */
+#endif
+
+#ifdef _USE_WRITE
+	(void) fflush(stdout);
+#endif
+	exc.arg1 = x;
+	exc.arg2 = y;
+	switch(type) {
+	    case 1:
+	    case 101:
+	    case 201:
+		/* acos(|x|>1) */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "acos" : (type < 200
+						  ? "acosf" : "acosl");;
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = HUGE;
+		else
+		  exc.retval = NAN;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if(_LIB_VERSION == _SVID_) {
+		    (void) WRITE2("acos: DOMAIN error\n", 19);
+		  }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 2:
+	    case 102:
+	    case 202:
+		/* asin(|x|>1) */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "asin" : (type < 200
+						  ? "asinf" : "asinl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = HUGE;
+		else
+		  exc.retval = NAN;
+		if(_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if(_LIB_VERSION == _SVID_) {
+		    	(void) WRITE2("asin: DOMAIN error\n", 19);
+		  }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 3:
+	    case 103:
+	    case 203:
+		/* atan2(+-0,+-0) */
+		exc.arg1 = y;
+		exc.arg2 = x;
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "atan2" : (type < 200
+						   ? "atan2f" : "atan2l");
+		assert (_LIB_VERSION == _SVID_);
+		exc.retval = HUGE;
+		if(_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if(_LIB_VERSION == _SVID_) {
+			(void) WRITE2("atan2: DOMAIN error\n", 20);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 4:
+	    case 104:
+	    case 204:
+		/* hypot(finite,finite) overflow */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "hypot" : (type < 200
+						   ? "hypotf" : "hypotl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = HUGE;
+		else
+		  exc.retval = HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 5:
+	    case 105:
+	    case 205:
+		/* cosh(finite) overflow */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "cosh" : (type < 200
+						  ? "coshf" : "coshl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = HUGE;
+		else
+		  exc.retval = HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 6:
+	    case 106:
+	    case 206:
+		/* exp(finite) overflow */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "exp" : (type < 200
+						 ? "expf" : "expl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = HUGE;
+		else
+		  exc.retval = HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 7:
+	    case 107:
+	    case 207:
+		/* exp(finite) underflow */
+		exc.type = UNDERFLOW;
+		exc.name = type < 100 ? "exp" : (type < 200
+						 ? "expf" : "expl");
+		exc.retval = zero;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 8:
+	    case 108:
+	    case 208:
+		/* y0(0) = -inf */
+		exc.type = DOMAIN;	/* should be SING for IEEE */
+		exc.name = type < 100 ? "y0" : (type < 200 ? "y0f" : "y0l");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("y0: DOMAIN error\n", 17);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 9:
+	    case 109:
+	    case 209:
+		/* y0(x<0) = NaN */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "y0" : (type < 200 ? "y0f" : "y0l");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("y0: DOMAIN error\n", 17);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 10:
+	    case 110:
+	    case 210:
+		/* y1(0) = -inf */
+		exc.type = DOMAIN;	/* should be SING for IEEE */
+		exc.name = type < 100 ? "y1" : (type < 200 ? "y1f" : "y1l");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("y1: DOMAIN error\n", 17);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 11:
+	    case 111:
+	    case 211:
+		/* y1(x<0) = NaN */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "y1" : (type < 200 ? "y1f" : "y1l");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("y1: DOMAIN error\n", 17);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 12:
+	    case 112:
+	    case 212:
+		/* yn(n,0) = -inf */
+		exc.type = DOMAIN;	/* should be SING for IEEE */
+		exc.name = type < 100 ? "yn" : (type < 200 ? "ynf" : "ynl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("yn: DOMAIN error\n", 17);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 13:
+	    case 113:
+	    case 213:
+		/* yn(x<0) = NaN */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "yn" : (type < 200 ? "ynf" : "ynl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("yn: DOMAIN error\n", 17);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 14:
+	    case 114:
+	    case 214:
+		/* lgamma(finite) overflow */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "lgamma" : (type < 200
+						    ? "lgammaf" : "lgammal");
+                if (_LIB_VERSION == _SVID_)
+                  exc.retval = HUGE;
+                else
+                  exc.retval = HUGE_VAL;
+                if (_LIB_VERSION == _POSIX_)
+			__set_errno (ERANGE);
+                else if (!matherr(&exc)) {
+                        __set_errno (ERANGE);
+		}
+		break;
+	    case 15:
+	    case 115:
+	    case 215:
+		/* lgamma(-integer) or lgamma(0) */
+		exc.type = SING;
+		exc.name = type < 100 ? "lgamma" : (type < 200
+						    ? "lgammaf" : "lgammal");
+                if (_LIB_VERSION == _SVID_)
+                  exc.retval = HUGE;
+                else
+                  exc.retval = HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("lgamma: SING error\n", 19);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 16:
+	    case 116:
+	    case 216:
+		/* log(0) */
+		exc.type = SING;
+		exc.name = type < 100 ? "log" : (type < 200 ? "logf" : "logl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("log: SING error\n", 16);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 17:
+	    case 117:
+	    case 217:
+		/* log(x<0) */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "log" : (type < 200 ? "logf" : "logl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = NAN;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("log: DOMAIN error\n", 18);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 18:
+	    case 118:
+	    case 218:
+		/* log10(0) */
+		exc.type = SING;
+		exc.name = type < 100 ? "log10" : (type < 200
+						   ? "log10f" : "log10l");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("log10: SING error\n", 18);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 19:
+	    case 119:
+	    case 219:
+		/* log10(x<0) */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "log10" : (type < 200
+						   ? "log10f" : "log10l");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = -HUGE;
+		else
+		  exc.retval = NAN;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("log10: DOMAIN error\n", 20);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 20:
+	    case 120:
+	    case 220:
+		/* pow(0.0,0.0) */
+		/* error only if _LIB_VERSION == _SVID_ */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "pow" : (type < 200 ? "powf" : "powl");
+		exc.retval = zero;
+		if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
+		else if (!matherr(&exc)) {
+			(void) WRITE2("pow(0,0): DOMAIN error\n", 23);
+			__set_errno (EDOM);
+		}
+		break;
+	    case 21:
+	    case 121:
+	    case 221:
+		/* pow(x,y) overflow */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "pow" : (type < 200 ? "powf" : "powl");
+		if (_LIB_VERSION == _SVID_) {
+		  exc.retval = HUGE;
+		  y *= 0.5;
+		  if(x<zero&&__rint(y)!=y) exc.retval = -HUGE;
+		} else {
+		  exc.retval = HUGE_VAL;
+		  y *= 0.5;
+		  if(x<zero&&__rint(y)!=y) exc.retval = -HUGE_VAL;
+		}
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 22:
+	    case 122:
+	    case 222:
+		/* pow(x,y) underflow */
+		exc.type = UNDERFLOW;
+		exc.name = type < 100 ? "pow" : (type < 200 ? "powf" : "powl");
+		exc.retval =  zero;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 23:
+	    case 123:
+	    case 223:
+		/* -0**neg */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "pow" : (type < 200 ? "powf" : "powl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = zero;
+		else
+		  exc.retval = -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("pow(0,neg): DOMAIN error\n", 25);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 43:
+	    case 143:
+	    case 243:
+		/* +0**neg */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "pow" : (type < 200 ? "powf" : "powl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = zero;
+		else
+		  exc.retval = HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("pow(0,neg): DOMAIN error\n", 25);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 24:
+	    case 124:
+	    case 224:
+		/* neg**non-integral */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "pow" : (type < 200 ? "powf" : "powl");
+		if (_LIB_VERSION == _SVID_)
+		    exc.retval = zero;
+		else
+		    exc.retval = zero/zero;	/* X/Open allow NaN */
+		if (_LIB_VERSION == _POSIX_)
+		   __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("neg**non-integral: DOMAIN error\n", 32);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 25:
+	    case 125:
+	    case 225:
+		/* sinh(finite) overflow */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "sinh" : (type < 200
+						  ? "sinhf" : "sinhl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = ( (x>zero) ? HUGE : -HUGE);
+		else
+		  exc.retval = ( (x>zero) ? HUGE_VAL : -HUGE_VAL);
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 26:
+	    case 126:
+	    case 226:
+		/* sqrt(x<0) */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "sqrt" : (type < 200
+						  ? "sqrtf" : "sqrtl");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = zero;
+		else
+		  exc.retval = zero/zero;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("sqrt: DOMAIN error\n", 19);
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+            case 27:
+	    case 127:
+	    case 227:
+                /* fmod(x,0) */
+                exc.type = DOMAIN;
+                exc.name = type < 100 ? "fmod" : (type < 200
+						  ? "fmodf" : "fmodl");
+                if (_LIB_VERSION == _SVID_)
+                    exc.retval = x;
+		else
+		    exc.retval = zero/zero;
+                if (_LIB_VERSION == _POSIX_)
+                  __set_errno (EDOM);
+                else if (!matherr(&exc)) {
+                  if (_LIB_VERSION == _SVID_) {
+                    (void) WRITE2("fmod:  DOMAIN error\n", 20);
+                  }
+                  __set_errno (EDOM);
+                }
+                break;
+            case 28:
+	    case 128:
+	    case 228:
+                /* remainder(x,0) */
+                exc.type = DOMAIN;
+                exc.name = type < 100 ? "remainder" : (type < 200
+						       ? "remainderf"
+						       : "remainderl");
+                exc.retval = zero/zero;
+                if (_LIB_VERSION == _POSIX_)
+                  __set_errno (EDOM);
+                else if (!matherr(&exc)) {
+                  if (_LIB_VERSION == _SVID_) {
+                    (void) WRITE2("remainder: DOMAIN error\n", 24);
+                  }
+                  __set_errno (EDOM);
+                }
+                break;
+            case 29:
+	    case 129:
+	    case 229:
+                /* acosh(x<1) */
+                exc.type = DOMAIN;
+                exc.name = type < 100 ? "acosh" : (type < 200
+						   ? "acoshf" : "acoshl");
+                exc.retval = zero/zero;
+                if (_LIB_VERSION == _POSIX_)
+                  __set_errno (EDOM);
+                else if (!matherr(&exc)) {
+                  if (_LIB_VERSION == _SVID_) {
+                    (void) WRITE2("acosh: DOMAIN error\n", 20);
+                  }
+                  __set_errno (EDOM);
+                }
+                break;
+            case 30:
+	    case 130:
+	    case 230:
+                /* atanh(|x|>1) */
+                exc.type = DOMAIN;
+                exc.name = type < 100 ? "atanh" : (type < 200
+						   ? "atanhf" : "atanhl");
+                exc.retval = zero/zero;
+                if (_LIB_VERSION == _POSIX_)
+                  __set_errno (EDOM);
+                else if (!matherr(&exc)) {
+                  if (_LIB_VERSION == _SVID_) {
+                    (void) WRITE2("atanh: DOMAIN error\n", 20);
+                  }
+                  __set_errno (EDOM);
+                }
+                break;
+            case 31:
+	    case 131:
+	    case 231:
+                /* atanh(|x|=1) */
+                exc.type = SING;
+                exc.name = type < 100 ? "atanh" : (type < 200
+						   ? "atanhf" : "atanhl");
+		exc.retval = x/zero;	/* sign(x)*inf */
+                if (_LIB_VERSION == _POSIX_)
+                  __set_errno (EDOM);
+                else if (!matherr(&exc)) {
+                  if (_LIB_VERSION == _SVID_) {
+                    (void) WRITE2("atanh: SING error\n", 18);
+                  }
+                  __set_errno (EDOM);
+                }
+                break;
+	    case 32:
+	    case 132:
+	    case 232:
+		/* scalb overflow; SVID also returns +-HUGE_VAL */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "scalb" : (type < 200
+						   ? "scalbf" : "scalbl");
+		exc.retval = x > zero ? HUGE_VAL : -HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 33:
+	    case 133:
+	    case 233:
+		/* scalb underflow */
+		exc.type = UNDERFLOW;
+		exc.name = type < 100 ? "scalb" : (type < 200
+						   ? "scalbf" : "scalbl");
+		exc.retval = __copysign(zero,x);
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 34:
+	    case 134:
+	    case 234:
+		/* j0(|x|>X_TLOSS) */
+                exc.type = TLOSS;
+                exc.name = type < 100 ? "j0" : (type < 200 ? "j0f" : "j0l");
+                exc.retval = zero;
+                if (_LIB_VERSION == _POSIX_)
+                        __set_errno (ERANGE);
+                else if (!matherr(&exc)) {
+                        if (_LIB_VERSION == _SVID_) {
+                                (void) WRITE2(exc.name, 2);
+                                (void) WRITE2(": TLOSS error\n", 14);
+                        }
+                        __set_errno (ERANGE);
+                }
+		break;
+	    case 35:
+	    case 135:
+	    case 235:
+		/* y0(x>X_TLOSS) */
+                exc.type = TLOSS;
+                exc.name = type < 100 ? "y0" : (type < 200 ? "y0f" : "y0l");
+                exc.retval = zero;
+                if (_LIB_VERSION == _POSIX_)
+                        __set_errno (ERANGE);
+                else if (!matherr(&exc)) {
+                        if (_LIB_VERSION == _SVID_) {
+                                (void) WRITE2(exc.name, 2);
+                                (void) WRITE2(": TLOSS error\n", 14);
+                        }
+                        __set_errno (ERANGE);
+                }
+		break;
+	    case 36:
+	    case 136:
+	    case 236:
+		/* j1(|x|>X_TLOSS) */
+                exc.type = TLOSS;
+                exc.name = type < 100 ? "j1" : (type < 200 ? "j1f" : "j1l");
+                exc.retval = zero;
+                if (_LIB_VERSION == _POSIX_)
+                        __set_errno (ERANGE);
+                else if (!matherr(&exc)) {
+                        if (_LIB_VERSION == _SVID_) {
+                                (void) WRITE2(exc.name, 2);
+                                (void) WRITE2(": TLOSS error\n", 14);
+                        }
+                        __set_errno (ERANGE);
+                }
+		break;
+	    case 37:
+	    case 137:
+	    case 237:
+		/* y1(x>X_TLOSS) */
+                exc.type = TLOSS;
+                exc.name = type < 100 ? "y1" : (type < 200 ? "y1f" : "y1l");
+                exc.retval = zero;
+                if (_LIB_VERSION == _POSIX_)
+                        __set_errno (ERANGE);
+                else if (!matherr(&exc)) {
+                        if (_LIB_VERSION == _SVID_) {
+                                (void) WRITE2(exc.name, 2);
+                                (void) WRITE2(": TLOSS error\n", 14);
+                        }
+                        __set_errno (ERANGE);
+                }
+		break;
+	    case 38:
+	    case 138:
+	    case 238:
+		/* jn(|x|>X_TLOSS) */
+                exc.type = TLOSS;
+                exc.name = type < 100 ? "jn" : (type < 200 ? "jnf" : "jnl");
+                exc.retval = zero;
+                if (_LIB_VERSION == _POSIX_)
+                        __set_errno (ERANGE);
+                else if (!matherr(&exc)) {
+                        if (_LIB_VERSION == _SVID_) {
+                                (void) WRITE2(exc.name, 2);
+                                (void) WRITE2(": TLOSS error\n", 14);
+                        }
+                        __set_errno (ERANGE);
+                }
+		break;
+	    case 39:
+	    case 139:
+	    case 239:
+		/* yn(x>X_TLOSS) */
+                exc.type = TLOSS;
+                exc.name = type < 100 ? "yn" : (type < 200 ? "ynf" : "ynl");
+                exc.retval = zero;
+                if (_LIB_VERSION == _POSIX_)
+                        __set_errno (ERANGE);
+                else if (!matherr(&exc)) {
+                        if (_LIB_VERSION == _SVID_) {
+                                (void) WRITE2(exc.name, 2);
+                                (void) WRITE2(": TLOSS error\n", 14);
+                        }
+                        __set_errno (ERANGE);
+                }
+		break;
+	    case 40:
+	    case 140:
+	    case 240:
+		/* gamma(finite) overflow */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "tgamma" : (type < 200
+						   ? "tgammaf" : "tgammal");
+		exc.retval = HUGE_VAL;
+                if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+                else if (!matherr(&exc)) {
+                  __set_errno (ERANGE);
+                }
+		break;
+	    case 41:
+	    case 141:
+	    case 241:
+		/* gamma(-integer) or gamma(0) */
+		exc.type = SING;
+		exc.name = type < 100 ? "tgamma" : (type < 200
+						   ? "tgammaf" : "tgammal");
+		exc.retval = NAN;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (EDOM);
+		else if (!matherr(&exc)) {
+		  if (_LIB_VERSION == _SVID_) {
+			(void) WRITE2("tgamma: SING error\n", 18);
+			exc.retval = HUGE_VAL;
+		      }
+		  __set_errno (EDOM);
+		}
+		break;
+	    case 42:
+	    case 142:
+	    case 242:
+		/* pow(NaN,0.0) */
+		/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
+		exc.type = DOMAIN;
+		exc.name = type < 100 ? "pow" : (type < 200 ? "powf" : "powl");
+		exc.retval = x;
+		if (_LIB_VERSION == _IEEE_ ||
+		    _LIB_VERSION == _POSIX_) exc.retval = 1.0;
+		else if (!matherr(&exc)) {
+			__set_errno (EDOM);
+		}
+		break;
+
+	    case 44:
+	    case 144:
+	    case 244:
+		/* exp(finite) overflow */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "exp2" : (type < 200
+						  ? "exp2f" : "exp2l");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = HUGE;
+		else
+		  exc.retval = HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 45:
+	    case 145:
+	    case 245:
+		/* exp(finite) underflow */
+		exc.type = UNDERFLOW;
+		exc.name = type < 100 ? "exp2" : (type < 200
+						  ? "exp2f" : "exp2l");
+		exc.retval = zero;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+
+	    case 46:
+	    case 146:
+	    case 246:
+		/* exp(finite) overflow */
+		exc.type = OVERFLOW;
+		exc.name = type < 100 ? "exp10" : (type < 200
+						   ? "exp10f" : "exp10l");
+		if (_LIB_VERSION == _SVID_)
+		  exc.retval = HUGE;
+		else
+		  exc.retval = HUGE_VAL;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+	    case 47:
+	    case 147:
+	    case 247:
+		/* exp(finite) underflow */
+		exc.type = UNDERFLOW;
+		exc.name = type < 100 ? "exp10" : (type < 200
+						   ? "exp10f" : "exp10l");
+		exc.retval = zero;
+		if (_LIB_VERSION == _POSIX_)
+		  __set_errno (ERANGE);
+		else if (!matherr(&exc)) {
+			__set_errno (ERANGE);
+		}
+		break;
+		/* #### Last used is 47/147/247 ### */
+	}
+	return exc.retval;
+}
diff --git a/sysdeps/ieee754/ldbl-128/e_acoshl.c b/sysdeps/ieee754/ldbl-128/e_acoshl.c
new file mode 100644
index 0000000000..7f7934025a
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/e_acoshl.c
@@ -0,0 +1,68 @@
+/* e_acoshl.c -- long double version of e_acosh.c.
+ * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __ieee754_acoshl(x)
+ * Method :
+ *	Based on
+ *		acoshl(x) = logl [ x + sqrtl(x*x-1) ]
+ *	we have
+ *		acoshl(x) := logl(x)+ln2,	if x is large; else
+ *		acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else
+ *		acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1.
+ *
+ * Special cases:
+ *	acoshl(x) is NaN with signal if x<1.
+ *	acoshl(NaN) is NaN without signal.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+one	= 1.0,
+ln2	= 0.6931471805599453094172321214581766L;
+
+#ifdef __STDC__
+	long double __ieee754_acoshl(long double x)
+#else
+	long double __ieee754_acoshl(x)
+	long double x;
+#endif
+{
+	long double t;
+	u_int64_t lx;
+	int64_t hx;
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	if(hx<0x3fff000000000000LL) {		/* x < 1 */
+	    return (x-x)/(x-x);
+	} else if(hx >=0x401b000000000000LL) {	/* x > 2**28 */
+	    if(hx >=0x7fff000000000000LL) {	/* x is inf of NaN */
+	        return x+x;
+	    } else
+		return __ieee754_logl(x)+ln2;	/* acoshl(huge)=logl(2x) */
+	} else if(((hx-0x3fff000000000000LL)|lx)==0) {
+	    return 0.0L;			/* acosh(1) = 0 */
+	} else if (hx > 0x4000000000000000LL) {	/* 2**28 > x > 2 */
+	    t=x*x;
+	    return __ieee754_logl(2.0L*x-one/(x+__ieee754_sqrtl(t-one)));
+	} else {			/* 1<x<2 */
+	    t = x-one;
+	    return __log1pl(t+__sqrtl(2.0L*t+t*t));
+	}
+}
diff --git a/sysdeps/ieee754/ldbl-128/e_atan2l.c b/sysdeps/ieee754/ldbl-128/e_atan2l.c
new file mode 100644
index 0000000000..2e081d3bab
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/e_atan2l.c
@@ -0,0 +1,129 @@
+/* e_atan2l.c -- long double version of e_atan2.c.
+ * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __ieee754_atan2l(y,x)
+ * Method :
+ *	1. Reduce y to positive by atan2l(y,x)=-atan2l(-y,x).
+ *	2. Reduce x to positive by (if x and y are unexceptional):
+ *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
+ *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
+ *
+ * Special cases:
+ *
+ *	ATAN2((anything), NaN ) is NaN;
+ *	ATAN2(NAN , (anything) ) is NaN;
+ *	ATAN2(+-0, +(anything but NaN)) is +-0  ;
+ *	ATAN2(+-0, -(anything but NaN)) is +-pi ;
+ *	ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
+ *	ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
+ *	ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
+ *	ATAN2(+-INF,+INF ) is +-pi/4 ;
+ *	ATAN2(+-INF,-INF ) is +-3pi/4;
+ *	ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+tiny  = 1.0e-4900L,
+zero  = 0.0,
+pi_o_4  = 7.85398163397448309615660845819875699e-01L, /* 3ffe921fb54442d18469898cc51701b8 */
+pi_o_2  = 1.57079632679489661923132169163975140e+00L, /* 3fff921fb54442d18469898cc51701b8 */
+pi      = 3.14159265358979323846264338327950280e+00L, /* 4000921fb54442d18469898cc51701b8 */
+pi_lo   = 8.67181013012378102479704402604335225e-35L; /* 3f8dcd129024e088a67cc74020bbea64 */
+
+#ifdef __STDC__
+	long double __ieee754_atan2l(long double y, long double x)
+#else
+	long double __ieee754_atan2l(y,x)
+	long double  y,x;
+#endif
+{
+	long double z;
+	int64_t k,m,hx,hy,ix,iy;
+	u_int64_t lx,ly;
+
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	ix = hx&0x7fffffffffffffffLL;
+	GET_LDOUBLE_WORDS64(hy,ly,y);
+	iy = hy&0x7fffffffffffffffLL;
+	if(((ix|((lx|-lx)>>63))>0x7fff000000000000LL)||
+	   ((iy|((ly|-ly)>>63))>0x7fff000000000000LL))	/* x or y is NaN */
+	   return x+y;
+	if((hx-0x3fff000000000000LL|lx)==0) return __atanl(y);   /* x=1.0L */
+	m = ((hy>>63)&1)|((hx>>62)&2);	/* 2*sign(x)+sign(y) */
+
+    /* when y = 0 */
+	if((iy|ly)==0) {
+	    switch(m) {
+		case 0:
+		case 1: return y; 	/* atan(+-0,+anything)=+-0 */
+		case 2: return  pi+tiny;/* atan(+0,-anything) = pi */
+		case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
+	    }
+	}
+    /* when x = 0 */
+	if((ix|lx)==0) return (hy<0)?  -pi_o_2-tiny: pi_o_2+tiny;
+
+    /* when x is INF */
+	if(ix==0x7fff000000000000LL) {
+	    if(iy==0x7fff000000000000LL) {
+		switch(m) {
+		    case 0: return  pi_o_4+tiny;/* atan(+INF,+INF) */
+		    case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
+		    case 2: return  3.0L*pi_o_4+tiny;/*atan(+INF,-INF)*/
+		    case 3: return -3.0L*pi_o_4-tiny;/*atan(-INF,-INF)*/
+		}
+	    } else {
+		switch(m) {
+		    case 0: return  zero  ;	/* atan(+...,+INF) */
+		    case 1: return -zero  ;	/* atan(-...,+INF) */
+		    case 2: return  pi+tiny  ;	/* atan(+...,-INF) */
+		    case 3: return -pi-tiny  ;	/* atan(-...,-INF) */
+		}
+	    }
+	}
+    /* when y is INF */
+	if(iy==0x7fff000000000000LL) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
+
+    /* compute y/x */
+	k = (iy-ix)>>48;
+	if(k > 120) z=pi_o_2+0.5L*pi_lo; 	/* |y/x| >  2**120 */
+	else if(hx<0&&k<-120) z=0.0L; 		/* |y|/x < -2**120 */
+	else z=__atanl(fabsl(y/x));		/* safe to do y/x */
+	switch (m) {
+	    case 0: return       z  ;	/* atan(+,+) */
+	    case 1: {
+	    	      u_int64_t zh;
+		      GET_LDOUBLE_MSW64(zh,z);
+		      SET_LDOUBLE_MSW64(z,zh ^ 0x8000000000000000ULL);
+		    }
+		    return       z  ;	/* atan(-,+) */
+	    case 2: return  pi-(z-pi_lo);/* atan(+,-) */
+	    default: /* case 3 */
+	    	    return  (z-pi_lo)-pi;/* atan(-,-) */
+	}
+}
diff --git a/sysdeps/ieee754/ldbl-128/e_fmodl.c b/sysdeps/ieee754/ldbl-128/e_fmodl.c
new file mode 100644
index 0000000000..1043f69cb3
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/e_fmodl.c
@@ -0,0 +1,138 @@
+/* e_fmodl.c -- long double version of e_fmod.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+/* 
+ * __ieee754_fmodl(x,y)
+ * Return x mod y in exact arithmetic
+ * Method: shift and subtract
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double one = 1.0, Zero[] = {0.0, -0.0,};
+#else
+static long double one = 1.0, Zero[] = {0.0, -0.0,};
+#endif
+
+#ifdef __STDC__
+	long double __ieee754_fmodl(long double x, long double y)
+#else
+	long double __ieee754_fmodl(x,y)
+	long double x,y;
+#endif
+{
+	int64_t n,hx,hy,hz,ix,iy,sx,i;
+	u_int64_t lx,ly,lz;
+
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	GET_LDOUBLE_WORDS64(hy,ly,y);
+	sx = hx&0x8000000000000000ULL;		/* sign of x */
+	hx ^=sx;				/* |x| */
+	hy &= 0x7fffffffffffffffLL;		/* |y| */
+
+    /* purge off exception values */
+	if((hy|ly)==0||(hx>=0x7fff000000000000LL)|| /* y=0,or x not finite */
+	  ((hy|((ly|-ly)>>63))>0x7fff000000000000LL))	/* or y is NaN */
+	    return (x*y)/(x*y);
+	if(hx<=hy) {
+	    if((hx<hy)||(lx<ly)) return x;	/* |x|<|y| return x */
+	    if(lx==ly) 
+		return Zero[(u_int64_t)sx>>63];	/* |x|=|y| return x*0*/
+	}
+
+    /* determine ix = ilogb(x) */
+	if(hx<0x0001000000000000LL) {	/* subnormal x */
+	    if(hx==0) {
+		for (ix = -16431, i=lx; i>0; i<<=1) ix -=1;
+	    } else {
+		for (ix = -16382, i=hx<<15; i>0; i<<=1) ix -=1;
+	    }
+	} else ix = (hx>>48)-0x3fff;
+
+    /* determine iy = ilogb(y) */
+	if(hy<0x0001000000000000LL) {	/* subnormal y */
+	    if(hy==0) {
+		for (iy = -16431, i=ly; i>0; i<<=1) iy -=1;
+	    } else {
+		for (iy = -16382, i=hy<<15; i>0; i<<=1) iy -=1;
+	    }
+	} else iy = (hy>>48)-0x3fff;
+
+    /* set up {hx,lx}, {hy,ly} and align y to x */
+	if(ix >= -16382) 
+	    hx = 0x0001000000000000LL|(0x0000ffffffffffffLL&hx);
+	else {		/* subnormal x, shift x to normal */
+	    n = -16382-ix;
+	    if(n<=63) {
+	        hx = (hx<<n)|(lx>>(64-n));
+	        lx <<= n;
+	    } else {
+		hx = lx<<(n-64);
+		lx = 0;
+	    }
+	}
+	if(iy >= -16382) 
+	    hy = 0x0001000000000000LL|(0x0000ffffffffffffLL&hy);
+	else {		/* subnormal y, shift y to normal */
+	    n = -16382-iy;
+	    if(n<=63) {
+	        hy = (hy<<n)|(ly>>(64-n));
+	        ly <<= n;
+	    } else {
+		hy = ly<<(n-64);
+		ly = 0;
+	    }
+	}
+
+    /* fix point fmod */
+	n = ix - iy;
+	while(n--) {
+	    hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+	    if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;}
+	    else {
+	    	if((hz|lz)==0) 		/* return sign(x)*0 */
+		    return Zero[(u_int64_t)sx>>63];
+	    	hx = hz+hz+(lz>>63); lx = lz+lz;
+	    }
+	}
+	hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+	if(hz>=0) {hx=hz;lx=lz;}
+
+    /* convert back to floating value and restore the sign */
+	if((hx|lx)==0) 			/* return sign(x)*0 */
+	    return Zero[(u_int64_t)sx>>63];	
+	while(hx<0x0001000000000000LL) {	/* normalize x */
+	    hx = hx+hx+(lx>>63); lx = lx+lx;
+	    iy -= 1;
+	}
+	if(iy>= -16382) {	/* normalize output */
+	    hx = ((hx-0x0001000000000000LL)|((iy+16383)<<48));
+	    SET_LDOUBLE_WORDS64(x,hx|sx,lx);
+	} else {		/* subnormal output */
+	    n = -16382 - iy;
+	    if(n<=48) {
+		lx = (lx>>n)|((u_int64_t)hx<<(64-n));
+		hx >>= n;
+	    } else if (n<=63) {
+		lx = (hx<<(64-n))|(lx>>n); hx = sx;
+	    } else {
+		lx = hx>>(n-64); hx = sx;
+	    }
+	    SET_LDOUBLE_WORDS64(x,hx|sx,lx);
+	    x *= one;		/* create necessary signal */
+	}
+	return x;		/* exact output */
+}
diff --git a/sysdeps/ieee754/ldbl-128/e_gammal_r.c b/sysdeps/ieee754/ldbl-128/e_gammal_r.c
new file mode 100644
index 0000000000..f77350fa5c
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/e_gammal_r.c
@@ -0,0 +1,52 @@
+/* Implementation of gamma function according to ISO C.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+   		  Jakub Jelinek <jj@ultra.linux.cz, 1999.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+#include <math_private.h>
+
+
+long double
+__ieee754_gammal_r (long double x, int *signgamp)
+{
+  /* We don't have a real gamma implementation now.  We'll use lgamma
+     and the exp function.  But due to the required boundary
+     conditions we must check some values separately.  */
+  int64_t hx;
+  u_int64_t lx;
+
+  GET_LDOUBLE_WORDS64 (hx, lx, x);
+
+  if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
+    {
+      /* Return value for x == 0 is NaN with invalid exception.  */
+      *signgamp = 0;
+      return x / x;
+    }
+  if (hx < 0 && (u_int64_t) hx < 0xffff000000000000ULL && __rintl (x) == x)
+    {
+      /* Return value for integer x < 0 is NaN with invalid exception.  */
+      *signgamp = 0;
+      return (x - x) / (x - x);
+    }
+
+  /* XXX FIXME.  */
+  return __ieee754_expl (__ieee754_lgammal_r (x, signgamp));
+}
diff --git a/sysdeps/ieee754/ldbl-128/e_remainderl.c b/sysdeps/ieee754/ldbl-128/e_remainderl.c
new file mode 100644
index 0000000000..81af247b33
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/e_remainderl.c
@@ -0,0 +1,78 @@
+/* e_fmodl.c -- long double version of e_fmod.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+/* __ieee754_remainderl(x,p)
+ * Return :                  
+ * 	returns  x REM p  =  x - [x/p]*p as if in infinite 
+ * 	precise arithmetic, where [x/p] is the (infinite bit) 
+ *	integer nearest x/p (in half way case choose the even one).
+ * Method : 
+ *	Based on fmodl() return x-[x/p]chopped*p exactlp.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double zero = 0.0L;
+#else
+static long double zero = 0.0L;
+#endif
+
+
+#ifdef __STDC__
+	long double __ieee754_remainderl(long double x, long double p)
+#else
+	long double __ieee754_remainderl(x,p)
+	long double x,p;
+#endif
+{
+	int64_t hx,hp;
+	u_int64_t sx,lx,lp;
+	long double p_half;
+
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	GET_LDOUBLE_WORDS64(hp,lp,p);
+	sx = hx&0x8000000000000000ULL;
+	hp &= 0x7fffffffffffffffLL;
+	hx &= 0x7fffffffffffffffLL;
+
+    /* purge off exception values */
+	if((hp|lp)==0) return (x*p)/(x*p); 	/* p = 0 */
+	if((hx>=0x7fff000000000000LL)||			/* x not finite */
+	  ((hp>=0x7fff000000000000LL)&&			/* p is NaN */
+	  (((hp-0x7fff000000000000LL)|lp)!=0)))
+	    return (x*p)/(x*p);
+
+
+	if (hp<=0x7ffdffffffffffffLL) x = __ieee754_fmodl(x,p+p);	/* now x < 2p */
+	if (((hx-hp)|(lx-lp))==0) return zero*x;
+	x  = fabsl(x);
+	p  = fabsl(p);
+	if (hp<0x0002000000000000LL) {
+	    if(x+x>p) {
+		x-=p;
+		if(x+x>=p) x -= p;
+	    }
+	} else {
+	    p_half = 0.5L*p;
+	    if(x>p_half) {
+		x-=p;
+		if(x>=p_half) x -= p;
+	    }
+	}
+	GET_LDOUBLE_MSW64(hx,x);
+	SET_LDOUBLE_MSW64(x,hx^sx);
+	return x;
+}
diff --git a/sysdeps/ieee754/ldbl-128/ieee754.h b/sysdeps/ieee754/ldbl-128/ieee754.h
new file mode 100644
index 0000000000..c3b2f38916
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/ieee754.h
@@ -0,0 +1,171 @@
+/* Copyright (C) 1992, 1995, 1996, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#ifndef _IEEE754_H
+
+#define _IEEE754_H 1
+#include <features.h>
+
+#include <endian.h>
+
+__BEGIN_DECLS
+
+union ieee754_float
+  {
+    float f;
+
+    /* This is the IEEE 754 single-precision format.  */
+    struct
+      {
+#if	__BYTE_ORDER == __BIG_ENDIAN
+	unsigned int negative:1;
+	unsigned int exponent:8;
+	unsigned int mantissa:23;
+#endif				/* Big endian.  */
+#if	__BYTE_ORDER == __LITTLE_ENDIAN
+	unsigned int mantissa:23;
+	unsigned int exponent:8;
+	unsigned int negative:1;
+#endif				/* Little endian.  */
+      } ieee;
+
+    /* This format makes it easier to see if a NaN is a signalling NaN.  */
+    struct
+      {
+#if	__BYTE_ORDER == __BIG_ENDIAN
+	unsigned int negative:1;
+	unsigned int exponent:8;
+	unsigned int quiet_nan:1;
+	unsigned int mantissa:22;
+#endif				/* Big endian.  */
+#if	__BYTE_ORDER == __LITTLE_ENDIAN
+	unsigned int mantissa:22;
+	unsigned int quiet_nan:1;
+	unsigned int exponent:8;
+	unsigned int negative:1;
+#endif				/* Little endian.  */
+      } ieee_nan;
+  };
+
+#define IEEE754_FLOAT_BIAS	0x7f /* Added to exponent.  */
+
+
+union ieee754_double
+  {
+    double d;
+
+    /* This is the IEEE 754 double-precision format.  */
+    struct
+      {
+#if	__BYTE_ORDER == __BIG_ENDIAN
+	unsigned int negative:1;
+	unsigned int exponent:11;
+	/* Together these comprise the mantissa.  */
+	unsigned int mantissa0:20;
+	unsigned int mantissa1:32;
+#endif				/* Big endian.  */
+#if	__BYTE_ORDER == __LITTLE_ENDIAN
+	/* Together these comprise the mantissa.  */
+	unsigned int mantissa1:32;
+	unsigned int mantissa0:20;
+	unsigned int exponent:11;
+	unsigned int negative:1;
+#endif				/* Little endian.  */
+      } ieee;
+
+    /* This format makes it easier to see if a NaN is a signalling NaN.  */
+    struct
+      {
+#if	__BYTE_ORDER == __BIG_ENDIAN
+	unsigned int negative:1;
+	unsigned int exponent:11;
+	unsigned int quiet_nan:1;
+	/* Together these comprise the mantissa.  */
+	unsigned int mantissa0:19;
+	unsigned int mantissa1:32;
+#else
+	/* Together these comprise the mantissa.  */
+	unsigned int mantissa1:32;
+	unsigned int mantissa0:19;
+	unsigned int quiet_nan:1;
+	unsigned int exponent:11;
+	unsigned int negative:1;
+#endif
+      } ieee_nan;
+  };
+
+#define IEEE754_DOUBLE_BIAS	0x3ff /* Added to exponent.  */
+
+
+union ieee854_long_double
+  {
+    long double d;
+
+    /* This is the IEEE 854 quad-precision format.  */
+    struct
+      {
+#if	__BYTE_ORDER == __BIG_ENDIAN
+	unsigned int negative:1;
+	unsigned int exponent:15;
+	/* Together these comprise the mantissa.  */
+	unsigned int mantissa0:16;
+	unsigned int mantissa1:32;
+	unsigned int mantissa2:32;
+	unsigned int mantissa3:32;
+#endif				/* Big endian.  */
+#if	__BYTE_ORDER == __LITTLE_ENDIAN
+	/* Together these comprise the mantissa.  */
+	unsigned int mantissa3:32;
+	unsigned int mantissa2:32;
+	unsigned int mantissa1:32;
+	unsigned int mantissa0:16;
+	unsigned int exponent:15;
+	unsigned int negative:1;
+#endif				/* Little endian.  */
+      } ieee;
+
+    /* This format makes it easier to see if a NaN is a signalling NaN.  */
+    struct
+      {
+#if	__BYTE_ORDER == __BIG_ENDIAN
+	unsigned int negative:1;
+	unsigned int exponent:15;
+	unsigned int quiet_nan:1;
+	/* Together these comprise the mantissa.  */
+	unsigned int mantissa0:15;
+	unsigned int mantissa1:32;
+	unsigned int mantissa2:32;
+	unsigned int mantissa3:32;
+#else
+	/* Together these comprise the mantissa.  */
+	unsigned int mantissa3:32;
+	unsigned int mantissa2:32;
+	unsigned int mantissa1:32;
+	unsigned int mantissa0:15;
+	unsigned int quiet_nan:1;
+	unsigned int exponent:15;
+	unsigned int negative:1;
+#endif
+      } ieee_nan;
+  };
+
+#define IEEE854_LONG_DOUBLE_BIAS 0x3fff /* Added to exponent.  */
+
+__END_DECLS
+
+#endif /* ieee754.h */
diff --git a/sysdeps/ieee754/ldbl-128/ldbl2mpn.c b/sysdeps/ieee754/ldbl-128/ldbl2mpn.c
new file mode 100644
index 0000000000..68ecea8753
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/ldbl2mpn.c
@@ -0,0 +1,137 @@
+/* Copyright (C) 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include "gmp.h"
+#include "gmp-impl.h"
+#include "longlong.h"
+#include <ieee754.h>
+#include <float.h>
+#include <math.h>
+#include <stdlib.h>
+
+/* Convert a `long double' in IEEE854 quad-precision format to a
+   multi-precision integer representing the significand scaled up by its
+   number of bits (113 for long double) and an integral power of two
+   (MPN frexpl). */
+
+mp_size_t
+__mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
+			   int *expt, int *is_neg,
+			   long double value)
+{
+  union ieee854_long_double u;
+  u.d = value;
+
+  *is_neg = u.ieee.negative;
+  *expt = (int) u.ieee.exponent - IEEE854_LONG_DOUBLE_BIAS;
+
+#if BITS_PER_MP_LIMB == 32
+  res_ptr[0] = u.ieee.mantissa3; /* Low-order 32 bits of fraction.  */
+  res_ptr[1] = u.ieee.mantissa2;
+  res_ptr[2] = u.ieee.mantissa1;
+  res_ptr[3] = u.ieee.mantissa0; /* High-order 32 bits.  */
+  #define N 4
+#elif BITS_PER_MP_LIMB == 64
+  /* Hopefully the compiler will combine the two bitfield extracts
+     and this composition into just the original quadword extract.  */
+  res_ptr[0] = ((unsigned long int) u.ieee.mantissa2 << 32) | u.ieee.mantissa3;
+  res_ptr[1] = ((unsigned long int) u.ieee.mantissa0 << 32) | u.ieee.mantissa1;
+  #define N 2
+#else
+  #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
+#endif
+/* The format does not fill the last limb.  There are some zeros.  */
+#define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \
+			   - (LDBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB)))
+
+  if (u.ieee.exponent == 0)
+    {
+      /* A biased exponent of zero is a special case.
+	 Either it is a zero or it is a denormal number.  */
+      if (res_ptr[0] == 0 && res_ptr[1] == 0
+          && res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4.  */
+	/* It's zero.  */
+	*expt = 0;
+      else
+	{
+          /* It is a denormal number, meaning it has no implicit leading
+  	     one bit, and its exponent is in fact the format minimum.  */
+	  int cnt;
+
+#if N == 2
+	  if (res_ptr[N - 1] != 0)
+	    {
+	      count_leading_zeros (cnt, res_ptr[N - 1]);
+	      cnt -= NUM_LEADING_ZEROS;
+	      res_ptr[N - 1] = res_ptr[N - 1] << cnt
+			       | (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt));
+	      res_ptr[0] <<= cnt;
+	      *expt = LDBL_MIN_EXP - 1 - cnt;
+	    }
+	  else
+	    {
+	      count_leading_zeros (cnt, res_ptr[0]);
+	      if (cnt >= NUM_LEADING_ZEROS)
+		{
+		  res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS);
+		  res_ptr[0] = 0;
+		}
+	      else
+		{
+		  res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt);
+		  res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt);
+		}
+	      *expt = LDBL_MIN_EXP - 1
+		- (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt;
+	    }
+#else
+	  int j, k, l;
+
+	  for (j = N - 1; j > 0; j++)
+	    if (res_ptr[j] != 0)
+	      break;
+
+	  count_leading_zeros (cnt, res_ptr[j]);
+	  cnt -= NUM_LEADING_ZEROS;
+	  l = N - 1 - j;
+	  if (cnt < 0)
+	    {
+	      cnt += BITS_PER_MP_LIMB;
+	      l++;
+	    }
+	  if (!cnt)
+	    for (k = N - 1; k >= l; k--)
+	      res_ptr[k] = res_ptr[k-l];
+	  else
+	    for (k = N - 1; k >= l; k--)
+	      res_ptr[k] = res_ptr[k-l] << cnt
+			   | res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt);
+	    res_ptr[k--] = res_ptr[0] << cnt;
+
+	  for (; k >= 0; k--)
+	    res_ptr[k] = 0;
+	  *expt = LDBL_MIN_EXP - 1 - 3 * BITS_PER_MP_LIMB - cnt;
+#endif
+	}
+    }
+  else
+    /* Add the implicit leading one bit for a normalized number.  */
+    res_ptr[N - 1] |= 1L << (LDBL_MANT_DIG - 1 - ((N - 1) * BITS_PER_MP_LIMB));
+
+  return N;
+}
diff --git a/sysdeps/ieee754/ldbl-128/math_ldbl.h b/sysdeps/ieee754/ldbl-128/math_ldbl.h
new file mode 100644
index 0000000000..aecb20a972
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/math_ldbl.h
@@ -0,0 +1,82 @@
+#ifndef _MATH_PRIVATE_H_
+#error "Never use <math_ldbl.h> directly; include <math_private.h> instead."
+#endif
+
+/* A union which permits us to convert between a long double and
+   four 32 bit ints or two 64 bit ints.  */
+
+#if __FLOAT_WORD_ORDER == BIG_ENDIAN
+
+typedef union
+{
+  long double value;
+  struct
+  {
+    u_int64_t msw;
+    u_int64_t lsw;
+  } parts64;
+  struct
+  {
+    u_int32_t w0, w1, w2, w3;
+  } parts32;
+} ieee854_long_double_shape_type;
+
+#endif
+
+#if __FLOAT_WORD_ORDER == LITTLE_ENDIAN
+
+typedef union
+{
+  long double value;
+  struct
+  {
+    u_int64_t lsw;
+    u_int64_t msw;
+  } parts64;
+  struct
+  {
+    u_int32_t w3, w2, w1, w0;
+  } parts32;
+} ieee854_long_double_shape_type;
+
+#endif
+
+/* Get two 64 bit ints from a long double.  */
+
+#define GET_LDOUBLE_WORDS64(ix0,ix1,d)				\
+do {								\
+  ieee854_long_double_shape_type qw_u;				\
+  qw_u.value = (d);						\
+  (ix0) = qw_u.parts64.msw;					\
+  (ix1) = qw_u.parts64.lsw;					\
+} while (0)
+
+/* Set a long double from two 64 bit ints.  */
+
+#define SET_LDOUBLE_WORDS64(d,ix0,ix1)				\
+do {								\
+  ieee854_long_double_shape_type qw_u;				\
+  qw_u.parts64.msw = (ix0);					\
+  qw_u.parts64.lsw = (ix1);					\
+  (d) = qw_u.value;						\
+} while (0)
+
+/* Get the more significant 64 bits of a long double mantissa.  */
+
+#define GET_LDOUBLE_MSW64(v,d)					\
+do {								\
+  ieee854_long_double_shape_type sh_u;				\
+  sh_u.value = (d);						\
+  (v) = sh_u.parts64.msw;					\
+} while (0)
+
+/* Set the more significant 64 bits of a long double mantissa from an int.  */
+
+#define SET_LDOUBLE_MSW64(d,v)					\
+do {								\
+  ieee854_long_double_shape_type sh_u;				\
+  sh_u.value = (d);						\
+  sh_u.parts64.msw = (v);					\
+  (d) = sh_u.value;						\
+} while (0)
+
diff --git a/sysdeps/ieee754/ldbl-128/mpn2ldbl.c b/sysdeps/ieee754/ldbl-128/mpn2ldbl.c
new file mode 100644
index 0000000000..d9cc4521c8
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/mpn2ldbl.c
@@ -0,0 +1,51 @@
+/* Copyright (C) 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include "gmp.h"
+#include "gmp-impl.h"
+#include <ieee754.h>
+#include <float.h>
+#include <math.h>
+
+/* Convert a multi-precision integer of the needed number of bits (113 for
+   long double) and an integral power of two to a `long double' in IEEE854
+   quad-precision format.  */
+
+long double
+__mpn_construct_long_double (mp_srcptr frac_ptr, int expt, int sign)
+{
+  union ieee854_long_double u;
+
+  u.ieee.negative = sign;
+  u.ieee.exponent = expt + IEEE854_LONG_DOUBLE_BIAS;
+#if BITS_PER_MP_LIMB == 32
+  u.ieee.mantissa3 = frac_ptr[0];
+  u.ieee.mantissa2 = frac_ptr[1];
+  u.ieee.mantissa1 = frac_ptr[2];
+  u.ieee.mantissa0 = frac_ptr[3] & ((1 << (LDBL_MANT_DIG - 96)) - 1);
+#elif BITS_PER_MP_LIMB == 64
+  u.ieee.mantissa3 = frac_ptr[0] & ((1L << 32) - 1);
+  u.ieee.mantissa2 = frac_ptr[0] >> 32;
+  u.ieee.mantissa1 = frac_ptr[1] & ((1L << 32) - 1);
+  u.ieee.mantissa0 = (frac_ptr[1] >> 32) & ((1 << (LDBL_MANT_DIG - 96)) - 1);
+#else
+  #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
+#endif
+
+  return u.d;
+}
diff --git a/sysdeps/ieee754/ldbl-128/printf_fphex.c b/sysdeps/ieee754/ldbl-128/printf_fphex.c
new file mode 100644
index 0000000000..e25d668d9a
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/printf_fphex.c
@@ -0,0 +1,84 @@
+/* Print floating point number in hexadecimal notation according to
+   ISO C 9X.
+   Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#define PRINT_FPHEX_LONG_DOUBLE \
+do {									      \
+      /* We have 112 bits of mantissa plus one implicit digit.  Since	      \
+	 112 bits are representable without rest using hexadecimal	      \
+	 digits we use only the implicit digits for the number before	      \
+	 the decimal point.  */						      \
+      unsigned long long int num0, num1;				      \
+									      \
+      assert (sizeof (long double) == 16);				      \
+									      \
+      num0 = (((unsigned long long int) fpnum.ldbl.ieee.mantissa0) << 32      \
+	     | fpnum.ldbl.ieee.mantissa1);				      \
+      num1 = (((unsigned long long int) fpnum.ldbl.ieee.mantissa2) << 32      \
+	     | fpnum.ldbl.ieee.mantissa3);				      \
+									      \
+      zero_mantissa = (num0|num1) == 0;					      \
+									      \
+      if (sizeof (unsigned long int) > 6)				      \
+	numstr = _itoa_word (num1, numbuf + sizeof numbuf, 16,		      \
+			     info->spec == 'A');			      \
+      else								      \
+	numstr = _itoa (num1, numbuf + sizeof numbuf, 16,		      \
+			info->spec == 'A');				      \
+									      \
+      while (numstr > numbuf + (sizeof numbuf - 64 / 4))		      \
+	*--numstr = '0';						      \
+									      \
+      if (sizeof (unsigned long int) > 6)				      \
+	numstr = _itoa_word (num0, numstr, 16, info->spec == 'A');	      \
+      else								      \
+	numstr = _itoa (num0, numstr, 16, info->spec == 'A');		      \
+									      \
+      /* Fill with zeroes.  */						      \
+      while (numstr > numbuf + (sizeof numbuf - 112 / 4))		      \
+	*--numstr = '0';						      \
+									      \
+      leading = fpnum.ldbl.ieee.exponent == 0 ? '0' : '1';		      \
+									      \
+      exponent = fpnum.ldbl.ieee.exponent;				      \
+									      \
+      if (exponent == 0)						      \
+	{								      \
+	  if (zero_mantissa)						      \
+	    expnegative = 0;						      \
+	  else								      \
+	    {								      \
+	      /* This is a denormalized number.  */			      \
+	      expnegative = 1;						      \
+	      exponent = IEEE854_LONG_DOUBLE_BIAS - 1;			      \
+	    }								      \
+	}								      \
+      else if (exponent >= IEEE854_LONG_DOUBLE_BIAS)			      \
+	{								      \
+	  expnegative = 0;						      \
+	  exponent -= IEEE854_LONG_DOUBLE_BIAS;				      \
+	}								      \
+      else								      \
+	{								      \
+	  expnegative = 1;						      \
+	  exponent = -(exponent - IEEE854_LONG_DOUBLE_BIAS);		      \
+	}								      \
+} while (0)
+
+#include <sysdeps/generic/printf_fphex.c>
diff --git a/sysdeps/ieee754/ldbl-128/s_ceill.c b/sysdeps/ieee754/ldbl-128/s_ceill.c
new file mode 100644
index 0000000000..f241554042
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_ceill.c
@@ -0,0 +1,84 @@
+/* s_ceill.c -- long double version of s_ceil.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * ceill(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ *	Bit twiddling.
+ * Exception:
+ *	Inexact flag raised if x not equal to ceil(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double huge = 1.0e4930;
+#else
+static long double huge = 1.0e4930;
+#endif
+
+#ifdef __STDC__
+	long double __ceill(long double x)
+#else
+	long double __ceill(x)
+	long double x;
+#endif
+{
+	int64_t i0,i1,j0;
+	u_int64_t i,j;
+	GET_LDOUBLE_WORDS64(i0,i1,x);
+	j0 = ((i0>>48)&0x7fff)-0x3fff;
+	if(j0<48) {
+	    if(j0<0) { 	/* raise inexact if x != 0 */
+		if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+		    if(i0<0) {i0=0x8000000000000000ULL;i1=0;}
+		    else if((i0|i1)!=0) { i0=0x3fff000000000000ULL;i1=0;}
+		}
+	    } else {
+		i = (0x7fffffffffffffffULL)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		if(huge+x>0.0) {	/* raise inexact flag */
+		    if(i0>0) i0 += (0x0001000000000000LL)>>j0;
+		    i0 &= (~i); i1=0;
+		}
+	    }
+	} else if (j0>111) {
+	    if(j0==0x4000) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = -1ULL>>(j0-48);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    if(huge+x>0.0) { 		/* raise inexact flag */
+		if(i0>0) {
+		    if(j0==48) i0+=1;
+		    else {
+			j = i1+(1LL<<(112-j0));
+			if(j<i1) i0 +=1 ; 	/* got a carry */
+			i1=j;
+		    }
+		}
+		i1 &= (~i);
+	    }
+	}
+	SET_LDOUBLE_WORDS64(x,i0,i1);
+	return x;
+}
+weak_alias (__ceill, ceill)
diff --git a/sysdeps/ieee754/ldbl-128/s_copysignl.c b/sysdeps/ieee754/ldbl-128/s_copysignl.c
new file mode 100644
index 0000000000..cece4f2496
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_copysignl.c
@@ -0,0 +1,43 @@
+/* s_copysignl.c -- long double version of s_copysign.c.
+ * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * copysignl(long double x, long double y)
+ * copysignl(x,y) returns a value with the magnitude of x and
+ * with the sign bit of y.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __copysignl(long double x, long double y)
+#else
+	long double __copysignl(x,y)
+	long double x,y;
+#endif
+{
+	u_int64_t hx,hy;
+	GET_LDOUBLE_MSW64(hx,x);
+	GET_LDOUBLE_MSW64(hy,y);
+	SET_LDOUBLE_MSW64(x,(hx&0x7fffffffffffffffULL)
+			    |(hy&0x8000000000000000ULL));
+        return x;
+}
+weak_alias (__copysignl, copysignl)
diff --git a/sysdeps/ieee754/ldbl-128/s_cosl.c b/sysdeps/ieee754/ldbl-128/s_cosl.c
new file mode 100644
index 0000000000..d1258b2cf1
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_cosl.c
@@ -0,0 +1,83 @@
+/* s_cosl.c -- long double version of s_cos.c.
+ * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* cosl(x)
+ * Return cosine function of x.
+ *
+ * kernel function:
+ *	__kernel_sinl		... sine function on [-pi/4,pi/4]
+ *	__kernel_cosl		... cosine function on [-pi/4,pi/4]
+ *	__ieee754_rem_pio2l	... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *	in [-pi/4 , +pi/4], and let n = k mod 4.
+ *	We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *	    0	       S	   C		 T
+ *	    1	       C	  -S		-1/T
+ *	    2	      -S	  -C		 T
+ *	    3	      -C	   S		-1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *	TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __cosl(long double x)
+#else
+	long double __cosl(x)
+	long double x;
+#endif
+{
+	long double y[2],z=0.0L;
+	int64_t n, ix;
+
+    /* High word of x. */
+	GET_LDOUBLE_MSW64(ix,x);
+
+    /* |x| ~< pi/4 */
+	ix &= 0x7fffffffffffffffLL;
+	if(ix <= 0x3ffe921fb54442d1LL)
+	  return __kernel_cosl(x,z);
+
+    /* cos(Inf or NaN) is NaN */
+	else if (ix>=0x7fff000000000000LL) return x-x;
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2l(x,y);
+	    switch(n&3) {
+		case 0: return  __kernel_cosl(y[0],y[1]);
+		case 1: return -__kernel_sinl(y[0],y[1],1);
+		case 2: return -__kernel_cosl(y[0],y[1]);
+		default:
+		        return  __kernel_sinl(y[0],y[1],1);
+	    }
+	}
+}
+weak_alias (__cosl, cosl)
diff --git a/sysdeps/ieee754/ldbl-128/s_fabsl.c b/sysdeps/ieee754/ldbl-128/s_fabsl.c
new file mode 100644
index 0000000000..c0fd05af63
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_fabsl.c
@@ -0,0 +1,39 @@
+/* s_fabsl.c -- long double version of s_fabs.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * fabsl(x) returns the absolute value of x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __fabsl(long double x)
+#else
+	long double __fabsl(x)
+	long double x;
+#endif
+{
+	u_int64_t hx;
+	GET_LDOUBLE_MSW64(hx,x);
+	SET_LDOUBLE_MSW64(x,hx&0x7fffffffffffffffLL);
+        return x;
+}
+weak_alias (__fabsl, fabsl)
diff --git a/sysdeps/ieee754/ldbl-128/s_finitel.c b/sysdeps/ieee754/ldbl-128/s_finitel.c
new file mode 100644
index 0000000000..dd176c1e7a
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_finitel.c
@@ -0,0 +1,40 @@
+/* s_finitel.c -- long double version of s_finite.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * finitel(x) returns 1 is x is finite, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __finitel(long double x)
+#else
+	int __finitel(x)
+	long double x;
+#endif
+{
+	int64_t hx;
+	GET_LDOUBLE_MSW64(hx,x);
+	return (int)((u_int64_t)((hx&0x7fffffffffffffffLL)
+				 -0x7fff000000000000LL)>>63);
+}
+weak_alias (__finitel, finitel)
diff --git a/sysdeps/ieee754/ldbl-128/s_floorl.c b/sysdeps/ieee754/ldbl-128/s_floorl.c
new file mode 100644
index 0000000000..c9b8b70dbf
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_floorl.c
@@ -0,0 +1,85 @@
+/* s_floorl.c -- long double version of s_floor.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * floorl(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ *	Bit twiddling.
+ * Exception:
+ *	Inexact flag raised if x not equal to floor(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double huge = 1.0e4930;
+#else
+static long double huge = 1.0e4930;
+#endif
+
+#ifdef __STDC__
+	long double __floorl(long double x)
+#else
+	long double __floorl(x)
+	long double x;
+#endif
+{
+	int64_t i0,i1,j0;
+	u_int64_t i,j;
+	GET_LDOUBLE_WORDS64(i0,i1,x);
+	j0 = ((i0>>48)&0x7fff)-0x3fff;
+	if(j0<48) {
+	    if(j0<0) { 	/* raise inexact if x != 0 */
+		if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+		    if(i0>=0) {i0=i1=0;}
+		    else if(((i0&0x7fffffffffffffffLL)|i1)!=0)
+			{ i0=0xbfff000000000000ULL;i1=0;}
+		}
+	    } else {
+		i = (0x7fffffffffffffffULL)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		if(huge+x>0.0) {	/* raise inexact flag */
+		    if(i0<0) i0 += (0x0001000000000000LL)>>j0;
+		    i0 &= (~i); i1=0;
+		}
+	    }
+	} else if (j0>111) {
+	    if(j0==0x4000) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = -1ULL>>(j0-48);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    if(huge+x>0.0) { 		/* raise inexact flag */
+		if(i0<0) {
+		    if(j0==48) i0+=1;
+		    else {
+			j = i1+(1LL<<(112-j0));
+			if(j<i1) i0 +=1 ; 	/* got a carry */
+			i1=j;
+		    }
+		}
+		i1 &= (~i);
+	    }
+	}
+	SET_LDOUBLE_WORDS64(x,i0,i1);
+	return x;
+}
+weak_alias (__floorl, floorl)
diff --git a/sysdeps/ieee754/ldbl-128/s_fpclassifyl.c b/sysdeps/ieee754/ldbl-128/s_fpclassifyl.c
new file mode 100644
index 0000000000..868c3c4e87
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_fpclassifyl.c
@@ -0,0 +1,44 @@
+/* Return classification value corresponding to argument.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+   		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+int
+__fpclassifyl (long double x)
+{
+  u_int64_t hx, lx;
+  int retval = FP_NORMAL;
+
+  GET_LDOUBLE_WORDS64 (hx, lx, x);
+  lx |= (hx & 0x0000ffffffffffffLL);
+  hx &= 0x7fff000000000000LL;
+  if ((hx | lx) == 0)
+    retval = FP_ZERO;
+  else if (hx == 0)
+    retval = FP_SUBNORMAL;
+  else if (hx == 0x7fff000000000000LL)
+    retval = lx != 0 ? FP_NAN : FP_INFINITE;
+
+  return retval;
+}
diff --git a/sysdeps/ieee754/ldbl-128/s_frexpl.c b/sysdeps/ieee754/ldbl-128/s_frexpl.c
new file mode 100644
index 0000000000..6dbb60ece0
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_frexpl.c
@@ -0,0 +1,63 @@
+/* s_frexpl.c -- long double version of s_frexp.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * for non-zero x
+ *	x = frexpl(arg,&exp);
+ * return a long double fp quantity x such that 0.5 <= |x| <1.0
+ * and the corresponding binary exponent "exp". That is
+ *	arg = x*2^exp.
+ * If arg is inf, 0.0, or NaN, then frexpl(arg,&exp) returns arg
+ * with *exp=0.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+two114 = 2.0769187434139310514121985316880384E+34L; /* 0x4071000000000000, 0 */
+
+#ifdef __STDC__
+	long double __frexpl(long double x, int *eptr)
+#else
+	long double __frexpl(x, eptr)
+	long double x; int *eptr;
+#endif
+{
+	u_int64_t hx, lx, ix;
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	ix = 0x7fffffffffffffffULL&hx;
+	*eptr = 0;
+	if(ix>=0x7fff000000000000ULL||((ix|lx)==0)) return x;	/* 0,inf,nan */
+	if (ix<0x0001000000000000ULL) {		/* subnormal */
+	    x *= two114;
+	    GET_LDOUBLE_MSW64(hx,x);
+	    ix = hx&0x7fffffffffffffffULL;
+	    *eptr = -114;
+	}
+	*eptr += (ix>>48)-16382;
+	hx = (hx&0x8000ffffffffffffULL) | 0x3ffe000000000000ULL;
+	SET_LDOUBLE_MSW64(x,hx);
+	return x;
+}
+weak_alias (__frexpl, frexpl)
diff --git a/sysdeps/ieee754/ldbl-128/s_ilogbl.c b/sysdeps/ieee754/ldbl-128/s_ilogbl.c
new file mode 100644
index 0000000000..d2acfd3105
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_ilogbl.c
@@ -0,0 +1,55 @@
+/* s_ilogbl.c -- long double version of s_ilogb.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* ilogbl(long double x)
+ * return the binary exponent of non-zero x
+ * ilogbl(0) = 0x80000001
+ * ilogbl(inf/NaN) = 0x7fffffff (no signal is raised)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __ilogbl(long double x)
+#else
+	int __ilogbl(x)
+	long double x;
+#endif
+{
+	int64_t hx,lx;
+	int ix;
+
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	hx &= 0x7fffffffffffffffLL;
+	if(hx <= 0x0001000000000000LL) {
+	    if((hx|lx)==0)
+		return FP_ILOGB0;	/* ilogbl(0) = FP_ILOGB0 */
+	    else			/* subnormal x */
+		if(hx==0) {
+		    for (ix = -16431; lx>0; lx<<=1) ix -=1;
+		} else {
+		    for (ix = -16382, hx<<=15; hx>0; hx<<=1) ix -=1;
+		}
+	    return ix;
+	}
+	else if (hx<0x7fff000000000000LL) return (hx>>48)-0x3fff;
+	else return FP_ILOGBNAN;
+}
+weak_alias (__ilogbl, ilogbl)
diff --git a/sysdeps/ieee754/ldbl-128/s_isinfl.c b/sysdeps/ieee754/ldbl-128/s_isinfl.c
new file mode 100644
index 0000000000..038c294c79
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_isinfl.c
@@ -0,0 +1,28 @@
+/*
+ * Written by J.T. Conklin <jtc@netbsd.org>.
+ * Change for long double by Jakub Jelinek <jj@ultra.linux.cz>
+ * Public domain.
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * isinfl(x) returns 1 if x is inf, -1 if x is -inf, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+int
+__isinfl (long double x)
+{
+	int64_t hx,lx;
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	lx |= (hx & 0x7fffffffffffffffLL) ^ 0x7fff000000000000LL;
+	lx |= -lx;
+	return ~(lx >> 63) & (hx >> 62);
+}
+weak_alias (__isinfl, isinfl)
diff --git a/sysdeps/ieee754/ldbl-128/s_isnanl.c b/sysdeps/ieee754/ldbl-128/s_isnanl.c
new file mode 100644
index 0000000000..d2fb4038ce
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_isnanl.c
@@ -0,0 +1,42 @@
+/* s_isnanl.c -- long double version of s_isnan.c.
+ * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * isnanl(x) returns 1 is x is nan, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __isnanl(long double x)
+#else
+	int __isnanl(x)
+	long double x;
+#endif
+{
+	int64_t hx,lx;
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	hx &= 0x7fffffffffffffffLL;
+	hx |= (u_int64_t)(lx|(-lx))>>63;
+	hx = 0x7fff000000000000LL - hx;
+	return (int)((u_int64_t)hx>>63);
+}
+weak_alias (__isnanl, isnanl)
diff --git a/sysdeps/ieee754/ldbl-128/s_llrintl.c b/sysdeps/ieee754/ldbl-128/s_llrintl.c
new file mode 100644
index 0000000000..389a65dc0e
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_llrintl.c
@@ -0,0 +1,75 @@
+/* Round argument to nearest integral value according to current rounding
+   direction.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+   		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const long double two112[2] =
+{
+  5.19229685853482762853049632922009600E+33L, /* 0x406F000000000000, 0 */
+ -5.19229685853482762853049632922009600E+33L  /* 0xC06F000000000000, 0 */
+};
+
+long long int
+__llrintl (long double x)
+{
+  int32_t j0;
+  u_int64_t i0,i1;
+  volatile long double w;
+  long double t;
+  long long int result;
+  int sx;
+
+  GET_LDOUBLE_WORDS64 (i0, i1, x);
+  j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
+  sx = i0 >> 63;
+  i0 &= 0x0000ffffffffffffLL;
+  i0 |= 0x0001000000000000LL;
+
+  if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
+    {
+      if (j0 < -1)
+	return 0;
+      w = two112[sx] + x;
+      t = w - two112[sx];
+      GET_LDOUBLE_WORDS64 (i0, i1, x);
+      j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
+      i0 &= 0x0000ffffffffffffLL;
+      i0 |= 0x0001000000000000LL;
+
+      if (j0 <= 48)
+	result = i0 >> (48 - j0);
+      else
+	result = ((long long int) i0 << (j0 - 48)) | (i1 >> (112 - j0));
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long long int) x;
+    }
+
+  return sx ? -result : result;
+}
+
+weak_alias (__llrintl, llrintl)
diff --git a/sysdeps/ieee754/ldbl-128/s_llroundl.c b/sysdeps/ieee754/ldbl-128/s_llroundl.c
new file mode 100644
index 0000000000..82395a7b5a
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_llroundl.c
@@ -0,0 +1,74 @@
+/* Round long double value to long long int.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+   		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long long int
+__llroundl (long double x)
+{
+  int64_t j0;
+  u_int64_t i1, i0;
+  long long int result;
+  int sign;
+
+  GET_LDOUBLE_WORDS64 (i0, i1, x);
+  j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
+  sign = (i0 & 0x8000000000000000ULL) != 0 ? -1 : 1;
+  i0 &= 0x0000ffffffffffffLL;
+  i0 |= 0x0001000000000000LL;
+
+  if (j0 < 48)
+    {
+      if (j0 < 0)
+	return j0 < -1 ? 0 : sign;
+      else
+	{
+	  i0 += 0x0000800000000000LL >> j0;
+	  result = i0 >> (48 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
+    {
+      if (j0 >= 112)
+	result = ((long long int) i0 << (j0 - 48)) | (i1 << (j0 - 112));
+      else
+	{
+	  u_int64_t j = i1 + (0x8000000000000000ULL >> (j0 - 48));
+	  if (j < i1)
+	    ++i0;
+
+	  result = ((long long int) i0 << (j0 - 48)) | (j >> (112 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long long int) x;
+    }
+
+  return sign * result;
+}
+
+weak_alias (__llroundl, llroundl)
diff --git a/sysdeps/ieee754/ldbl-128/s_logbl.c b/sysdeps/ieee754/ldbl-128/s_logbl.c
new file mode 100644
index 0000000000..1fda289312
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_logbl.c
@@ -0,0 +1,46 @@
+/* s_logbl.c -- long double version of s_logb.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * long double logbl(x)
+ * IEEE 754 logb. Included to pass IEEE test suite. Not recommend.
+ * Use ilogb instead.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __logbl(long double x)
+#else
+	long double __logbl(x)
+	long double x;
+#endif
+{
+	int64_t lx,hx;
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	hx &= 0x7fffffffffffffffLL;		/* high |x| */
+	if((hx|lx)==0) return -1.0/fabs(x);
+	if(hx>=0x7fff000000000000LL) return x*x;
+	if((hx>>=48)==0) 			/* IEEE 754 logb */
+		return -16382.0;
+	else
+		return (long double) (hx-0x3fff);
+}
+weak_alias (__logbl, logbl)
diff --git a/sysdeps/ieee754/ldbl-128/s_lrintl.c b/sysdeps/ieee754/ldbl-128/s_lrintl.c
new file mode 100644
index 0000000000..434aa315a7
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_lrintl.c
@@ -0,0 +1,91 @@
+/* Round argument to nearest integral value according to current rounding
+   direction.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+   		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const long double two112[2] =
+{
+  5.19229685853482762853049632922009600E+33L, /* 0x406F000000000000, 0 */
+ -5.19229685853482762853049632922009600E+33L  /* 0xC06F000000000000, 0 */
+};
+
+long int
+__lrintl (long double x)
+{
+  int32_t j0;
+  u_int64_t i0,i1;
+  volatile long double w;
+  long double t;
+  long int result;
+  int sx;
+
+  GET_LDOUBLE_WORDS64 (i0, i1, x);
+  j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
+  sx = i0 >> 63;
+  i0 &= 0x0000ffffffffffffLL;
+  i0 |= 0x0001000000000000LL;
+
+  if (j0 < 48)
+    {
+      if (j0 < -1)
+	return 0;
+      else
+	{
+	  w = two112[sx] + x;
+	  t = w - two112[sx];
+	  GET_LDOUBLE_WORDS64 (i0, i1, x);
+	  j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
+	  i0 &= 0x0000ffffffffffffLL;
+	  i0 |= 0x0001000000000000LL;
+
+	  result = i0 >> (48 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
+    {
+      if (j0 >= 112)
+	result = ((long int) i0 << (j0 - 48)) | (i1 << (j0 - 112));
+      else
+	{
+	  w = two112[sx] + x;
+	  t = w - two112[sx];
+	  GET_LDOUBLE_WORDS64 (i0, i1, x);
+	  j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
+	  i0 &= 0x0000ffffffffffffLL;
+	  i0 |= 0x0001000000000000LL;
+
+	  result = ((long int) i0 << (j0 - 48)) | (i1 >> (112 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long int) x;
+    }
+
+  return sx ? -result : result;
+}
+
+weak_alias (__lrintl, lrintl)
diff --git a/sysdeps/ieee754/ldbl-128/s_lroundl.c b/sysdeps/ieee754/ldbl-128/s_lroundl.c
new file mode 100644
index 0000000000..ea82f4c3f8
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_lroundl.c
@@ -0,0 +1,74 @@
+/* Round long double value to long int.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+   		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long int
+__lroundl (long double x)
+{
+  int64_t j0;
+  u_int64_t i1, i0;
+  long int result;
+  int sign;
+
+  GET_LDOUBLE_WORDS64 (i0, i1, x);
+  j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
+  sign = (i0 & 0x8000000000000000ULL) != 0 ? -1 : 1;
+  i0 &= 0x0000ffffffffffffLL;
+  i0 |= 0x0001000000000000LL;
+
+  if (j0 < 48)
+    {
+      if (j0 < 0)
+	return j0 < -1 ? 0 : sign;
+      else
+	{
+	  i0 += 0x0000800000000000LL >> j0;
+	  result = i0 >> (48 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
+    {
+      if (j0 >= 112)
+	result = ((long int) i0 << (j0 - 48)) | (i1 << (j0 - 112));
+      else
+	{
+	  u_int64_t j = i1 + (0x8000000000000000ULL >> (j0 - 48));
+	  if (j < i1)
+	    ++i0;
+
+	  result = ((long int) i0 << (j0 - 48)) | (j >> (112 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long int) x;
+    }
+
+  return sign * result;
+}
+
+weak_alias (__lroundl, lroundl)
diff --git a/sysdeps/ieee754/ldbl-128/s_modfl.c b/sysdeps/ieee754/ldbl-128/s_modfl.c
new file mode 100644
index 0000000000..63d66e7114
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_modfl.c
@@ -0,0 +1,88 @@
+/* s_modfl.c -- long double version of s_modf.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * modfl(long double x, long double *iptr)
+ * return fraction part of x, and return x's integral part in *iptr.
+ * Method:
+ *	Bit twiddling.
+ *
+ * Exception:
+ *	No exception.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double one = 1.0;
+#else
+static long double one = 1.0;
+#endif
+
+#ifdef __STDC__
+	long double __modfl(long double x, long double *iptr)
+#else
+	long double __modfl(x, iptr)
+	long double x,*iptr;
+#endif
+{
+	int64_t i0,i1,j0;
+	u_int64_t i;
+	GET_LDOUBLE_WORDS64(i0,i1,x);
+	j0 = ((i0>>48)&0x7fff)-0x3fff;	/* exponent of x */
+	if(j0<48) {			/* integer part in high x */
+	    if(j0<0) {			/* |x|<1 */
+		/* *iptr = +-0 */
+	        SET_LDOUBLE_WORDS64(*iptr,i0&0x8000000000000000ULL,0);
+		return x;
+	    } else {
+		i = (0x0000ffffffffffffLL)>>j0;
+		if(((i0&i)|i1)==0) {		/* x is integral */
+		    *iptr = x;
+		    /* return +-0 */
+		    SET_LDOUBLE_WORDS64(x,i0&0x8000000000000000ULL,0);
+		    return x;
+		} else {
+		    SET_LDOUBLE_WORDS64(*iptr,i0&(~i),0);
+		    return x - *iptr;
+		}
+	    }
+	} else if (j0>111) {		/* no fraction part */
+	    *iptr = x*one;
+	    /* We must handle NaNs separately.  */
+	    if (j0 == 0x4000 && ((i0 & 0x0000ffffffffffffLL) | i1))
+	      return x*one;
+	    /* return +-0 */
+	    SET_LDOUBLE_WORDS64(x,i0&0x8000000000000000ULL,0);
+	    return x;
+	} else {			/* fraction part in low x */
+	    i = -1ULL>>(j0-48);
+	    if((i1&i)==0) { 		/* x is integral */
+		*iptr = x;
+		/* return +-0 */
+		SET_LDOUBLE_WORDS64(x,i0&0x8000000000000000ULL,0);
+		return x;
+	    } else {
+		SET_LDOUBLE_WORDS64(*iptr,i0,i1&(~i));
+		return x - *iptr;
+	    }
+	}
+}
+weak_alias (__modfl, modfl)
diff --git a/sysdeps/ieee754/ldbl-128/s_nearbyintl.c b/sysdeps/ieee754/ldbl-128/s_nearbyintl.c
new file mode 100644
index 0000000000..bea3183d39
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_nearbyintl.c
@@ -0,0 +1,93 @@
+/* s_nearbyintl.c -- long double version of s_nearbyint.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * nearbyintl(x)
+ * Return x rounded to integral value according to the prevailing
+ * rounding mode.
+ * Method:
+ *	Using floating addition.
+ * Exception:
+ *	Inexact flag raised if x not equal to rintl(x).
+ */
+
+#include <fenv.h>
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+TWO112[2]={
+  5.19229685853482762853049632922009600E+33L, /* 0x406F000000000000, 0 */
+ -5.19229685853482762853049632922009600E+33L  /* 0xC06F000000000000, 0 */
+};
+
+#ifdef __STDC__
+	long double __nearbyintl(long double x)
+#else
+	long double __nearbyintl(x)
+	long double x;
+#endif
+{
+	fenv_t env;
+	int64_t i0,j0,sx;
+	u_int64_t i,i1;
+	long double w,t;
+	GET_LDOUBLE_WORDS64(i0,i1,x);
+	sx = (((u_int64_t)i0)>>63);
+	j0 = ((i0>>48)&0x7fff)-0x3fff;
+	if(j0<48) {
+	    if(j0<0) {
+		if(((i0&0x7fffffffffffffffLL)|i1)==0) return x;
+		i1 |= (i0&0x0000ffffffffffffLL);
+		i0 &= 0xffffe00000000000ULL;
+		i0 |= ((i1|-i1)>>16)&0x0000800000000000LL;
+		SET_LDOUBLE_MSW64(x,i0);
+		feholdexcept (&env);
+	        w = TWO112[sx]+x;
+	        t = w-TWO112[sx];
+	        fesetenv (&env);
+		GET_LDOUBLE_MSW64(i0,t);
+		SET_LDOUBLE_MSW64(t,(i0&0x7fffffffffffffffLL)|(sx<<63));
+	        return t;
+	    } else {
+		i = (0x0000ffffffffffffLL)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		i>>=1;
+		if(((i0&i)|i1)!=0) {
+		    if(j0==47) i1 = 0x4000000000000000ULL; else
+		    i0 = (i0&(~i))|((0x0000200000000000LL)>>j0);
+		}
+	    }
+	} else if (j0>111) {
+	    if(j0==0x4000) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = -1ULL>>(j0-48);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    i>>=1;
+	    if((i1&i)!=0) i1 = (i1&(~i))|((0x4000000000000000LL)>>(j0-48));
+	}
+	SET_LDOUBLE_WORDS64(x,i0,i1);
+	feholdexcept (&env);
+	w = TWO112[sx]+x;
+	t = w-TWO112[sx];
+	fesetenv (&env);
+	return t;
+}
+weak_alias (__nearbyintl, nearbyintl)
diff --git a/sysdeps/ieee754/ldbl-128/s_nextafterl.c b/sysdeps/ieee754/ldbl-128/s_nextafterl.c
new file mode 100644
index 0000000000..d3df668178
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_nextafterl.c
@@ -0,0 +1,85 @@
+/* s_nextafterl.c -- long double version of s_nextafter.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* IEEE functions
+ *	nextafterl(x,y)
+ *	return the next machine floating-point number of x in the
+ *	direction toward y.
+ *   Special cases:
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __nextafterl(long double x, long double y)
+#else
+	long double __nextafterl(x,y)
+	long double x,y;
+#endif
+{
+	int64_t hx,hy,ix,iy;
+	u_int64_t lx,ly;
+
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+	GET_LDOUBLE_WORDS64(hy,ly,y);
+	ix = hx&0x7fffffffffffffffLL;		/* |x| */
+	iy = hy&0x7fffffffffffffffLL;		/* |y| */
+
+	if(((ix>=0x7fff000000000000LL)&&((ix-0x7fff000000000000LL)|lx)!=0) ||   /* x is nan */
+	   ((iy>=0x7fff000000000000LL)&&((iy-0x7fff000000000000LL)|ly)!=0))     /* y is nan */
+	   return x+y;
+	if(x==y) return y;		/* x=y, return y */
+	if((ix|lx)==0) {			/* x == 0 */
+	    SET_LDOUBLE_WORDS64(x,hy&0x8000000000000000ULL,1);/* return +-minsubnormal */
+	    y = x*x;
+	    if(y==x) return y; else return x;	/* raise underflow flag */
+	}
+	if(hx>=0) {			/* x > 0 */
+	    if(hx>hy||((hx==hy)&&(lx>ly))) {	/* x > y, x -= ulp */
+		if(lx==0) hx--;
+		lx--;
+	    } else {				/* x < y, x += ulp */
+		lx++;
+		if(lx==0) hx++;
+	    }
+	} else {				/* x < 0 */
+	    if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){/* x < y, x -= ulp */
+		if(lx==0) hx--;
+		lx--;
+	    } else {				/* x > y, x += ulp */
+		lx++;
+		if(lx==0) hx++;
+	    }
+	}
+	hy = hx&0x7fff000000000000LL;
+	if(hy==0x7fff000000000000LL) return x+x;/* overflow  */
+	if(hy==0) {				/* underflow */
+	    y = x*x;
+	    if(y!=x) {		/* raise underflow flag */
+	        SET_LDOUBLE_WORDS64(y,hx,lx);
+		return y;
+	    }
+	}
+	SET_LDOUBLE_WORDS64(x,hx,lx);
+	return x;
+}
+weak_alias (__nextafterl, nextafterl)
+strong_alias (__nextafterl, __nexttowardl)
+weak_alias (__nextafterl, nexttowardl)
diff --git a/sysdeps/ieee754/ldbl-128/s_nexttoward.c b/sysdeps/ieee754/ldbl-128/s_nexttoward.c
new file mode 100644
index 0000000000..f121be2fac
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_nexttoward.c
@@ -0,0 +1,97 @@
+/* s_nexttoward.c
+ * Conversion from s_nextafter.c by Ulrich Drepper, Cygnus Support,
+ * drepper@cygnus.com and Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* IEEE functions
+ *	nexttoward(x,y)
+ *	return the next machine floating-point number of x in the
+ *	direction toward y.
+ *   Special cases:
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	double __nexttoward(double x, long double y)
+#else
+	double __nexttoward(x,y)
+	double x;
+	long double y;
+#endif
+{
+	int32_t hx,ix;
+	int64_t hy,iy;
+	u_int32_t lx;
+	u_int64_t ly;
+
+	EXTRACT_WORDS(hx,lx,x);
+	GET_LDOUBLE_WORDS64(hy,ly,y);
+	ix = hx&0x7fffffff;		/* |x| */
+	iy = hy&0x7fffffffffffffffLL;	/* |y| */
+
+	if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) ||   /* x is nan */
+	   ((iy>=0x7fff000000000000LL)&&((iy-0x7fff000000000000LL)|ly)!=0))
+	   						    /* y is nan */
+	   return x+y;
+	if((long double) x==y) return x;	/* x=y, return x */
+	if((ix|lx)==0) {			/* x == 0 */
+	    double x2;
+	    INSERT_WORDS(x,(u_int32_t)((hy>>32)&0x80000000),1);/* return +-minsub */
+	    x2 = x*x;
+	    if(x2==x) return x2; else return x;	/* raise underflow flag */
+	}
+	if(hx>=0) {				/* x > 0 */
+	    if (hy<0||(ix>>20)>(iy>>48)-0x3c00
+		|| ((ix>>20)==(iy>>48)-0x3c00
+		    && (((((int64_t)hx)<<28)|(lx>>4))>(hy&0x0000ffffffffffffLL)
+			|| (((((int64_t)hx)<<28)|(lx>>4))==(hy&0x0000ffffffffffffLL)
+			    && (lx&0xf)>(ly>>60))))) {	/* x > y, x -= ulp */
+		if(lx==0) hx -= 1;
+		lx -= 1;
+	    } else {				/* x < y, x += ulp */
+		lx += 1;
+		if(lx==0) hx += 1;
+	    }
+	} else {				/* x < 0 */
+	    if (hy>=0||(ix>>20)>(iy>>48)-0x3c00
+		|| ((ix>>20)==(iy>>48)-0x3c00
+		    && (((((int64_t)hx)<<28)|(lx>>4))>(hy&0x0000ffffffffffffLL)
+			|| (((((int64_t)hx)<<28)|(lx>>4))==(hy&0x0000ffffffffffffLL)
+			    && (lx&0xf)>(ly>>60))))) {	/* x < y, x -= ulp */
+		if(lx==0) hx -= 1;
+		lx -= 1;
+	    } else {				/* x > y, x += ulp */
+		lx += 1;
+		if(lx==0) hx += 1;
+	    }
+	}
+	hy = hx&0x7ff00000;
+	if(hy>=0x7ff00000) return x+x;	/* overflow  */
+	if(hy<0x00100000) {		/* underflow */
+	    double x2 = x*x;
+	    if(x2!=x) {		/* raise underflow flag */
+	        INSERT_WORDS(x2,hx,lx);
+		return x2;
+	    }
+	}
+	INSERT_WORDS(x,hx,lx);
+	return x;
+}
+weak_alias (__nexttoward, nexttoward)
diff --git a/sysdeps/ieee754/ldbl-128/s_nexttowardf.c b/sysdeps/ieee754/ldbl-128/s_nexttowardf.c
new file mode 100644
index 0000000000..1a22e0102c
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_nexttowardf.c
@@ -0,0 +1,81 @@
+/* s_nexttowardf.c -- float version of s_nextafter.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com
+ * and Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	float __nexttowardf(float x, long double y)
+#else
+	float __nexttowardf(x,y)
+	float x;
+	long double y;
+#endif
+{
+	int32_t hx,ix;
+	int64_t hy,iy;
+	u_int64_t ly;
+                                
+	GET_FLOAT_WORD(hx,x);
+	GET_LDOUBLE_WORDS64(hy,ly,y);
+	ix = hx&0x7fffffff;		/* |x| */
+	iy = hy&0x7fffffffffffffffLL;	/* |y| */
+
+	if((ix>0x7f800000) ||   /* x is nan */
+	   ((iy>=0x7fff000000000000LL)&&((iy-0x7fff000000000000LL)|ly)!=0))
+				/* y is nan */
+	   return x+y;
+	if((long double) x==y) return y;	/* x=y, return y */
+	if(ix==0) {				/* x == 0 */
+	    float x2;
+	    SET_FLOAT_WORD(x,(u_int32_t)((hy>>32)&0x80000000)|1);/* return +-minsub*/
+	    x2 = x*x;
+	    if(x2==x) return x2; else return x;	/* raise underflow flag */
+	}
+	if(hx>=0) {				/* x > 0 */
+	    if(hy<0||(ix>>23)>(iy>>48)-0x3f80
+	       || ((ix>>23)==(iy>>48)-0x3f80
+		   && (ix&0x7fffff)>((hy>>25)&0x7fffff))) {/* x > y, x -= ulp */
+		hx -= 1;
+	    } else {				/* x < y, x += ulp */
+		hx += 1;
+	    }
+	} else {				/* x < 0 */
+	    if(hy>=0||(ix>>23)>(iy>>48)-0x3f80
+	       || ((ix>>23)==(iy>>48)-0x3f80
+		   && (ix&0x7fffff)>((hy>>25)&0x7fffff))) {/* x < y, x -= ulp */
+		hx -= 1;
+	    } else {				/* x > y, x += ulp */
+		hx += 1;
+	    }
+	}
+	hy = hx&0x7f800000;
+	if(hy>=0x7f800000) return x+x;	/* overflow  */
+	if(hy<0x00800000) {		/* underflow */
+	    float x2 = x*x;
+	    if(x2!=x) {		/* raise underflow flag */
+	        SET_FLOAT_WORD(x2,hx);
+		return x2;
+	    }
+	}
+	SET_FLOAT_WORD(x,hx);
+	return x;
+}
+weak_alias (__nexttowardf, nexttowardf)
diff --git a/sysdeps/ieee754/ldbl-128/s_remquol.c b/sysdeps/ieee754/ldbl-128/s_remquol.c
new file mode 100644
index 0000000000..0d2695844b
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_remquol.c
@@ -0,0 +1,110 @@
+/* Compute remainder and a congruent to the quotient.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const long double zero = 0.0;
+
+
+long double
+__remquol (long double x, long double y, int *quo)
+{
+  int64_t hx,hy;
+  u_int64_t sx,lx,ly;
+  int cquo,qs;
+
+  GET_LDOUBLE_WORDS64 (hx, lx, x);
+  GET_LDOUBLE_WORDS64 (hy, ly, y);
+  sx = hx & 0x8000000000000000ULL;
+  qs = sx ^ (hy & 0x8000000000000000ULL);
+  hy &= 0x7fffffffffffffffLL;
+  hx &= 0x7fffffffffffffffLL;
+
+  /* Purge off exception values.  */
+  if ((hy | ly) == 0)
+    return (x * y) / (x * y); 			/* y = 0 */
+  if ((hx >= 0x7fff000000000000LL)		/* x not finite */
+      || ((hy >= 0x7fff000000000000LL)		/* y is NaN */
+	  && (((hy - 0x7fff000000000000LL) | ly) != 0)))
+    return (x * y) / (x * y);
+
+  if (hy <= 0x7ffbffffffffffffLL)
+    x = __ieee754_fmodl (x, 8 * y);              /* now x < 8y */
+      
+  if (((hx - hy) | (lx - ly)) == 0)
+    {
+      *quo = qs ? -1 : 1;
+      return zero * x;
+    }
+
+  x  = fabsl (x);
+  y  = fabsl (y);
+  cquo = 0;
+
+  if (x >= 4 * y)
+    {
+      x -= 4 * y;
+      cquo += 4;
+    }
+  if (x >= 2 * y)
+    {
+      x -= 2 * y;
+      cquo += 2;
+    }
+
+  if (hy < 0x0002000000000000LL)
+    {
+      if (x + x > y)
+	{
+	  x -= y;
+	  ++cquo;
+	  if (x + x >= y)
+	    {
+	      x -= y;
+	      ++cquo;
+	    }
+	}
+    }
+  else
+    {
+      long double y_half = 0.5L * y;
+      if (x > y_half)
+	{
+	  x -= y;
+	  ++cquo;
+	  if (x >= y_half)
+	    {
+	      x -= y;
+	      ++cquo;
+	    }
+	}
+    }
+
+  *quo = qs ? -cquo : cquo;
+
+  if (sx)
+    x = -x;
+  return x;
+}
+weak_alias (__remquol, remquol)
diff --git a/sysdeps/ieee754/ldbl-128/s_rintl.c b/sysdeps/ieee754/ldbl-128/s_rintl.c
new file mode 100644
index 0000000000..c3fc3ba193
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_rintl.c
@@ -0,0 +1,90 @@
+/* s_rintl.c -- long double version of s_rint.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * rintl(x)
+ * Return x rounded to integral value according to the prevailing
+ * rounding mode.
+ * Method:
+ *	Using floating addition.
+ * Exception:
+ *	Inexact flag raised if x not equal to rintl(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+TWO112[2]={
+  5.19229685853482762853049632922009600E+33L, /* 0x406F000000000000, 0 */
+ -5.19229685853482762853049632922009600E+33L  /* 0xC06F000000000000, 0 */
+};
+
+#ifdef __STDC__
+	long double __rintl(long double x)
+#else
+	long double __rintl(x)
+	long double x;
+#endif
+{
+	int64_t i0,j0,sx;
+	u_int64_t i,i1;
+	long double w,t;
+	GET_LDOUBLE_WORDS64(i0,i1,x);
+	sx = (((u_int64_t)i0)>>63);
+	j0 = ((i0>>48)&0x7fff)-0x3fff;
+	if(j0<48) {
+	    if(j0<0) {
+		if(((i0&0x7fffffffffffffffLL)|i1)==0) return x;
+		i1 |= (i0&0x0000ffffffffffffLL);
+		i0 &= 0xffffe00000000000ULL;
+		i0 |= ((i1|-i1)>>16)&0x0000800000000000LL;
+		SET_LDOUBLE_MSW64(x,i0);
+	        w = TWO112[sx]+x;
+	        t = w-TWO112[sx];
+		GET_LDOUBLE_MSW64(i0,t);
+		SET_LDOUBLE_MSW64(t,(i0&0x7fffffffffffffffLL)|(sx<<63));
+	        return t;
+	    } else {
+		i = (0x0000ffffffffffffLL)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		i>>=1;
+		if(((i0&i)|i1)!=0) {
+		    if(j0==47) i1 = 0x4000000000000000ULL; else
+		    i0 = (i0&(~i))|((0x0000200000000000LL)>>j0);
+		}
+	    }
+	} else if (j0>111) {
+	    if(j0==0x4000) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = -1ULL>>(j0-48);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    i>>=1;
+	    if((i1&i)!=0) i1 = (i1&(~i))|((0x4000000000000000LL)>>(j0-48));
+	}
+	SET_LDOUBLE_WORDS64(x,i0,i1);
+	w = TWO112[sx]+x;
+	return w-TWO112[sx];
+}
+weak_alias (__rintl, rintl)
diff --git a/sysdeps/ieee754/ldbl-128/s_roundl.c b/sysdeps/ieee754/ldbl-128/s_roundl.c
new file mode 100644
index 0000000000..f9fff48f6c
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_roundl.c
@@ -0,0 +1,94 @@
+/* Round long double to integer away from zero.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const long double huge = 1.0E4930L;
+
+
+long double
+__roundl (long double x)
+{
+  int32_t j0;
+  u_int64_t se, i1, i0;
+
+  GET_LDOUBLE_WORDS64 (i0, i1, x);
+  j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
+  if (j0 < 31)
+    {
+      if (j0 < 0)
+	{
+	  if (huge + x > 0.0)
+	    {
+	      i0 &= 0x8000000000000000ULL;
+	      if (j0 == -1)
+		i0 |= 0x3fff000000000000LL;
+	      i1 = 0;
+	    }
+	}
+      else
+	{
+	  u_int64_t i = 0x0000ffffffffffffLL >> j0;
+	  if (((i0 & i) | i1) == 0)
+	    /* X is integral.  */
+	    return x;
+	  if (huge + x > 0.0)
+	    {
+	      /* Raise inexact if x != 0.  */
+	      i0 += 0x0000800000000000LL >> j0;
+	      i0 &= ~i;
+	      i1 = 0;
+	    }
+	}
+    }
+  else if (j0 > 111)
+    {
+      if (j0 == 0x4000)
+	/* Inf or NaN.  */
+	return x + x;
+      else
+	return x;
+    }
+  else
+    {
+      u_int64_t i = -1ULL >> (j0 - 48);
+      if ((i1 & i) == 0)
+	/* X is integral.  */
+	return x;
+
+      if (huge + x > 0.0)
+	{
+	  /* Raise inexact if x != 0.  */
+	  u_int64_t j = i1 + (1LL << (111 - j0));
+	  if (j < i1)
+	    i0 += 1;
+	  i1 = j;
+	}
+      i1 &= ~i;
+    }
+
+  SET_LDOUBLE_WORDS64 (x, i0, i1);
+  return x;
+}
+weak_alias (__roundl, roundl)
diff --git a/sysdeps/ieee754/ldbl-128/s_scalblnl.c b/sysdeps/ieee754/ldbl-128/s_scalblnl.c
new file mode 100644
index 0000000000..5e8b58b733
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_scalblnl.c
@@ -0,0 +1,70 @@
+/* s_scalblnl.c -- long double version of s_scalbn.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+   
+/* @(#)s_scalbn.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * scalblnl (long double x, long int n)
+ * scalblnl(x,n) returns x* 2**n  computed by  exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+two114 = 2.0769187434139310514121985316880384E+34L, /* 0x4071000000000000, 0 */
+twom114 = 4.8148248609680896326399448564623183E-35L, /* 0x3F8D000000000000, 0 */
+huge   = 1.0E+4900L,
+tiny   = 1.0E-4900L;
+
+#ifdef __STDC__
+	long double __scalblnl (long double x, long int n)
+#else
+	long double __scalblnl (x,n)
+	long double x; long int n;
+#endif
+{
+	int64_t k,hx,lx;
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+        k = (hx>>48)&0x7fff;		/* extract exponent */
+        if (k==0) {				/* 0 or subnormal x */
+            if ((lx|(hx&0x7fffffffffffffffULL))==0) return x; /* +-0 */
+	    x *= two114;
+	    GET_LDOUBLE_MSW64(hx,x);
+	    k = ((hx>>48)&0x7fff) - 114;
+	}
+        if (k==0x7fff) return x+x;		/* NaN or Inf */
+        k = k+n;
+        if (n> 50000 || k > 0x7ffe)
+	  return huge*__copysignl(huge,x); /* overflow  */
+	if (n< -50000) return tiny*__copysignl(tiny,x); /*underflow*/
+        if (k > 0) 				/* normal result */
+	    {SET_LDOUBLE_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48)); return x;}
+        if (k <= -114)
+	  return tiny*__copysignl(tiny,x); 	/*underflow*/
+        k += 114;				/* subnormal result */
+	SET_LDOUBLE_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48));
+        return x*twom114;
+}
+weak_alias (__scalblnl, scalblnl)
diff --git a/sysdeps/ieee754/ldbl-128/s_scalbnl.c b/sysdeps/ieee754/ldbl-128/s_scalbnl.c
new file mode 100644
index 0000000000..c54f064c0c
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_scalbnl.c
@@ -0,0 +1,70 @@
+/* s_scalbnl.c -- long double version of s_scalbn.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+   
+/* @(#)s_scalbn.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * scalbnl (long double x, int n)
+ * scalbnl(x,n) returns x* 2**n  computed by  exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+two114 = 2.0769187434139310514121985316880384E+34L, /* 0x4071000000000000, 0 */
+twom114 = 4.8148248609680896326399448564623183E-35L, /* 0x3F8D000000000000, 0 */
+huge   = 1.0E+4900L,
+tiny   = 1.0E-4900L;
+
+#ifdef __STDC__
+	long double __scalbnl (long double x, int n)
+#else
+	long double __scalbnl (x,n)
+	long double x; int n;
+#endif
+{
+	int64_t k,hx,lx;
+	GET_LDOUBLE_WORDS64(hx,lx,x);
+        k = (hx>>48)&0x7fff;		/* extract exponent */
+        if (k==0) {				/* 0 or subnormal x */
+            if ((lx|(hx&0x7fffffffffffffffULL))==0) return x; /* +-0 */
+	    x *= two114;
+	    GET_LDOUBLE_MSW64(hx,x);
+	    k = ((hx>>48)&0x7fff) - 114;
+	}
+        if (k==0x7fff) return x+x;		/* NaN or Inf */
+        k = k+n;
+        if (n> 50000 || k > 0x7ffe)
+	  return huge*__copysignl(huge,x); /* overflow  */
+	if (n< -50000) return tiny*__copysignl(tiny,x); /*underflow*/
+        if (k > 0) 				/* normal result */
+	    {SET_LDOUBLE_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48)); return x;}
+        if (k <= -114)
+	  return tiny*__copysignl(tiny,x); 	/*underflow*/
+        k += 114;				/* subnormal result */
+	SET_LDOUBLE_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48));
+        return x*twom114;
+}
+weak_alias (__scalbnl, scalbnl)
diff --git a/sysdeps/ieee754/ldbl-128/s_signbitl.c b/sysdeps/ieee754/ldbl-128/s_signbitl.c
new file mode 100644
index 0000000000..52a0afbe6a
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_signbitl.c
@@ -0,0 +1,32 @@
+/* Return nonzero value if number is negative.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+int
+__signbitl (long double x)
+{
+  int64_t e;
+
+  GET_LDOUBLE_MSW64 (e, x);
+  return e < 0;
+}
diff --git a/sysdeps/ieee754/ldbl-128/s_sincosl.c b/sysdeps/ieee754/ldbl-128/s_sincosl.c
new file mode 100644
index 0000000000..2d74e72a50
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_sincosl.c
@@ -0,0 +1,77 @@
+/* Compute sine and cosine of argument.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+		  Jakub Jelinek <jj@ultra.linux.cz>.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+/* Note: We should probably introduce __kernel_sincosl to speed things up,
+   because __kernel_{cos,sin}l sometimes compute both sine and cosine.  */
+
+void
+__sincosl (long double x, long double *sinx, long double *cosx)
+{
+  int64_t ix;
+
+  /* High word of x. */
+  GET_LDOUBLE_MSW64 (ix, x);
+
+  /* |x| ~< pi/4 */
+  ix &= 0x7fffffffffffffffLL;
+  if (ix <= 0x3ffe921fb54442d1LL)
+    {
+      *sinx = __kernel_sinl (x, 0.0, 0);
+      *cosx = __kernel_cosl (x, 0.0);
+    }
+  else if (ix >= 0x7fff000000000000LL)
+    {
+      /* sin(Inf or NaN) is NaN */
+      *sinx = *cosx = x - x;
+    }
+  else
+    {
+      /* Argument reduction needed.  */
+      long double y[2];
+      int n;
+
+      n = __ieee754_rem_pio2l (x, y);
+      switch (n & 3)
+	{
+	case 0:
+	  *sinx = __kernel_sinl (y[0], y[1], 1);
+	  *cosx = __kernel_cosl (y[0], y[1]);
+	  break;
+	case 1:
+	  *sinx = __kernel_cosl (y[0], y[1]);
+	  *cosx = -__kernel_sinl (y[0], y[1], 1);
+	  break;
+	case 2:
+	  *sinx = -__kernel_sinl (y[0], y[1], 1);
+	  *cosx = -__kernel_cosl (y[0], y[1]);
+	  break;
+	default:
+	  *sinx = -__kernel_cosl (y[0], y[1]);
+	  *cosx = __kernel_sinl (y[0], y[1], 1);
+	  break;
+	}
+    }
+}
+weak_alias (__sincosl, sincosl)
diff --git a/sysdeps/ieee754/ldbl-128/s_sinl.c b/sysdeps/ieee754/ldbl-128/s_sinl.c
new file mode 100644
index 0000000000..446a75f126
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_sinl.c
@@ -0,0 +1,83 @@
+/* s_sinl.c -- long double version of s_sin.c.
+ * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* sinl(x)
+ * Return sine function of x.
+ *
+ * kernel function:
+ *	__kernel_sinl		... sine function on [-pi/4,pi/4]
+ *	__kernel_cosl		... cose function on [-pi/4,pi/4]
+ *	__ieee754_rem_pio2l	... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *	in [-pi/4 , +pi/4], and let n = k mod 4.
+ *	We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *	    0	       S	   C		 T
+ *	    1	       C	  -S		-1/T
+ *	    2	      -S	  -C		 T
+ *	    3	      -C	   S		-1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *	TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __sinl(long double x)
+#else
+	long double __sinl(x)
+	long double x;
+#endif
+{
+	long double y[2],z=0.0L;
+	int64_t n, ix;
+
+    /* High word of x. */
+	GET_LDOUBLE_MSW64(ix,x);
+
+    /* |x| ~< pi/4 */
+	ix &= 0x7fffffffffffffffLL;
+	if(ix <= 0x3ffe921fb54442d1LL)
+	  return __kernel_sinl(x,z,0);
+
+    /* sin(Inf or NaN) is NaN */
+	else if (ix>=0x7fff000000000000LL) return x-x;
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2l(x,y);
+	    switch(n&3) {
+		case 0: return  __kernel_sinl(y[0],y[1],1);
+		case 1: return  __kernel_cosl(y[0],y[1]);
+		case 2: return -__kernel_sinl(y[0],y[1],1);
+		default:
+			return -__kernel_cosl(y[0],y[1]);
+	    }
+	}
+}
+weak_alias (__sinl, sinl)
diff --git a/sysdeps/ieee754/ldbl-128/s_tanl.c b/sysdeps/ieee754/ldbl-128/s_tanl.c
new file mode 100644
index 0000000000..ea9d053d9b
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_tanl.c
@@ -0,0 +1,77 @@
+/* s_tanl.c -- long double version of s_tan.c.
+ * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
+ */
+  
+/* @(#)s_tan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* tanl(x)
+ * Return tangent function of x.
+ *
+ * kernel function:
+ *	__kernel_tanl		... tangent function on [-pi/4,pi/4]
+ *	__ieee754_rem_pio2l	... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *	in [-pi/4 , +pi/4], and let n = k mod 4.
+ *	We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *	    0	       S	   C		 T
+ *	    1	       C	  -S		-1/T
+ *	    2	      -S	  -C		 T
+ *	    3	      -C	   S		-1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *	TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __tanl(long double x)
+#else
+	long double __tanl(x)
+	long double x;
+#endif
+{
+	long double y[2],z=0.0L;
+	int64_t n, ix;
+
+    /* High word of x. */
+	GET_LDOUBLE_MSW64(ix,x);
+
+    /* |x| ~< pi/4 */
+	ix &= 0x7fffffffffffffffLL;
+	if(ix <= 0x3ffe921fb54442d1LL) return __kernel_tanl(x,z,1);
+
+    /* tanl(Inf or NaN) is NaN */
+	else if (ix>=0x7fff000000000000LL) return x-x;		/* NaN */
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2l(x,y);
+	    return __kernel_tanl(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
+							-1 -- n odd */
+	}
+}
+weak_alias (__tanl, tanl)
diff --git a/sysdeps/ieee754/ldbl-128/s_truncl.c b/sysdeps/ieee754/ldbl-128/s_truncl.c
new file mode 100644
index 0000000000..bbff5a42cf
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/s_truncl.c
@@ -0,0 +1,57 @@
+/* Truncate argument to nearest integral value not larger than the argument.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
+   		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long double
+__truncl (long double x)
+{
+  int32_t j0;
+  u_int64_t i0, i1, sx;
+
+  GET_LDOUBLE_WORDS64 (i0, i1, x);
+  sx = i0 & 0x8000000000000000ULL;
+  j0 = ((i0 >> 48) & 0x7fff) - 0x3fff;
+  if (j0 < 48)
+    {
+      if (j0 < 0)
+	/* The magnitude of the number is < 1 so the result is +-0.  */
+	SET_LDOUBLE_WORDS64 (x, sx, 0);
+      else
+	SET_LDOUBLE_WORDS64 (x, i0 & ~(0x0000ffffffffffffLL >> j0), 0);
+    }
+  else if (j0 > 111)
+    {
+      if (j0 == 0x4000)
+	/* x is inf or NaN.  */
+	return x + x;
+    }
+  else
+    {
+      SET_LDOUBLE_WORDS64 (x, i0, i1 & ~(0xffffffffffffffffULL >> (j0 - 48)));
+    }
+
+  return x;
+}
+weak_alias (__truncl, truncl)
diff --git a/sysdeps/ieee754/ldbl-128/strtold.c b/sysdeps/ieee754/ldbl-128/strtold.c
new file mode 100644
index 0000000000..32049fc83d
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-128/strtold.c
@@ -0,0 +1,42 @@
+/* Copyright (C) 1999 Free Software Foundation, Inc.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+/* The actual implementation for all floating point sizes is in strtod.c.
+   These macros tell it to produce the `long double' version, `strtold'.  */
+
+# define FLOAT		long double
+# define FLT		LDBL
+# ifdef USE_IN_EXTENDED_LOCALE_MODEL
+#  define STRTOF	__strtold_l
+# else
+#  define STRTOF	strtold
+# endif
+# define MPN2FLOAT	__mpn_construct_long_double
+# define FLOAT_HUGE_VAL	HUGE_VALL
+# define SET_MANTISSA(flt, mant) \
+  do { union ieee854_long_double u;					      \
+       u.d = (flt);							      \
+       u.ieee.mantissa0 = 0x8000;					      \
+       u.ieee.mantissa1 = 0;						      \
+       u.ieee.mantissa2 = ((mant) >> 32);	      			      \
+       u.ieee.mantissa3 = (mant) & 0xffffffff;				      \
+       (flt) = u.d;							      \
+  } while (0)
+
+# include "strtod.c"
diff --git a/sysdeps/ieee754/ldbl-96/e_acoshl.c b/sysdeps/ieee754/ldbl-96/e_acoshl.c
new file mode 100644
index 0000000000..a60704aa29
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/e_acoshl.c
@@ -0,0 +1,72 @@
+/* e_acoshl.c -- long double version of e_acosh.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* __ieee754_acoshl(x)
+ * Method :
+ *	Based on
+ *		acoshl(x) = logl [ x + sqrtl(x*x-1) ]
+ *	we have
+ *		acoshl(x) := logl(x)+ln2,	if x is large; else
+ *		acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else
+ *		acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1.
+ *
+ * Special cases:
+ *	acoshl(x) is NaN with signal if x<1.
+ *	acoshl(NaN) is NaN without signal.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+one	= 1.0,
+ln2	= 6.931471805599453094287e-01L; /* 0x3FFE, 0xB17217F7, 0xD1CF79AC */
+
+#ifdef __STDC__
+	long double __ieee754_acoshl(long double x)
+#else
+	long double __ieee754_acoshl(x)
+	long double x;
+#endif
+{
+	long double t;
+	u_int32_t se,i0,i1;
+	GET_LDOUBLE_WORDS(se,i0,i1,x);
+	if(se<0x3fff || se & 0x8000) {	/* x < 1 */
+	    return (x-x)/(x-x);
+	} else if(se >=0x401b) {	/* x > 2**28 */
+	    if(se >=0x7fff) {		/* x is inf of NaN */
+	        return x+x;
+	    } else
+		return __ieee754_logl(x)+ln2;	/* acoshl(huge)=logl(2x) */
+	} else if(((se-0x3fff)|i0|i1)==0) {
+	    return 0.0;			/* acosh(1) = 0 */
+	} else if (se > 0x4000) {	/* 2**28 > x > 2 */
+	    t=x*x;
+	    return __ieee754_logl(2.0*x-one/(x+__ieee754_sqrtl(t-one)));
+	} else {			/* 1<x<2 */
+	    t = x-one;
+	    return __log1pl(t+__sqrtl(2.0*t+t*t));
+	}
+}
diff --git a/sysdeps/ieee754/ldbl-96/e_atan2l.c b/sysdeps/ieee754/ldbl-96/e_atan2l.c
new file mode 100644
index 0000000000..aff7a3d976
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/e_atan2l.c
@@ -0,0 +1,136 @@
+/* e_atan2l.c -- long double version of e_atan2.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* __ieee754_atan2l(y,x)
+ * Method :
+ *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
+ *	2. Reduce x to positive by (if x and y are unexceptional):
+ *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
+ *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
+ *
+ * Special cases:
+ *
+ *	ATAN2((anything), NaN ) is NaN;
+ *	ATAN2(NAN , (anything) ) is NaN;
+ *	ATAN2(+-0, +(anything but NaN)) is +-0  ;
+ *	ATAN2(+-0, -(anything but NaN)) is +-pi ;
+ *	ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
+ *	ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
+ *	ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
+ *	ATAN2(+-INF,+INF ) is +-pi/4 ;
+ *	ATAN2(+-INF,-INF ) is +-3pi/4;
+ *	ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+tiny  = 1.0e-4900L,
+zero  = 0.0,
+pi_o_4  = 7.85398163397448309628202E-01L, /* 0x3FFE, 0xC90FDAA2, 0x2168C235 */
+pi_o_2  = 1.5707963267948966192564E+00L,  /* 0x3FFF, 0xC90FDAA2, 0x2168C235 */
+pi      = 3.14159265358979323851281E+00L, /* 0x4000, 0xC90FDAA2, 0x2168C235 */
+pi_lo   = -5.01655761266833202345176e-20L;/* 0xBFBE, 0xECE675D1, 0xFC8F8CBB */
+
+#ifdef __STDC__
+	long double __ieee754_atan2l(long double y, long double x)
+#else
+	long double __ieee754_atan2l(y,x)
+	long double  y,x;
+#endif
+{
+	long double z;
+	int32_t k,m,hx,hy,ix,iy;
+	u_int32_t sx,sy,lx,ly;
+
+	GET_LDOUBLE_WORDS(sx,hx,lx,x);
+	ix = sx&0x7fff;
+	lx |= hx & 0x7fffffff;
+	GET_LDOUBLE_WORDS(sy,hy,ly,y);
+	iy = sy&0x7fff;
+	ly |= hy & 0x7fffffff;
+	if(((2*ix|((lx|-lx)>>31))>0xfffe)||
+	   ((2*iy|((ly|-ly)>>31))>0xfffe))	/* x or y is NaN */
+	   return x+y;
+	if((sx-0x3fff|lx)==0) return __atanl(y);   /* x=1.0 */
+	m = ((sy>>15)&1)|((sx>>14)&2);	/* 2*sign(x)+sign(y) */
+
+    /* when y = 0 */
+	if((iy|ly)==0) {
+	    switch(m) {
+		case 0:
+		case 1: return y; 	/* atan(+-0,+anything)=+-0 */
+		case 2: return  pi+tiny;/* atan(+0,-anything) = pi */
+		case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
+	    }
+	}
+    /* when x = 0 */
+	if((ix|lx)==0) return (sy>=0x8000)?  -pi_o_2-tiny: pi_o_2+tiny;
+
+    /* when x is INF */
+	if(ix==0x7fff) {
+	    if(iy==0x7fff) {
+		switch(m) {
+		    case 0: return  pi_o_4+tiny;/* atan(+INF,+INF) */
+		    case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
+		    case 2: return  3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
+		    case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
+		}
+	    } else {
+		switch(m) {
+		    case 0: return  zero  ;	/* atan(+...,+INF) */
+		    case 1: return -zero  ;	/* atan(-...,+INF) */
+		    case 2: return  pi+tiny  ;	/* atan(+...,-INF) */
+		    case 3: return -pi-tiny  ;	/* atan(-...,-INF) */
+		}
+	    }
+	}
+    /* when y is INF */
+	if(iy==0x7fff) return (sy>=0x8000)? -pi_o_2-tiny: pi_o_2+tiny;
+
+    /* compute y/x */
+	k = sy-sx;
+	if(k > 70) z=pi_o_2+0.5*pi_lo; 	/* |y/x| >  2**70 */
+	else if(sx>=0x8000&&k<-70) z=0.0; 	/* |y|/x < -2**70 */
+	else z=__atanl(fabsl(y/x));	/* safe to do y/x */
+	switch (m) {
+	    case 0: return       z  ;	/* atan(+,+) */
+	    case 1: {
+	    	      u_int32_t sz;
+		      GET_LDOUBLE_EXP(sz,z);
+		      SET_LDOUBLE_EXP(z,sz ^ 0x8000);
+		    }
+		    return       z  ;	/* atan(-,+) */
+	    case 2: return  pi-(z-pi_lo);/* atan(+,-) */
+	    default: /* case 3 */
+	    	    return  (z-pi_lo)-pi;/* atan(-,-) */
+	}
+}
diff --git a/sysdeps/ieee754/ldbl-96/e_atanhl.c b/sysdeps/ieee754/ldbl-96/e_atanhl.c
new file mode 100644
index 0000000000..fdcd1e9fe8
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/e_atanhl.c
@@ -0,0 +1,79 @@
+/* s_atanhl.c -- long double version of s_atan.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* __ieee754_atanhl(x)
+ * Method :
+ *    1.Reduced x to positive by atanh(-x) = -atanh(x)
+ *    2.For x>=0.5
+ *                   1              2x                          x
+ *	atanhl(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
+ *                   2             1 - x                      1 - x
+ *
+ * 	For x<0.5
+ *	atanhl(x) = 0.5*log1pl(2x+2x*x/(1-x))
+ *
+ * Special cases:
+ *	atanhl(x) is NaN if |x| > 1 with signal;
+ *	atanhl(NaN) is that NaN with no signal;
+ *	atanhl(+-1) is +-INF with signal.
+ *
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double one = 1.0, huge = 1e4900L;
+#else
+static long double one = 1.0, huge = 1e4900L;
+#endif
+
+#ifdef __STDC__
+static const long double zero = 0.0;
+#else
+static double long zero = 0.0;
+#endif
+
+#ifdef __STDC__
+	long double __ieee754_atanhl(long double x)
+#else
+	long double __ieee754_atanhl(x)
+	long double x;
+#endif
+{
+	long double t;
+	int32_t ix;
+	u_int32_t se,i0,i1;
+	GET_LDOUBLE_WORDS(se,i0,i1,x);
+	ix = se&0x7fff;
+	if ((ix+((((i0&0x7fffffff)|i1)|(-((i0&0x7fffffff)|i1)))>>31))>0x3fff)
+	  /* |x|>1 */
+	    return (x-x)/(x-x);
+	if(ix==0x3fff)
+	    return x/zero;
+	if(ix<0x3fe3&&(huge+x)>zero) return x;	/* x<2**-28 */
+	SET_LDOUBLE_EXP(x,ix);
+	if(ix<0x3ffe) {		/* x < 0.5 */
+	    t = x+x;
+	    t = 0.5*__log1pl(t+t*x/(one-x));
+	} else
+	    t = 0.5*__log1pl((x+x)/(one-x));
+	if(se<=0x7fff) return t; else return -t;
+}
diff --git a/sysdeps/ieee754/ldbl-96/e_coshl.c b/sysdeps/ieee754/ldbl-96/e_coshl.c
new file mode 100644
index 0000000000..6af846cb2d
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/e_coshl.c
@@ -0,0 +1,94 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_cosh.c,v 1.7 1995/05/10 20:44:58 jtc Exp $";
+#endif
+
+/* __ieee754_coshl(x)
+ * Method :
+ * mathematically coshl(x) if defined to be (exp(x)+exp(-x))/2
+ *	1. Replace x by |x| (coshl(x) = coshl(-x)).
+ *	2.
+ *		                                        [ exp(x) - 1 ]^2
+ *	    0        <= x <= ln2/2  :  coshl(x) := 1 + -------------------
+ *			       			           2*exp(x)
+ *
+ *		                                   exp(x) +  1/exp(x)
+ *	    ln2/2    <= x <= 22     :  coshl(x) := -------------------
+ *			       			           2
+ *	    22       <= x <= lnovft :  coshl(x) := expl(x)/2
+ *	    lnovft   <= x <= ln2ovft:  coshl(x) := expl(x/2)/2 * expl(x/2)
+ *	    ln2ovft  <  x	    :  coshl(x) := huge*huge (overflow)
+ *
+ * Special cases:
+ *	coshl(x) is |x| if x is +INF, -INF, or NaN.
+ *	only coshl(0)=1 is exact for finite x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double one = 1.0, half=0.5, huge = 1.0e4900L;
+#else
+static long double one = 1.0, half=0.5, huge = 1.0e4900L;
+#endif
+
+#ifdef __STDC__
+	long double __ieee754_coshl(long double x)
+#else
+	long double __ieee754_coshl(x)
+	long double x;
+#endif
+{
+	long double t,w;
+	int32_t ex;
+	u_int32_t mx,lx;
+
+    /* High word of |x|. */
+	GET_LDOUBLE_WORDS(ex,mx,lx,x);
+	ex &= 0x7fff;
+
+    /* x is INF or NaN */
+	if(ex==0x7fff) return x*x;
+
+    /* |x| in [0,0.5*ln2], return 1+expm1l(|x|)^2/(2*expl(|x|)) */
+	if(ex < 0x3ffd || (ex == 0x3ffd && mx < 0xb17217f7u)) {
+	    t = __expm1l(fabsl(x));
+	    w = one+t;
+	    if (ex<0x3fbc) return w;	/* cosh(tiny) = 1 */
+	    return one+(t*t)/(w+w);
+	}
+
+    /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
+	if (ex < 0x4003 || (ex == 0x4003 && mx < 0xb0000000u)) {
+		t = __ieee754_expl(fabsl(x));
+		return half*t+half/t;
+	}
+
+    /* |x| in [22, ln(maxdouble)] return half*exp(|x|) */
+	if (ex < 0x400c || (ex == 0x400c && mx < 0xb1700000u))
+		return half*__ieee754_expl(fabsl(x));
+
+    /* |x| in [log(maxdouble), overflowthresold] */
+	if (ex < 0x400d
+	    || (ex == 0x400d && (mx < 0xb170b513u
+				  || (mx == 0xb170b513u && lx < 0xa1dfd60cu))))
+	{
+	    w = __ieee754_expl(half*fabsl(x));
+	    t = half*w;
+	    return t*w;
+	}
+
+    /* |x| > overflowthresold, cosh(x) overflow */
+	return huge*huge;
+}
diff --git a/sysdeps/ieee754/ldbl-96/e_gammal_r.c b/sysdeps/ieee754/ldbl-96/e_gammal_r.c
new file mode 100644
index 0000000000..104992450b
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/e_gammal_r.c
@@ -0,0 +1,50 @@
+/* Implementation of gamma function according to ISO C.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+#include <math_private.h>
+
+
+long double
+__ieee754_gammal_r (long double x, int *signgamp)
+{
+  /* We don't have a real gamma implementation now.  We'll use lgamma
+     and the exp function.  But due to the required boundary
+     conditions we must check some values separately.  */
+  u_int32_t es, hx, lx;
+
+  GET_LDOUBLE_WORDS (es, hx, lx, x);
+
+  if (((es & 0x7fff) | hx | lx) == 0)
+    {
+      /* Return value for x == 0 is NaN with invalid exception.  */
+      *signgamp = 0;
+      return x / x;
+    }
+  if ((hx & 0x8000) != 0 && (hx & 0x7fff) != 0x7fff && __rintl (x) == x)
+    {
+      /* Return value for integer x < 0 is NaN with invalid exception.  */
+      *signgamp = 0;
+      return (x - x) / (x - x);
+    }
+
+  /* XXX FIXME.  */
+  return __ieee754_expl (__ieee754_lgammal_r (x, signgamp));
+}
diff --git a/sysdeps/ieee754/ldbl-96/e_hypotl.c b/sysdeps/ieee754/ldbl-96/e_hypotl.c
new file mode 100644
index 0000000000..1a40c556dc
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/e_hypotl.c
@@ -0,0 +1,133 @@
+/* e_hypotl.c -- long double version of e_hypot.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* __ieee754_hypotl(x,y)
+ *
+ * Method :
+ *	If (assume round-to-nearest) z=x*x+y*y
+ *	has error less than sqrt(2)/2 ulp, than
+ *	sqrt(z) has error less than 1 ulp (exercise).
+ *
+ *	So, compute sqrt(x*x+y*y) with some care as
+ *	follows to get the error below 1 ulp:
+ *
+ *	Assume x>y>0;
+ *	(if possible, set rounding to round-to-nearest)
+ *	1. if x > 2y  use
+ *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
+ *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
+ *	2. if x <= 2y use
+ *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
+ *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
+ *	y1= y with lower 32 bits chopped, y2 = y-y1.
+ *
+ *	NOTE: scaling may be necessary if some argument is too
+ *	      large or too tiny
+ *
+ * Special cases:
+ *	hypot(x,y) is INF if x or y is +INF or -INF; else
+ *	hypot(x,y) is NAN if x or y is NAN.
+ *
+ * Accuracy:
+ * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
+ * 	than 1 ulps (units in the last place)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __ieee754_hypotl(long double x, long double y)
+#else
+	long double __ieee754_hypotl(x,y)
+	long double x, y;
+#endif
+{
+	long double a,b,t1,t2,y1,y2,w;
+	u_int32_t j,k,ea,eb;
+
+	GET_LDOUBLE_EXP(ea,x);
+	ea &= 0x7fff;
+	GET_LDOUBLE_EXP(eb,y);
+	eb &= 0x7fff;
+	if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;}
+	SET_LDOUBLE_EXP(a,ea);	/* a <- |a| */
+	SET_LDOUBLE_EXP(b,eb);	/* b <- |b| */
+	if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */
+	k=0;
+	if(ea > 0x5f3f) {	/* a>2**8000 */
+	   if(ea == 0x7fff) {	/* Inf or NaN */
+	       u_int32_t exp,high,low;
+	       w = a+b;			/* for sNaN */
+	       GET_LDOUBLE_WORDS(exp,high,low,a);
+	       if(((high&0x7fffffff)|low)==0) w = a;
+	       GET_LDOUBLE_WORDS(exp,high,low,b);
+	       if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b;
+	       return w;
+	   }
+	   /* scale a and b by 2**-9600 */
+	   ea -= 0x2580; eb -= 0x2580;	k += 9600;
+	   SET_LDOUBLE_EXP(a,ea);
+	   SET_LDOUBLE_EXP(b,eb);
+	}
+	if(eb < 0x20bf) {	/* b < 2**-8000 */
+	    if(eb == 0) {	/* subnormal b or 0 */
+	        u_int32_t exp,high,low;
+		GET_LDOUBLE_WORDS(exp,high,low,b);
+		if((high|low)==0) return a;
+		SET_LDOUBLE_WORDS(t1, 0x7ffd, 0, 0);	/* t1=2^16382 */
+		b *= t1;
+		a *= t1;
+		k -= 16382;
+	    } else {		/* scale a and b by 2^9600 */
+	        ea += 0x2580; 	/* a *= 2^9600 */
+		eb += 0x2580;	/* b *= 2^9600 */
+		k -= 9600;
+		SET_LDOUBLE_EXP(a,ea);
+		SET_LDOUBLE_EXP(b,eb);
+	    }
+	}
+    /* medium size a and b */
+	w = a-b;
+	if (w>b) {
+	    u_int32_t high;
+	    GET_LDOUBLE_MSW(high,a);
+	    SET_LDOUBLE_WORDS(t1,ea,high,0);
+	    t2 = a-t1;
+	    w  = __ieee754_sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));
+	} else {
+	    u_int32_t high;
+	    GET_LDOUBLE_MSW(high,b);
+	    a  = a+a;
+	    SET_LDOUBLE_WORDS(y1,eb,high,0);
+	    y2 = b - y1;
+	    GET_LDOUBLE_MSW(high,a);
+	    SET_LDOUBLE_WORDS(t1,ea+1,high,0);
+	    t2 = a - t1;
+	    w  = __ieee754_sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b)));
+	}
+	if(k!=0) {
+	    u_int32_t exp;
+	    t1 = 1.0;
+	    GET_LDOUBLE_EXP(exp,t1);
+	    SET_LDOUBLE_EXP(t1,exp+k);
+	    return t1*w;
+	} else return w;
+}
diff --git a/sysdeps/ieee754/ldbl-96/e_remainderl.c b/sysdeps/ieee754/ldbl-96/e_remainderl.c
new file mode 100644
index 0000000000..e721a6e8cd
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/e_remainderl.c
@@ -0,0 +1,83 @@
+/* e_remainderl.c -- long double version of e_remainder.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* __ieee754_remainderl(x,p)
+ * Return :
+ * 	returns  x REM p  =  x - [x/p]*p as if in infinite
+ * 	precise arithmetic, where [x/p] is the (infinite bit)
+ *	integer nearest x/p (in half way case choose the even one).
+ * Method :
+ *	Based on fmod() return x-[x/p]chopped*p exactlp.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double zero = 0.0;
+#else
+static long double zero = 0.0;
+#endif
+
+
+#ifdef __STDC__
+	long double __ieee754_remainderl(long double x, long double p)
+#else
+	long double __ieee754_remainderl(x,p)
+	long double x,p;
+#endif
+{
+	u_int32_t sx,sex,sep,x0,x1,p0,p1;
+	long double p_half;
+
+	GET_LDOUBLE_WORDS(sex,x0,x1,x);
+	GET_LDOUBLE_WORDS(sep,p0,p1,p);
+	sx = sex&0x8000;
+	sep &= 0x7fff;
+	sex &= 0x7fff;
+
+    /* purge off exception values */
+	if((sep|p0|p1)==0) return (x*p)/(x*p); 	/* p = 0 */
+	if((sex==0x7fff)||			/* x not finite */
+	  ((sep==0x7fff)&&			/* p is NaN */
+	   ((p0|p1)!=0)))
+	    return (x*p)/(x*p);
+
+
+	if (sep<0x7ffe) x = __ieee754_fmodl(x,p+p);	/* now x < 2p */
+	if (((sex-sep)|(x0-p0)|(x1-p1))==0) return zero*x;
+	x  = fabsl(x);
+	p  = fabsl(p);
+	if (sep<0x0002) {
+	    if(x+x>p) {
+		x-=p;
+		if(x+x>=p) x -= p;
+	    }
+	} else {
+	    p_half = 0.5*p;
+	    if(x>p_half) {
+		x-=p;
+		if(x>=p_half) x -= p;
+	    }
+	}
+	GET_LDOUBLE_EXP(sex,x);
+	SET_LDOUBLE_EXP(x,sex^sx);
+	return x;
+}
diff --git a/sysdeps/ieee754/ldbl-96/e_sinhl.c b/sysdeps/ieee754/ldbl-96/e_sinhl.c
new file mode 100644
index 0000000000..4f9cfe2c38
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/e_sinhl.c
@@ -0,0 +1,91 @@
+/* e_asinhl.c -- long double version of e_asinh.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* __ieee754_sinhl(x)
+ * Method :
+ * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
+ *	1. Replace x by |x| (sinhl(-x) = -sinhl(x)).
+ *	2.
+ *		                                     E + E/(E+1)
+ *	    0        <= x <= 25     :  sinhl(x) := --------------, E=expm1l(x)
+ *			       			         2
+ *
+ *	    25       <= x <= lnovft :  sinhl(x) := expl(x)/2
+ *	    lnovft   <= x <= ln2ovft:  sinhl(x) := expl(x/2)/2 * expl(x/2)
+ *	    ln2ovft  <  x	    :  sinhl(x) := x*shuge (overflow)
+ *
+ * Special cases:
+ *	sinhl(x) is |x| if x is +INF, -INF, or NaN.
+ *	only sinhl(0)=0 is exact for finite x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double one = 1.0, shuge = 1.0e4931L;
+#else
+static long double one = 1.0, shuge = 1.0e4931L;
+#endif
+
+#ifdef __STDC__
+	long double __ieee754_sinhl(long double x)
+#else
+	long double __ieee754_sinhl(x)
+	long double x;
+#endif
+{
+	long double t,w,h;
+	u_int32_t jx,ix,i0,i1;
+
+    /* Words of |x|. */
+	GET_LDOUBLE_WORDS(jx,i0,i1,x);
+	ix = jx&0x7fff;
+
+    /* x is INF or NaN */
+	if(ix==0x7fff) return x+x;
+
+	h = 0.5;
+	if (jx & 0x8000) h = -h;
+    /* |x| in [0,25], return sign(x)*0.5*(E+E/(E+1))) */
+	if (ix < 0x4003 || (ix == 0x4003 && i0 <= 0xc8000000)) { /* |x|<25 */
+	    if (ix<0x3fe3) 		/* |x|<2**-28 */
+		if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
+	    t = __expm1l(fabsl(x));
+	    if(ix<0x3fff) return h*(2.0*t-t*t/(t+one));
+	    return h*(t+t/(t+one));
+	}
+
+    /* |x| in [25, log(maxdouble)] return 0.5*exp(|x|) */
+	if (ix < 0x400c || (ix == 0x400c && i0 < 0xb17217f7))
+		return h*__ieee754_expl(fabsl(x));
+
+    /* |x| in [log(maxdouble), overflowthreshold] */
+	if (ix<0x400c || (ix == 0x400c && (i0 < 0xb174ddc0
+					   || (i0 == 0xb174ddc0
+					       && i1 <= 0x31aec0ea)))) {
+	    w = __ieee754_expl(0.5*fabsl(x));
+	    t = h*w;
+	    return t*w;
+	}
+
+    /* |x| > overflowthreshold, sinhl(x) overflow */
+	return x*shuge;
+}
diff --git a/sysdeps/ieee754/ldbl2mpn.c b/sysdeps/ieee754/ldbl-96/ldbl2mpn.c
index e95895c0af..78e0b7097f 100644
--- a/sysdeps/ieee754/ldbl2mpn.c
+++ b/sysdeps/ieee754/ldbl-96/ldbl2mpn.c
@@ -24,8 +24,6 @@
 #include <math.h>
 #include <stdlib.h>
 
-#ifndef __NO_LONG_DOUBLE_MATH
-
 /* Convert a `long double' in IEEE854 standard double-precision format to a
    multi-precision integer representing the significand scaled up by its
    number of bits (64 for long double) and an integral power of two
@@ -95,5 +93,3 @@ __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
 
   return N;
 }
-
-#endif	/* __NO_LONG_DOUBLE_MATH */
diff --git a/sysdeps/ieee754/ldbl-96/math_ldbl.h b/sysdeps/ieee754/ldbl-96/math_ldbl.h
new file mode 100644
index 0000000000..dccc4a1240
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/math_ldbl.h
@@ -0,0 +1,98 @@
+#ifndef _MATH_PRIVATE_H_
+#error "Never use <math_ldbl.h> directly; include <math_private.h> instead."
+#endif
+
+/* A union which permits us to convert between a long double and
+   three 32 bit ints.  */
+
+#if __FLOAT_WORD_ORDER == BIG_ENDIAN
+
+typedef union
+{
+  long double value;
+  struct
+  {
+    unsigned int sign_exponent:16;
+    unsigned int empty:16;
+    u_int32_t msw;
+    u_int32_t lsw;
+  } parts;
+} ieee_long_double_shape_type;
+
+#endif
+
+#if __FLOAT_WORD_ORDER == LITTLE_ENDIAN
+
+typedef union
+{
+  long double value;
+  struct
+  {
+    u_int32_t lsw;
+    u_int32_t msw;
+    unsigned int sign_exponent:16;
+    unsigned int empty:16;
+  } parts;
+} ieee_long_double_shape_type;
+
+#endif
+
+/* Get three 32 bit ints from a double.  */
+
+#define GET_LDOUBLE_WORDS(exp,ix0,ix1,d)			\
+do {								\
+  ieee_long_double_shape_type ew_u;				\
+  ew_u.value = (d);						\
+  (exp) = ew_u.parts.sign_exponent;				\
+  (ix0) = ew_u.parts.msw;					\
+  (ix1) = ew_u.parts.lsw;					\
+} while (0)
+
+/* Set a double from two 32 bit ints.  */
+
+#define SET_LDOUBLE_WORDS(d,exp,ix0,ix1)			\
+do {								\
+  ieee_long_double_shape_type iw_u;				\
+  iw_u.parts.sign_exponent = (exp);				\
+  iw_u.parts.msw = (ix0);					\
+  iw_u.parts.lsw = (ix1);					\
+  (d) = iw_u.value;						\
+} while (0)
+
+/* Get the more significant 32 bits of a long double mantissa.  */
+
+#define GET_LDOUBLE_MSW(v,d)					\
+do {								\
+  ieee_long_double_shape_type sh_u;				\
+  sh_u.value = (d);						\
+  (v) = sh_u.parts.msw;						\
+} while (0)
+
+/* Set the more significant 32 bits of a long double mantissa from an int.  */
+
+#define SET_LDOUBLE_MSW(d,v)					\
+do {								\
+  ieee_long_double_shape_type sh_u;				\
+  sh_u.value = (d);						\
+  sh_u.parts.msw = (v);						\
+  (d) = sh_u.value;						\
+} while (0)
+
+/* Get int from the exponent of a long double.  */
+
+#define GET_LDOUBLE_EXP(exp,d)					\
+do {								\
+  ieee_long_double_shape_type ge_u;				\
+  ge_u.value = (d);						\
+  (exp) = ge_u.parts.sign_exponent;				\
+} while (0)
+
+/* Set exponent of a long double from an int.  */
+
+#define SET_LDOUBLE_EXP(d,exp)					\
+do {								\
+  ieee_long_double_shape_type se_u;				\
+  se_u.value = (d);						\
+  se_u.parts.sign_exponent = (exp);				\
+  (d) = se_u.value;						\
+} while (0)
diff --git a/sysdeps/ieee754/mpn2ldbl.c b/sysdeps/ieee754/ldbl-96/mpn2ldbl.c
index 7802355eba..1f049ba12e 100644
--- a/sysdeps/ieee754/mpn2ldbl.c
+++ b/sysdeps/ieee754/ldbl-96/mpn2ldbl.c
@@ -22,8 +22,6 @@
 #include <float.h>
 #include <math.h>
 
-#ifndef __NO_LONG_DOUBLE_MATH
-
 /* Convert a multi-precision integer of the needed number of bits (64 for
    long double) and an integral power of two to a `long double' in IEEE854
    extended-precision format.  */
@@ -47,5 +45,3 @@ __mpn_construct_long_double (mp_srcptr frac_ptr, int expt, int sign)
 
   return u.d;
 }
-
-#endif /* __NO_LONG_DOUBLE_MATH */
diff --git a/sysdeps/ieee754/ldbl-96/printf_fphex.c b/sysdeps/ieee754/ldbl-96/printf_fphex.c
new file mode 100644
index 0000000000..8dfa387df5
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/printf_fphex.c
@@ -0,0 +1,61 @@
+#ifndef LONG_DOUBLE_DENORM_BIAS
+# define LONG_DOUBLE_DENORM_BIAS (IEEE854_LONG_DOUBLE_BIAS - 1)
+#endif
+
+#define PRINT_FPHEX_LONG_DOUBLE							\
+do {										\
+      /* The "strange" 80 bit format on ix86 and m68k has an explicit		\
+	 leading digit in the 64 bit mantissa.  */				\
+      unsigned long long int num;						\
+										\
+      assert (sizeof (long double) == 12);					\
+										\
+      num = (((unsigned long long int) fpnum.ldbl.ieee.mantissa0) << 32		\
+	     | fpnum.ldbl.ieee.mantissa1);					\
+										\
+      zero_mantissa = num == 0;							\
+										\
+      if (sizeof (unsigned long int) > 6)					\
+	numstr = _itoa_word (num, numbuf + sizeof numbuf, 16,			\
+			     info->spec == 'A');				\
+      else									\
+	numstr = _itoa (num, numbuf + sizeof numbuf, 16, info->spec == 'A');	\
+										\
+      /* Fill with zeroes.  */							\
+      while (numstr > numbuf + (sizeof numbuf - 64 / 4))			\
+	*--numstr = '0';							\
+										\
+      /* We use a full nibble for the leading digit.  */			\
+      leading = *numstr++;							\
+										\
+      /* We have 3 bits from the mantissa in the leading nibble.		\
+	 Therefore we are here using `IEEE854_LONG_DOUBLE_BIAS + 3'.  */	\
+      exponent = fpnum.ldbl.ieee.exponent;					\
+										\
+      if (exponent == 0)							\
+	{									\
+	  if (zero_mantissa)							\
+	    expnegative = 0;							\
+	  else									\
+	    {									\
+	      /* This is a denormalized number.  */				\
+	      expnegative = 1;							\
+	      /* This is a hook for the m68k long double format, where the	\
+		 exponent bias is the same for normalized and denormalized	\
+		 numbers.  */							\
+	      exponent = LONG_DOUBLE_DENORM_BIAS + 3;				\
+	    }									\
+	}									\
+      else if (exponent >= IEEE854_LONG_DOUBLE_BIAS + 3)			\
+	{									\
+	  expnegative = 0;							\
+	  exponent -= IEEE854_LONG_DOUBLE_BIAS + 3;				\
+	}									\
+      else									\
+	{									\
+	  expnegative = 1;							\
+	  exponent = -(exponent - (IEEE854_LONG_DOUBLE_BIAS + 3));		\
+	}									\
+} while (0)
+
+#include <sysdeps/generic/printf_fphex.c>
diff --git a/sysdeps/ieee754/ldbl-96/s_asinhl.c b/sysdeps/ieee754/ldbl-96/s_asinhl.c
new file mode 100644
index 0000000000..6eb434c44b
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_asinhl.c
@@ -0,0 +1,70 @@
+/* s_asinhl.c -- long double version of s_asinh.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* asinhl(x)
+ * Method :
+ *	Based on
+ *		asinhl(x) = signl(x) * logl [ |x| + sqrtl(x*x+1) ]
+ *	we have
+ *	asinhl(x) := x  if  1+x*x=1,
+ *		  := signl(x)*(logl(x)+ln2)) for large |x|, else
+ *		  := signl(x)*logl(2|x|+1/(|x|+sqrtl(x*x+1))) if|x|>2, else
+ *		  := signl(x)*log1pl(|x| + x^2/(1 + sqrtl(1+x^2)))
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+one =  1.000000000000000000000e+00L, /* 0x3FFF, 0x00000000, 0x00000000 */
+ln2 =  6.931471805599453094287e-01L, /* 0x3FFE, 0xB17217F7, 0xD1CF79AC */
+huge=  1.000000000000000000e+4900L;
+
+#ifdef __STDC__
+	long double __asinhl(long double x)
+#else
+	long double __asinhl(x)
+	long double x;
+#endif
+{
+	long double t,w;
+	int32_t hx,ix;
+	GET_LDOUBLE_EXP(hx,x);
+	ix = hx&0x7fff;
+	if(ix==0x7fff) return x+x;	/* x is inf or NaN */
+	if(ix< 0x3fde) {	/* |x|<2**-34 */
+	    if(huge+x>one) return x;	/* return x inexact except 0 */
+	}
+	if(ix>0x4020) {		/* |x| > 2**34 */
+	    w = __ieee754_logl(fabsl(x))+ln2;
+	} else if (ix>0x4000) {	/* 2**34 > |x| > 2.0 */
+	    t = fabsl(x);
+	    w = __ieee754_logl(2.0*t+one/(__ieee754_sqrtl(x*x+one)+t));
+	} else {		/* 2.0 > |x| > 2**-28 */
+	    t = x*x;
+	    w =__log1pl(fabsl(x)+t/(one+__ieee754_sqrtl(one+t)));
+	}
+	if(hx&0x8000) return -w; else return w;
+}
+weak_alias (__asinhl, asinhl)
diff --git a/sysdeps/ieee754/ldbl-96/s_cbrtl.c b/sysdeps/ieee754/ldbl-96/s_cbrtl.c
new file mode 100644
index 0000000000..1d021b7c3c
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_cbrtl.c
@@ -0,0 +1,78 @@
+/* Compute cubic root of double value.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Dirk Alboth <dirka@uni-paderborn.de> and
+   Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include "math.h"
+#include "math_private.h"
+
+
+#define CBRT2 1.2599210498948731648		/* 2^(1/3) */
+#define SQR_CBRT2 1.5874010519681994748		/* 2^(2/3) */
+
+/* We don't use long double values here since U need not be computed
+   with full precision.  */
+static const double factor[5] =
+{
+  1.0 / SQR_CBRT2,
+  1.0 / CBRT2,
+  1.0,
+  CBRT2,
+  SQR_CBRT2
+};
+
+
+long double
+__cbrtl (long double x)
+{
+  long double xm, ym, u, t2;
+  int xe;
+
+  /* Reduce X.  XM now is an range 1.0 to 0.5.  */
+  xm = __frexpl (fabs (x), &xe);
+
+  /* If X is not finite or is null return it (with raising exceptions
+     if necessary.
+     Note: *Our* version of `frexp' sets XE to zero if the argument is
+     Inf or NaN.  This is not portable but faster.  */
+  if (xe == 0 && fpclassify (x) <= FP_ZERO)
+    return x + x;
+
+  u = (0.338058687610520237
+       + (1.67595307700780102
+	  + (-2.82414939754975962
+	     + (4.09559907378707839 +
+		(-4.11151425200350531
+		 + (2.65298938441952296 +
+		    (-0.988553671195413709
+		     + 0.161617097923756032 * xm)
+		    * xm)
+		 * xm)
+		* xm)
+	     * xm)
+	  * xm)
+       *xm);
+
+  t2 = u * u * u;
+
+  ym = u * (t2 + 2.0 * xm) / (2.0 * t2 + xm) * factor[2 + xe % 3];
+
+  return __ldexpl (x > 0.0 ? ym : -ym, xe / 3);
+}
+weak_alias (__cbrtl, cbrtl)
diff --git a/sysdeps/ieee754/ldbl-96/s_ceill.c b/sysdeps/ieee754/ldbl-96/s_ceill.c
new file mode 100644
index 0000000000..d53f3954ba
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_ceill.c
@@ -0,0 +1,89 @@
+/* s_ceill.c -- long double version of s_ceil.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * ceill(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ *	Bit twiddling.
+ * Exception:
+ *	Inexact flag raised if x not equal to ceil(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double huge = 1.0e4930;
+#else
+static long double huge = 1.0e4930;
+#endif
+
+#ifdef __STDC__
+	long double __ceill(long double x)
+#else
+	long double __ceill(x)
+	long double x;
+#endif
+{
+	int32_t i1,j0;
+	u_int32_t i,j,se,i0,sx;
+	GET_LDOUBLE_WORDS(se,i0,i1,x);
+	sx = (se>>15)&1;
+	j0 = (se&0x7fff)-0x3fff;
+	if(j0<31) {
+	    if(j0<0) { 	/* raise inexact if x != 0 */
+		if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+		    if(sx) {se=0x8000;i0=0;i1=0;}
+		    else if((i0|i1)!=0) { se=0x3fff;i0=0;i1=0;}
+		}
+	    } else {
+		i = (0x7fffffff)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		if(huge+x>0.0) {	/* raise inexact flag */
+		    if(sx==0) {
+			if (j0>0) i0 += (0x80000000)>>j0;
+			else ++se;
+		    }
+		    i0 &= (~i); i1=0;
+		}
+	    }
+	} else if (j0>62) {
+	    if(j0==0x4000) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = ((u_int32_t)(0xffffffff))>>(j0-31);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    if(huge+x>0.0) { 		/* raise inexact flag */
+		if(sx==0) {
+		    if(j0==31) i0+=1;
+		    else {
+			j = i1 + (1<<(63-j0));
+			if(j<i1) i0+=1;	/* got a carry */
+			i1 = j;
+		    }
+		}
+		i1 &= (~i);
+	    }
+	}
+	SET_LDOUBLE_WORDS(x,se,i0,i1);
+	return x;
+}
+weak_alias (__ceill, ceill)
diff --git a/sysdeps/ieee754/ldbl-96/s_copysignl.c b/sysdeps/ieee754/ldbl-96/s_copysignl.c
new file mode 100644
index 0000000000..9976575b3b
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_copysignl.c
@@ -0,0 +1,43 @@
+/* s_copysignl.c -- long double version of s_copysign.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * copysignl(long double x, long double y)
+ * copysignl(x,y) returns a value with the magnitude of x and
+ * with the sign bit of y.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __copysignl(long double x, long double y)
+#else
+	long double __copysignl(x,y)
+	long double x,y;
+#endif
+{
+	u_int32_t es1,es2;
+	GET_LDOUBLE_EXP(es1,x);
+	GET_LDOUBLE_EXP(es2,y);
+	SET_LDOUBLE_EXP(x,(es1&0x7fff)|(es2&0x8000));
+        return x;
+}
+weak_alias (__copysignl, copysignl)
diff --git a/sysdeps/ieee754/ldbl-96/s_cosl.c b/sysdeps/ieee754/ldbl-96/s_cosl.c
new file mode 100644
index 0000000000..9765f7fd4e
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_cosl.c
@@ -0,0 +1,88 @@
+/* s_cosl.c -- long double version of s_cos.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* cosl(x)
+ * Return cosine function of x.
+ *
+ * kernel function:
+ *	__kernel_sinl		... sine function on [-pi/4,pi/4]
+ *	__kernel_cosl		... cosine function on [-pi/4,pi/4]
+ *	__ieee754_rem_pio2l	... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *	in [-pi/4 , +pi/4], and let n = k mod 4.
+ *	We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *	    0	       S	   C		 T
+ *	    1	       C	  -S		-1/T
+ *	    2	      -S	  -C		 T
+ *	    3	      -C	   S		-1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *	TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __cosl(long double x)
+#else
+	long double __cosl(x)
+	long double x;
+#endif
+{
+	long double y[2],z=0.0;
+	int32_t n, se, i0, i1;
+
+    /* High word of x. */
+	GET_LDOUBLE_WORDS(se,i0,i1,x);
+
+    /* |x| ~< pi/4 */
+	se &= 0x7fff;
+	if(se < 0x3ffe || (se == 0x3ffe && i0 <= 0xc90fdaa2))
+	  return __kernel_cosl(x,z);
+
+    /* cos(Inf or NaN) is NaN */
+	else if (se==0x7fff) return x-x;
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2l(x,y);
+	    switch(n&3) {
+		case 0: return  __kernel_cosl(y[0],y[1]);
+		case 1: return -__kernel_sinl(y[0],y[1],1);
+		case 2: return -__kernel_cosl(y[0],y[1]);
+		default:
+		        return  __kernel_sinl(y[0],y[1],1);
+	    }
+	}
+}
+weak_alias (__cosl, cosl)
diff --git a/sysdeps/ieee754/ldbl-96/s_fabsl.c b/sysdeps/ieee754/ldbl-96/s_fabsl.c
new file mode 100644
index 0000000000..f7170503fb
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_fabsl.c
@@ -0,0 +1,40 @@
+/* s_fabsl.c -- long double version of s_fabs.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * fabsl(x) returns the absolute value of x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __fabsl(long double x)
+#else
+	long double __fabsl(x)
+	long double x;
+#endif
+{
+	u_int32_t exp;
+	GET_LDOUBLE_EXP(exp,x);
+	SET_LDOUBLE_EXP(x,exp&0x7fff);
+        return x;
+}
+weak_alias (__fabsl, fabsl)
diff --git a/sysdeps/ieee754/ldbl-96/s_finitel.c b/sysdeps/ieee754/ldbl-96/s_finitel.c
new file mode 100644
index 0000000000..6e444e90d0
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_finitel.c
@@ -0,0 +1,40 @@
+/* s_finitel.c -- long double version of s_finite.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * finitel(x) returns 1 is x is finite, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __finitel(long double x)
+#else
+	int __finitel(x)
+	long double x;
+#endif
+{
+	int32_t exp;
+	GET_LDOUBLE_EXP(exp,x);
+	return (int)((u_int32_t)((exp&0x7fff)-0x7fff)>>31);
+}
+weak_alias (__finitel, finitel)
diff --git a/sysdeps/ieee754/ldbl-96/s_floorl.c b/sysdeps/ieee754/ldbl-96/s_floorl.c
new file mode 100644
index 0000000000..fb0c37e801
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_floorl.c
@@ -0,0 +1,90 @@
+/* s_floorl.c -- long double version of s_floor.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * floorl(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ *	Bit twiddling.
+ * Exception:
+ *	Inexact flag raised if x not equal to floor(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double huge = 1.0e4930;
+#else
+static long double huge = 1.0e4930;
+#endif
+
+#ifdef __STDC__
+	long double __floorl(long double x)
+#else
+	long double __floorl(x)
+	long double x;
+#endif
+{
+	int32_t i1,j0;
+	u_int32_t i,j,se,i0,sx;
+	GET_LDOUBLE_WORDS(se,i0,i1,x);
+	sx = (se>>15)&1;
+	j0 = (se&0x7fff)-0x3fff;
+	if(j0<31) {
+	    if(j0<0) { 	/* raise inexact if x != 0 */
+		if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+		    if(sx==0) {se=0;i0=i1=0;}
+		    else if(((se&0x7fff)|i0|i1)!=0)
+			{ se=0xbfff;i0=i1=0;}
+		}
+	    } else {
+		i = (0x7fffffff)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		if(huge+x>0.0) {	/* raise inexact flag */
+		    if(sx) {
+			if (j0>0) i0 += (0x80000000)>>j0;
+			else ++se;
+		    }
+		    i0 &= (~i); i1=0;
+		}
+	    }
+	} else if (j0>62) {
+	    if(j0==0x4000) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = ((u_int32_t)(0xffffffff))>>(j0-31);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    if(huge+x>0.0) { 		/* raise inexact flag */
+		if(sx) {
+		    if(j0==31) i0+=1;
+		    else {
+			j = i1+(1<<(63-j0));
+			if(j<i1) i0 +=1 ; 	/* got a carry */
+			i1=j;
+		    }
+		}
+		i1 &= (~i);
+	    }
+	}
+	SET_LDOUBLE_WORDS(x,se,i0,i1);
+	return x;
+}
+weak_alias (__floorl, floorl)
diff --git a/sysdeps/ieee754/ldbl-96/s_fpclassifyl.c b/sysdeps/ieee754/ldbl-96/s_fpclassifyl.c
new file mode 100644
index 0000000000..4df0b44f75
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_fpclassifyl.c
@@ -0,0 +1,44 @@
+/* Return classification value corresponding to argument.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+   Fixed by Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+int
+__fpclassifyl (long double x)
+{
+  u_int32_t ex, hx, lx, m;
+  int retval = FP_NORMAL;
+
+  GET_LDOUBLE_WORDS (ex, hx, lx, x);
+  m = (hx & 0x7fffffff) | lx;
+  ex &= 0x7fff;
+  if ((ex | m) == 0)
+    retval = FP_ZERO;
+  else if (ex == 0 && (hx & 0x80000000) == 0)
+    retval = FP_SUBNORMAL;
+  else if (ex == 0x7fff)
+    retval = m != 0 ? FP_NAN : FP_INFINITE;
+
+  return retval;
+}
diff --git a/sysdeps/ieee754/ldbl-96/s_frexpl.c b/sysdeps/ieee754/ldbl-96/s_frexpl.c
new file mode 100644
index 0000000000..7a49bc37c8
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_frexpl.c
@@ -0,0 +1,69 @@
+/* s_frexpl.c -- long double version of s_frexp.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * for non-zero x
+ *	x = frexpl(arg,&exp);
+ * return a long double fp quantity x such that 0.5 <= |x| <1.0
+ * and the corresponding binary exponent "exp". That is
+ *	arg = x*2^exp.
+ * If arg is inf, 0.0, or NaN, then frexpl(arg,&exp) returns arg
+ * with *exp=0.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+#if LDBL_MANT_DIG == 64
+two65 =  3.68934881474191032320e+19L; /* 0x4040, 0x80000000, 0x00000000 */
+#else
+# error "Cannot handle this MANT_DIG"
+#endif
+
+
+#ifdef __STDC__
+	long double __frexpl(long double x, int *eptr)
+#else
+	long double __frexpl(x, eptr)
+	long double x; int *eptr;
+#endif
+{
+	u_int32_t se, hx, ix, lx;
+	GET_LDOUBLE_WORDS(se,hx,lx,x);
+	ix = 0x7fff&se;
+	*eptr = 0;
+	if(ix==0x7fff||((ix|hx|lx)==0)) return x;	/* 0,inf,nan */
+	if (ix==0x0000) {		/* subnormal */
+	    x *= two65;
+	    GET_LDOUBLE_EXP(se,x);
+	    ix = se&0x7fff;
+	    *eptr = -65;
+	}
+	*eptr += ix-16382;
+	se = (se & 0x8000) | 0x3ffe;
+	SET_LDOUBLE_EXP(x,se);
+	return x;
+}
+weak_alias (__frexpl, frexpl)
diff --git a/sysdeps/ieee754/ldbl-96/s_ilogbl.c b/sysdeps/ieee754/ldbl-96/s_ilogbl.c
new file mode 100644
index 0000000000..d44229dcda
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_ilogbl.c
@@ -0,0 +1,56 @@
+/* s_ilogbl.c -- long double version of s_ilogb.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* ilogbl(long double x)
+ * return the binary exponent of non-zero x
+ * ilogbl(0) = 0x80000001
+ * ilogbl(inf/NaN) = 0x7fffffff (no signal is raised)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __ilogbl(long double x)
+#else
+	int __ilogbl(x)
+	long double x;
+#endif
+{
+	int32_t es,hx,lx,ix;
+
+	GET_LDOUBLE_EXP(es,x);
+	es &= 0x7fff;
+	if(es==0) {
+	    GET_LDOUBLE_WORDS(es,hx,lx,x);
+	    if((hx|lx)==0)
+		return FP_ILOGB0;	/* ilogbl(0) = FP_ILOGB0 */
+	    else			/* subnormal x */
+		if(hx==0) {
+		    for (ix = -16415; lx>0; lx<<=1) ix -=1;
+		} else {
+		    for (ix = -16383; hx>0; hx<<=1) ix -=1;
+		}
+	    return ix;
+	}
+	else if (es<0x7fff) return es-0x3fff;
+	else return FP_ILOGBNAN;
+}
+weak_alias (__ilogbl, ilogbl)
diff --git a/sysdeps/ieee754/ldbl-96/s_isinfl.c b/sysdeps/ieee754/ldbl-96/s_isinfl.c
new file mode 100644
index 0000000000..6f7c07c5af
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_isinfl.c
@@ -0,0 +1,29 @@
+/*
+ * Written by J.T. Conklin <jtc@netbsd.org>.
+ * Change for long double by Ulrich Drepper <drepper@cygnus.com>.
+ * Public domain.
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * isinfl(x) returns 1 if x is inf, -1 if x is -inf, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+int
+__isinfl (long double x)
+{
+	int32_t se,hx,lx;
+	GET_LDOUBLE_WORDS(se,hx,lx,x);
+	lx |= (hx & 0x7fffffff) | ((se & 0x7fff) ^ 0x7fff);
+	lx |= -lx;
+	se &= 0x8000;
+	return ~(lx >> 31) & (1 - (se >> 14));
+}
+weak_alias (__isinfl, isinfl)
diff --git a/sysdeps/ieee754/ldbl-96/s_isnanl.c b/sysdeps/ieee754/ldbl-96/s_isnanl.c
new file mode 100644
index 0000000000..0a7ff38433
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_isnanl.c
@@ -0,0 +1,44 @@
+/* s_isnanl.c -- long double version of s_isnan.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * isnanl(x) returns 1 is x is nan, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int __isnanl(long double x)
+#else
+	int __isnanl(x)
+	long double x;
+#endif
+{
+	int32_t se,hx,lx;
+	GET_LDOUBLE_WORDS(se,hx,lx,x);
+	se = (se & 0x7fff) << 1;
+	lx |= hx & 0x7fffffff;
+	se |= (u_int32_t)(lx|(-lx))>>31;
+	se = 0xfffe - se;
+	return (int)(((u_int32_t)(se))>>31);
+}
+weak_alias (__isnanl, isnanl)
diff --git a/sysdeps/ieee754/ldbl-96/s_llrintl.c b/sysdeps/ieee754/ldbl-96/s_llrintl.c
new file mode 100644
index 0000000000..2aeaa1e102
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_llrintl.c
@@ -0,0 +1,77 @@
+/* Round argument to nearest integral value according to current rounding
+   direction.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const long double two63[2] =
+{
+  9.223372036854775808000000e+18, /* 0x403E, 0x00000000, 0x00000000 */
+ -9.223372036854775808000000e+18  /* 0xC03E, 0x00000000, 0x00000000 */
+};
+
+
+long long int
+__llrintl (long double x)
+{
+  int32_t se,j0;
+  u_int32_t i0, i1;
+  long long int result;
+  volatile long double w;
+  long double t;
+  int sx;
+
+  GET_LDOUBLE_WORDS (se, i0, i1, x);
+
+  sx = (se >> 15) & 1;
+  j0 = (se & 0x7fff) - 0x3fff;
+
+  if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
+    {
+      if (j0 < -1)
+	return 0;
+      else if (j0 >= 63)
+	result = (((long long int) i0 << 32) | i1) << (j0 - 63);
+      else
+	{
+	  w = two63[sx] + x;
+	  t = w - two63[sx];
+	  GET_LDOUBLE_WORDS (se, i0, i1, t);
+	  j0 = (se & 0x7fff) - 0x3fff;
+
+	  if (j0 < 31)
+	    result = i0 >> (31 - j0);
+	  else
+	    result = ((long long int) i0 << (j0 - 31)) | (i1 >> (63 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long long int) x;
+    }
+
+  return sx ? -result : result;
+}
+
+weak_alias (__llrintl, llrintl)
diff --git a/sysdeps/ieee754/ldbl-96/s_llroundl.c b/sysdeps/ieee754/ldbl-96/s_llroundl.c
new file mode 100644
index 0000000000..4a537c871e
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_llroundl.c
@@ -0,0 +1,81 @@
+/* Round long double value to long long int.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long long int
+__llroundl (long double x)
+{
+  int32_t j0;
+  u_int32_t se, i1, i0;
+  long long int result;
+  int sign;
+
+  GET_LDOUBLE_WORDS (se, i0, i1, x);
+  j0 = (se & 0x7fff) - 0x3fff;
+  sign = (se & 0x8000) != 0 ? -1 : 1;
+
+  if (j0 < 31)
+    {
+      if (j0 < 0)
+	return j0 < -1 ? 0 : sign;
+      else
+	{
+	  u_int32_t j = i0 + (0x40000000 >> j0);
+	  if (j < i0)
+	    {
+	      j >>= 1;
+	      j |= 0x80000000;
+	      ++j0;
+	    }
+
+	  result = j >> (31 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
+    {
+      if (j0 >= 63)
+	result = (((long long int) i0 << 32) | i1) << (j0 - 63);
+      else
+	{
+	  u_int32_t j = i1 + (0x80000000 >> (j0 - 31));
+	  if (j < i1)
+	    ++i0;
+
+	  if (j0 == 31)
+	    result = (long long int) i0;
+	  else
+	    result = ((long long int) i0 << (j0 - 31)) | (j >> (63 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long long int) x;
+    }
+
+  return sign * result;
+}
+
+weak_alias (__llroundl, llroundl)
diff --git a/sysdeps/ieee754/ldbl-96/s_logbl.c b/sysdeps/ieee754/ldbl-96/s_logbl.c
new file mode 100644
index 0000000000..2cd9d105f8
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_logbl.c
@@ -0,0 +1,47 @@
+/* s_logbl.c -- long double version of s_logb.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * long double logbl(x)
+ * IEEE 754 logb. Included to pass IEEE test suite. Not recommend.
+ * Use ilogb instead.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __logbl(long double x)
+#else
+	long double __logbl(x)
+	long double x;
+#endif
+{
+	int32_t es,lx,ix;
+	GET_LDOUBLE_WORDS(es,ix,lx,x);
+	es &= 0x7fff;				/* exponent */
+	if((es|ix|lx)==0) return -1.0/fabs(x);
+	if(es==0x7fff) return x*x;
+	if(es==0) 			/* IEEE 754 logb */
+		return -16382.0;
+	else
+		return (long double) (es-0x3fff);
+}
+weak_alias (__logbl, logbl)
diff --git a/sysdeps/ieee754/ldbl-96/s_lrintl.c b/sysdeps/ieee754/ldbl-96/s_lrintl.c
new file mode 100644
index 0000000000..673cf3d9db
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_lrintl.c
@@ -0,0 +1,86 @@
+/* Round argument to nearest integral value according to current rounding
+   direction.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const long double two63[2] =
+{
+  9.223372036854775808000000e+18, /* 0x403E, 0x00000000, 0x00000000 */
+ -9.223372036854775808000000e+18  /* 0xC03E, 0x00000000, 0x00000000 */
+};
+
+
+long int
+__lrintl (long double x)
+{
+  int32_t se,j0;
+  u_int32_t i0, i1;
+  long int result;
+  volatile long double w;
+  long double t;
+  int sx;
+
+  GET_LDOUBLE_WORDS (se, i0, i1, x);
+
+  sx = (se >> 15) & 1;
+  j0 = (se & 0x7fff) - 0x3fff;
+
+  if (j0 < 31)
+    {
+      if (j0 < -1)
+	return 0;
+      else
+	{
+	  w = two63[sx] + x;
+	  t = w - two63[sx];
+	  GET_LDOUBLE_WORDS (se, i0, i1, t);
+	  j0 = (se & 0x7fff) - 0x3fff;
+
+	  result = i0 >> (31 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
+    {
+      if (j0 >= 63)
+	result = ((long int) i0 << (j0 - 31)) | (i1 << (j0 - 63));
+      else
+	{
+	  w = two63[sx] + x;
+	  t = w - two63[sx];
+	  GET_LDOUBLE_WORDS (se, i0, i1, t);
+	  j0 = (se & 0x7fff) - 0x3fff;
+
+	  result = ((long int) i0 << (j0 - 31)) | (i1 >> (63 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long int) x;
+    }
+
+  return sx ? -result : result;
+}
+
+weak_alias (__lrintl, lrintl)
diff --git a/sysdeps/ieee754/ldbl-96/s_lroundl.c b/sysdeps/ieee754/ldbl-96/s_lroundl.c
new file mode 100644
index 0000000000..3bdac830b4
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_lroundl.c
@@ -0,0 +1,78 @@
+/* Round long double value to long int.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long int
+__lroundl (long double x)
+{
+  int32_t j0;
+  u_int32_t se, i1, i0;
+  long int result;
+  int sign;
+
+  GET_LDOUBLE_WORDS (se, i0, i1, x);
+  j0 = (se & 0x7fff) - 0x3fff;
+  sign = (se & 0x8000) != 0 ? -1 : 1;
+
+  if (j0 < 31)
+    {
+      if (j0 < 0)
+	return j0 < -1 ? 0 : sign;
+      else
+	{
+	  u_int32_t j = i0 + (0x40000000 >> j0);
+	  if (j < i0)
+	    {
+	      j >>= 1;
+	      j |= 0x80000000;
+	      ++j0;
+	    }
+
+	  result = j >> (31 - j0);
+	}
+    }
+  else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
+    {
+      if (j0 >= 63)
+	result = ((long int) i0 << (j0 - 31)) | (i1 << (j0 - 63));
+      else
+	{
+	  u_int32_t j = i1 + (0x80000000 >> (j0 - 31));
+	  if (j < i1)
+	    ++i0;
+
+	  result = ((long int) i0 << (j0 - 31)) | (j >> (63 - j0));
+	}
+    }
+  else
+    {
+      /* The number is too large.  It is left implementation defined
+	 what happens.  */
+      return (long int) x;
+    }
+
+  return sign * result;
+}
+
+weak_alias (__lroundl, lroundl)
diff --git a/sysdeps/ieee754/ldbl-96/s_modfl.c b/sysdeps/ieee754/ldbl-96/s_modfl.c
new file mode 100644
index 0000000000..fb1b3acf30
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_modfl.c
@@ -0,0 +1,85 @@
+/* s_modfl.c -- long double version of s_modf.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * modfl(long double x, long double *iptr)
+ * return fraction part of x, and return x's integral part in *iptr.
+ * Method:
+ *	Bit twiddling.
+ *
+ * Exception:
+ *	No exception.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double one = 1.0;
+#else
+static long double one = 1.0;
+#endif
+
+#ifdef __STDC__
+	long double __modfl(long double x, long double *iptr)
+#else
+	long double __modfl(x, iptr)
+	long double x,*iptr;
+#endif
+{
+	int32_t i0,i1,j0;
+	u_int32_t i,se;
+	GET_LDOUBLE_WORDS(se,i0,i1,x);
+	j0 = (se&0x7fff)-0x3fff;	/* exponent of x */
+	if(j0<32) {			/* integer part in high x */
+	    if(j0<0) {			/* |x|<1 */
+	        SET_LDOUBLE_WORDS(*iptr,se&0x8000,0,0);	/* *iptr = +-0 */
+		return x;
+	    } else {
+		i = (0x7fffffff)>>j0;
+		if(((i0&i)|i1)==0) {		/* x is integral */
+		    *iptr = x;
+		    SET_LDOUBLE_WORDS(x,se&0x8000,0,0);	/* return +-0 */
+		    return x;
+		} else {
+		    SET_LDOUBLE_WORDS(*iptr,se,i0&(~i),0);
+		    return x - *iptr;
+		}
+	    }
+	} else if (j0>63) {		/* no fraction part */
+	    *iptr = x*one;
+	    /* We must handle NaNs separately.  */
+	    if (j0 == 0x4000 && ((i0 & 0x7fffffff) | i1))
+	      return x*one;
+	    SET_LDOUBLE_WORDS(x,se&0x8000,0,0);	/* return +-0 */
+	    return x;
+	} else {			/* fraction part in low x */
+	    i = ((u_int32_t)(0xffffffff))>>(j0-32);
+	    if((i1&i)==0) { 		/* x is integral */
+		*iptr = x;
+		SET_LDOUBLE_WORDS(x,se&0x8000,0,0);	/* return +-0 */
+		return x;
+	    } else {
+		SET_LDOUBLE_WORDS(*iptr,se,i0,i1&(~i));
+		return x - *iptr;
+	    }
+	}
+}
+weak_alias (__modfl, modfl)
diff --git a/sysdeps/ieee754/ldbl-96/s_nearbyintl.c b/sysdeps/ieee754/ldbl-96/s_nearbyintl.c
new file mode 100644
index 0000000000..92c3ebf368
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_nearbyintl.c
@@ -0,0 +1,95 @@
+/* s_rintl.c -- long double version of s_rint.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+/* Adapted for use as nearbyint by Ulrich Drepper <drepper@cygnus.com>.  */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * rintl(x)
+ * Return x rounded to integral value according to the prevailing
+ * rounding mode.
+ * Method:
+ *	Using floating addition.
+ * Exception:
+ *	Inexact flag raised if x not equal to rintl(x).
+ */
+
+#include <fenv.h>
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+TWO63[2]={
+  9.223372036854775808000000e+18, /* 0x403E, 0x00000000, 0x00000000 */
+ -9.223372036854775808000000e+18  /* 0xC03E, 0x00000000, 0x00000000 */
+};
+
+#ifdef __STDC__
+	long double __nearbyintl(long double x)
+#else
+	long double __nearbyintl(x)
+	long double x;
+#endif
+{
+	fenv_t env;
+	int32_t se,j0,sx;
+	u_int32_t i,i0,i1;
+	long double w,t;
+	GET_LDOUBLE_WORDS(se,i0,i1,x);
+	sx = (se>>15)&1;
+	j0 = (se&0x7fff)-0x3fff;
+	if(j0<31) {
+	    if(j0<0) {
+		if(((se&0x7fff)|i0|i1)==0) return x;
+		i1 |= i0;
+		i0 &= 0xe0000000;
+		i0 |= (i1|-i1)&0x80000000;
+		SET_LDOUBLE_MSW(x,i0);
+		feholdexcept (&env);
+	        w = TWO63[sx]+x;
+	        t = w-TWO63[sx];
+		fesetenv (&env);
+		GET_LDOUBLE_EXP(i0,t);
+		SET_LDOUBLE_EXP(t,(i0&0x7fff)|(sx<<15));
+	        return t;
+	    } else {
+		i = (0x7fffffff)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		i>>=1;
+		if(((i0&i)|i1)!=0) {
+		    if (j0==30) i1 = 0x40000000; else
+		    i0 = (i0&(~i))|((0x20000000)>>j0);
+		}
+	    }
+	} else if (j0>62) {
+	    if(j0==0x4000) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = ((u_int32_t)(0xffffffff))>>(j0-31);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    i>>=1;
+	    if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-31));
+	}
+	SET_LDOUBLE_WORDS(x,se,i0,i1);
+	feholdexcept (&env);
+	w = TWO63[sx]+x;
+	t = w-TWO63[sx];
+	fesetenv (&env);
+	return t;
+}
+weak_alias (__nearbyintl, nearbyintl)
diff --git a/sysdeps/ieee754/ldbl-96/s_nextafterl.c b/sysdeps/ieee754/ldbl-96/s_nextafterl.c
new file mode 100644
index 0000000000..aea57e3086
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_nextafterl.c
@@ -0,0 +1,101 @@
+/* s_nextafterl.c -- long double version of s_nextafter.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* IEEE functions
+ *	nextafterl(x,y)
+ *	return the next machine floating-point number of x in the
+ *	direction toward y.
+ *   Special cases:
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __nextafterl(long double x, long double y)
+#else
+	long double __nextafterl(x,y)
+	long double x,y;
+#endif
+{
+	int32_t hx,hy,ix,iy;
+	u_int32_t lx,ly,esx,esy;
+
+	GET_LDOUBLE_WORDS(esx,hx,lx,x);
+	GET_LDOUBLE_WORDS(esy,hy,ly,y);
+	ix = esx&0x7fff;		/* |x| */
+	iy = esy&0x7fff;		/* |y| */
+
+	if(((ix==0x7fff)&&((hx|lx)|-(hx|lx))!=0) ||   /* x is nan */
+	   ((iy==0x7fff)&&((hy|ly)|-(hy|ly))!=0))     /* y is nan */
+	   return x+y;
+	if(x==y) return y;		/* x=y, return y */
+	if((ix|hx|lx)==0) {			/* x == 0 */
+	    SET_LDOUBLE_WORDS(x,esx&0x8000,0,1);/* return +-minsubnormal */
+	    y = x*x;
+	    if(y==x) return y; else return x;	/* raise underflow flag */
+	}
+	if(esx<0x8000) {			/* x > 0 */
+	    if(ix>iy||((ix==iy) && (hx>hy||((hx==hy)&&(lx>ly))))) {
+	      /* x > y, x -= ulp */
+		if(lx==0) {
+		    if (hx==0) esx -= 1;
+		    hx -= 1;
+		}
+		lx -= 1;
+	    } else {				/* x < y, x += ulp */
+		lx += 1;
+		if(lx==0) {
+		    hx += 1;
+		    if (hx==0)
+			esx += 1;
+		}
+	    }
+	} else {				/* x < 0 */
+	    if(esy>=0||(ix>iy||((ix==iy)&&(hx>hy||((hx==hy)&&(lx>ly)))))){
+	      /* x < y, x -= ulp */
+		if(lx==0) {
+		    if (hx==0) esx -= 1;
+		    hx -= 1;
+		}
+		lx -= 1;
+	    } else {				/* x > y, x += ulp */
+		lx += 1;
+		if(lx==0) {
+		    hx += 1;
+		    if (hx==0) esx += 1;
+		}
+	    }
+	}
+	esy = esx&0x7fff;
+	if(esy==0x7fff) return x+x;	/* overflow  */
+	if(esy==0) {			/* underflow */
+	    y = x*x;
+	    if(y!=x) {		/* raise underflow flag */
+	        SET_LDOUBLE_WORDS(y,esx,hx,lx);
+		return y;
+	    }
+	}
+	SET_LDOUBLE_WORDS(x,esx,hx,lx);
+	return x;
+}
+weak_alias (__nextafterl, nextafterl)
+strong_alias (__nextafterl, __nexttowardl)
+weak_alias (__nextafterl, nexttowardl)
diff --git a/sysdeps/ieee754/ldbl-96/s_nexttoward.c b/sysdeps/ieee754/ldbl-96/s_nexttoward.c
new file mode 100644
index 0000000000..debbb86a3c
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_nexttoward.c
@@ -0,0 +1,98 @@
+/* s_nexttoward.c
+ * Conversion from s_nextafter.c by Ulrich Drepper, Cygnus Support,
+ * drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* IEEE functions
+ *	nextafterx(x,y)
+ *	return the next machine floating-point number of x in the
+ *	direction toward y.
+ *   Special cases:
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	double __nexttoward(double x, long double y)
+#else
+	double __nexttoward(x,y)
+	double x;
+	long double y;
+#endif
+{
+	int32_t hx,ix,iy;
+	u_int32_t lx,hy,ly,esy;
+
+	EXTRACT_WORDS(hx,lx,x);
+	GET_LDOUBLE_WORDS(esy,hy,ly,y);
+	ix = hx&0x7fffffff;		/* |x| */
+	iy = esy&0x7fff;		/* |y| */
+
+	if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) ||   /* x is nan */
+	   ((iy>=0x7fff)&&((hy|ly)|-(hy|ly))!=0))           /* y is nan */
+	   return x+y;
+	if((long double) x==y) return x;	/* x=y, return x */
+	if((ix|lx)==0) {			/* x == 0 */
+	    double x2;
+	    INSERT_WORDS(x,esy&0x8000?0x80000000:0,1);/* return +-minsub */
+	    x2 = x*x;
+	    if(x2==x) return x2; else return x;	/* raise underflow flag */
+	}
+	if(hx>=0) {				/* x > 0 */
+	    if (esy>=0x8000||((ix>>20)&0x7ff)>iy-0x3c00
+		|| (((ix>>20)&0x7ff)==iy-0x3c00
+		    && (((hx<<11)|(lx>>21))>(hy&0x7fffffff)
+			|| (((hx<<11)|(lx>>21))==(hy&0x7fffffff)
+			    && (lx<<11)>ly)))) {	/* x > y, x -= ulp */
+		if(lx==0) hx -= 1;
+		lx -= 1;
+	    } else {				/* x < y, x += ulp */
+		lx += 1;
+		if(lx==0) hx += 1;
+	    }
+	} else {				/* x < 0 */
+	    if (esy<0x8000||((ix>>20)&0x7ff)>iy-0x3c00
+		|| (((ix>>20)&0x7ff)==iy-0x3c00
+		    && (((hx<<11)|(lx>>21))>(hy&0x7fffffff)
+			|| (((hx<<11)|(lx>>21))==(hy&0x7fffffff)
+			    && (lx<<11)>ly))))	{/* x < y, x -= ulp */
+		if(lx==0) hx -= 1;
+		lx -= 1;
+	    } else {				/* x > y, x += ulp */
+		lx += 1;
+		if(lx==0) hx += 1;
+	    }
+	}
+	hy = hx&0x7ff00000;
+	if(hy>=0x7ff00000) return x+x;	/* overflow  */
+	if(hy<0x00100000) {		/* underflow */
+	    double x2 = x*x;
+	    if(x2!=x) {		/* raise underflow flag */
+	        INSERT_WORDS(x2,hx,lx);
+		return x2;
+	    }
+	}
+	INSERT_WORDS(x,hx,lx);
+	return x;
+}
+weak_alias (__nexttoward, nexttoward)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__nexttoward, __nexttowardl)
+weak_alias (__nexttoward, nexttowardl)
+#endif
diff --git a/sysdeps/ieee754/ldbl-96/s_nexttowardf.c b/sysdeps/ieee754/ldbl-96/s_nexttowardf.c
new file mode 100644
index 0000000000..b7e9f00185
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_nexttowardf.c
@@ -0,0 +1,78 @@
+/* s_nexttowardf.c -- float version of s_nextafter.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	float __nexttowardf(float x, long double y)
+#else
+	float __nexttowardf(x,y)
+	float x;
+	long double y;
+#endif
+{
+	int32_t hx,ix,iy;
+	u_int32_t hy,ly,esy;
+
+	GET_FLOAT_WORD(hx,x);
+	GET_LDOUBLE_WORDS(esy,hy,ly,y);
+	ix = hx&0x7fffffff;		/* |x| */
+	iy = esy&0x7fff;		/* |y| */
+
+	if((ix>0x7f800000) ||   /* x is nan */
+	   (iy>=0x7fff&&((hy|ly)|-(hy|ly))!=0))     /* y is nan */
+	   return x+y;
+	if((long double) x==y) return y;	/* x=y, return y */
+	if(ix==0) {				/* x == 0 */
+	    float x2;
+	    SET_FLOAT_WORD(x,(esy&0x8000?0x80000000:0)|1);/* return +-minsub*/
+	    x2 = x*x;
+	    if(x2==x) return x2; else return x;	/* raise underflow flag */
+	}
+	if(hx>=0) {				/* x > 0 */
+	    if(esy>=0x8000||((ix>>23)&0xff)>iy-0x3f80
+	       || (((ix>>23)&0xff)==iy-0x3f80
+		   && ((ix&0x7fffff)<<8)>(hy&0x7fffffff))) {/* x > y, x -= ulp */
+		hx -= 1;
+	    } else {				/* x < y, x += ulp */
+		hx += 1;
+	    }
+	} else {				/* x < 0 */
+	    if(esy<0x8000||((ix>>23)&0xff)>iy-0x3f80
+	       || (((ix>>23)&0xff)==iy-0x3f80
+		   && ((ix&0x7fffff)<<8)>(hy&0x7fffffff))) {/* x < y, x -= ulp */
+		hx -= 1;
+	    } else {				/* x > y, x += ulp */
+		hx += 1;
+	    }
+	}
+	hy = hx&0x7f800000;
+	if(hy>=0x7f800000) return x+x;	/* overflow  */
+	if(hy<0x00800000) {		/* underflow */
+	    float x2 = x*x;
+	    if(x2!=x) {		/* raise underflow flag */
+	        SET_FLOAT_WORD(x2,hx);
+		return x2;
+	    }
+	}
+	SET_FLOAT_WORD(x,hx);
+	return x;
+}
+weak_alias (__nexttowardf, nexttowardf)
diff --git a/sysdeps/ieee754/ldbl-96/s_remquol.c b/sysdeps/ieee754/ldbl-96/s_remquol.c
new file mode 100644
index 0000000000..88ff298eb6
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_remquol.c
@@ -0,0 +1,109 @@
+/* Compute remainder and a congruent to the quotient.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const long double zero = 0.0;
+
+
+long double
+__remquol (long double x, long double p, int *quo)
+{
+  int32_t ex,ep,hx,hp;
+  u_int32_t sx,lx,lp;
+  int cquo,qs;
+
+  GET_LDOUBLE_WORDS (ex, hx, lx, x);
+  GET_LDOUBLE_WORDS (ep, hp, lp, p);
+  sx = ex & 0x8000;
+  qs = (sx ^ (ep & 0x8000)) >> 15;
+  ep &= 0x7fff;
+  ex &= 0x7fff;
+
+  /* Purge off exception values.  */
+  if ((ep | hp | lp) == 0)
+    return (x * p) / (x * p); 			/* p = 0 */
+  if ((ex == 0x7fff)				/* x not finite */
+      || ((ep == 0x7fff)			/* p is NaN */
+	  && ((hp | lp) != 0)))
+    return (x * p) / (x * p);
+
+  if (ep <= 0x7ffb)
+    x = __ieee754_fmodl (x, 8 * p);		/* now x < 8p */
+
+  if (((ex - ep) | (hx - hp) | (lx - lp)) == 0)
+    {
+      *quo = qs ? -1 : 1;
+      return zero * x;
+    }
+
+  x  = fabsl (x);
+  p  = fabsl (p);
+  cquo = 0;
+
+  if (x >= 4 * p)
+    {
+      x -= 4 * p;
+      cquo += 4;
+    }
+  if (x >= 2 * p)
+    {
+      x -= 2 * p;
+      cquo += 2;
+    }
+
+  if (ep < 0x0002)
+    {
+      if (x + x > p)
+	{
+	  x -= p;
+	  ++cquo;
+	  if (x + x >= p)
+	    {
+	      x -= p;
+	      ++cquo;
+	    }
+	}
+    }
+  else
+    {
+      long double p_half = 0.5 * p;
+      if (x > p_half)
+	{
+	  x -= p;
+	  ++cquo;
+	  if (x >= p_half)
+	    {
+	      x -= p;
+	      ++cquo;
+	    }
+	}
+    }
+
+  *quo = qs ? -cquo : cquo;
+
+  if (sx)
+    x = -x;
+  return x;
+}
+weak_alias (__remquol, remquol)
diff --git a/sysdeps/ieee754/ldbl-96/s_rintl.c b/sysdeps/ieee754/ldbl-96/s_rintl.c
new file mode 100644
index 0000000000..9d4777dcc4
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_rintl.c
@@ -0,0 +1,91 @@
+/* s_rintl.c -- long double version of s_rint.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * rintl(x)
+ * Return x rounded to integral value according to the prevailing
+ * rounding mode.
+ * Method:
+ *	Using floating addition.
+ * Exception:
+ *	Inexact flag raised if x not equal to rintl(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+TWO63[2]={
+  9.223372036854775808000000e+18, /* 0x403E, 0x00000000, 0x00000000 */
+ -9.223372036854775808000000e+18  /* 0xC03E, 0x00000000, 0x00000000 */
+};
+
+#ifdef __STDC__
+	long double __rintl(long double x)
+#else
+	long double __rintl(x)
+	long double x;
+#endif
+{
+	int32_t se,j0,sx;
+	u_int32_t i,i0,i1;
+	long double w,t;
+	GET_LDOUBLE_WORDS(se,i0,i1,x);
+	sx = (se>>15)&1;
+	j0 = (se&0x7fff)-0x3fff;
+	if(j0<31) {
+	    if(j0<0) {
+		if(((se&0x7fff)|i0|i1)==0) return x;
+		i1 |= i0;
+		i0 &= 0xe0000000;
+		i0 |= (i1|-i1)&0x80000000;
+		SET_LDOUBLE_MSW(x,i0);
+	        w = TWO63[sx]+x;
+	        t = w-TWO63[sx];
+		GET_LDOUBLE_EXP(i0,t);
+		SET_LDOUBLE_EXP(t,(i0&0x7fff)|(sx<<15));
+	        return t;
+	    } else {
+		i = (0x7fffffff)>>j0;
+		if(((i0&i)|i1)==0) return x; /* x is integral */
+		i>>=1;
+		if(((i0&i)|i1)!=0) {
+		    if(j0==30) i1 = 0x40000000; else
+		    i0 = (i0&(~i))|((0x20000000)>>j0);
+		}
+	    }
+	} else if (j0>62) {
+	    if(j0==0x4000) return x+x;	/* inf or NaN */
+	    else return x;		/* x is integral */
+	} else {
+	    i = ((u_int32_t)(0xffffffff))>>(j0-31);
+	    if((i1&i)==0) return x;	/* x is integral */
+	    i>>=1;
+	    if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-31));
+	}
+	SET_LDOUBLE_WORDS(x,se,i0,i1);
+	w = TWO63[sx]+x;
+	return w-TWO63[sx];
+}
+weak_alias (__rintl, rintl)
diff --git a/sysdeps/ieee754/ldbl-96/s_roundl.c b/sysdeps/ieee754/ldbl-96/s_roundl.c
new file mode 100644
index 0000000000..d7482b9b7c
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_roundl.c
@@ -0,0 +1,106 @@
+/* Round long double to integer away from zero.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const long double huge = 1.0e4930;
+
+
+long double
+__roundl (long double x)
+{
+  int32_t j0;
+  u_int32_t se, i1, i0;
+
+  GET_LDOUBLE_WORDS (se, i0, i1, x);
+  j0 = (se & 0x7fff) - 0x3fff;
+  if (j0 < 31)
+    {
+      if (j0 < 0)
+	{
+	  if (huge + x > 0.0)
+	    {
+	      se &= 0x8000;
+	      i0 = i1 = 0;
+	      if (j0 == -1)
+		{
+		  se |= 0x3fff;
+		  i0 = 0x80000000;
+		}
+	    }
+	}
+      else
+	{
+	  u_int32_t i = 0x7fffffff >> j0;
+	  if (((i0 & i) | i1) == 0)
+	    /* X is integral.  */
+	    return x;
+	  if (huge + x > 0.0)
+	    {
+	      /* Raise inexact if x != 0.  */
+	      u_int32_t j = i0 + (0x40000000 >> j0);
+	      if (j < i0)
+		se += 1;
+	      i0 = (j & ~i) | 0x80000000;
+	      i1 = 0;
+	    }
+	}
+    }
+  else if (j0 > 62)
+    {
+      if (j0 == 0x4000)
+	/* Inf or NaN.  */
+	return x + x;
+      else
+	return x;
+    }
+  else
+    {
+      u_int32_t i = 0xffffffff >> (j0 - 31);
+      if ((i1 & i) == 0)
+	/* X is integral.  */
+	return x;
+
+      if (huge + x > 0.0)
+	{
+	  /* Raise inexact if x != 0.  */
+	  u_int32_t j = i1 + (1 << (62 - j0));
+	  if (j < i1)
+	    {
+	      u_int32_t k = i0 + 1;
+	      if (k < i0)
+		{
+		  se += 1;
+		  k |= 0x80000000;
+		}
+	      i0 = k;
+	    }
+	  i1 = j;
+	}
+      i1 &= ~i;
+    }
+
+  SET_LDOUBLE_WORDS (x, se, i0, i1);
+  return x;
+}
+weak_alias (__roundl, roundl)
diff --git a/sysdeps/ieee754/ldbl-96/s_scalblnl.c b/sysdeps/ieee754/ldbl-96/s_scalblnl.c
new file mode 100644
index 0000000000..8e556fabe1
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_scalblnl.c
@@ -0,0 +1,71 @@
+/* s_scalbnl.c -- long double version of s_scalbn.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * scalbnl (long double x, int n)
+ * scalbnl(x,n) returns x* 2**n  computed by  exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+two63   =  4.50359962737049600000e+15,
+twom63  =  1.08420217248550443400e-19,
+huge   = 1.0e+4900L,
+tiny   = 1.0e-4900L;
+
+#ifdef __STDC__
+	long double __scalblnl (long double x, long int n)
+#else
+	long double __scalblnl (x,n)
+	long double x; long int n;
+#endif
+{
+	int32_t k,es,hx,lx;
+	GET_LDOUBLE_WORDS(es,hx,lx,x);
+        k = es&0x7fff;				/* extract exponent */
+        if (k==0) {				/* 0 or subnormal x */
+            if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
+	    x *= two63;
+	    GET_LDOUBLE_EXP(es,x);
+	    k = (hx&0x7fff) - 63;
+	    }
+        if (k==0x7fff) return x+x;		/* NaN or Inf */
+        k = k+n;
+        if (n> 50000 || k > 0x7ffe)
+	  return huge*__copysignl(huge,x); /* overflow  */
+	if (n< -50000)
+	  return tiny*__copysignl(tiny,x);
+        if (k > 0) 				/* normal result */
+	    {SET_LDOUBLE_EXP(x,(es&0x8000)|k); return x;}
+        if (k <= -63)
+	    return tiny*__copysignl(tiny,x); 	/*underflow*/
+        k += 63;				/* subnormal result */
+	SET_LDOUBLE_EXP(x,(es&0x8000)|k);
+        return x*twom63;
+}
+weak_alias (__scalblnl, scalblnl)
diff --git a/sysdeps/ieee754/ldbl-96/s_scalbnl.c b/sysdeps/ieee754/ldbl-96/s_scalbnl.c
new file mode 100644
index 0000000000..34c52e773a
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_scalbnl.c
@@ -0,0 +1,71 @@
+/* s_scalbnl.c -- long double version of s_scalbn.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * scalbnl (long double x, int n)
+ * scalbnl(x,n) returns x* 2**n  computed by  exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+two63   =  4.50359962737049600000e+15,
+twom63  =  1.08420217248550443400e-19,
+huge   = 1.0e+4900L,
+tiny   = 1.0e-4900L;
+
+#ifdef __STDC__
+	long double __scalbnl (long double x, int n)
+#else
+	long double __scalbnl (x,n)
+	long double x; int n;
+#endif
+{
+	int32_t k,es,hx,lx;
+	GET_LDOUBLE_WORDS(es,hx,lx,x);
+        k = es&0x7fff;				/* extract exponent */
+        if (k==0) {				/* 0 or subnormal x */
+            if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
+	    x *= two63;
+	    GET_LDOUBLE_EXP(es,x);
+	    k = (hx&0x7fff) - 63;
+	    }
+        if (k==0x7fff) return x+x;		/* NaN or Inf */
+        k = k+n;
+        if (n> 50000 || k > 0x7ffe)
+	  return huge*__copysignl(huge,x); /* overflow  */
+	if (n< -50000)
+	  return tiny*__copysignl(tiny,x);
+        if (k > 0) 				/* normal result */
+	    {SET_LDOUBLE_EXP(x,(es&0x8000)|k); return x;}
+        if (k <= -63)
+	    return tiny*__copysignl(tiny,x); 	/*underflow*/
+        k += 63;				/* subnormal result */
+	SET_LDOUBLE_EXP(x,(es&0x8000)|k);
+        return x*twom63;
+}
+weak_alias (__scalbnl, scalbnl)
diff --git a/sysdeps/ieee754/ldbl-96/s_signbitl.c b/sysdeps/ieee754/ldbl-96/s_signbitl.c
new file mode 100644
index 0000000000..b12fdefff4
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_signbitl.c
@@ -0,0 +1,32 @@
+/* Return nonzero value if number is negative.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+int
+__signbitl (long double x)
+{
+  int32_t e;
+
+  GET_LDOUBLE_EXP (e, x);
+  return e & 0x8000;
+}
diff --git a/sysdeps/ieee754/ldbl-96/s_sincosl.c b/sysdeps/ieee754/ldbl-96/s_sincosl.c
new file mode 100644
index 0000000000..78c78d5619
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_sincosl.c
@@ -0,0 +1,74 @@
+/* Compute sine and cosine of argument.
+   Copyright (C) 1997 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+void
+__sincosl (long double x, long double *sinx, long double *cosx)
+{
+  int32_t se, i0, i1;
+
+  /* High word of x. */
+  GET_LDOUBLE_WORDS (se, i0, i1, x);
+
+  /* |x| ~< pi/4 */
+  se &= 0x7fff;
+  if (se < 0x3ffe || (se == 0x3ffe && i0 <= 0xc90fdaa2))
+    {
+      *sinx = __kernel_sinl (x, 0.0, 0);
+      *cosx = __kernel_cosl (x, 0.0);
+    }
+  else if (se == 0x7fff)
+    {
+      /* sin(Inf or NaN) is NaN */
+      *sinx = *cosx = x - x;
+    }
+  else
+    {
+      /* Argument reduction needed.  */
+      long double y[2];
+      int n;
+
+      n = __ieee754_rem_pio2l (x, y);
+      switch (n & 3)
+	{
+	case 0:
+	  *sinx = __kernel_sinl (y[0], y[1], 1);
+	  *cosx = __kernel_cosl (y[0], y[1]);
+	  break;
+	case 1:
+	  *sinx = __kernel_cosl (y[0], y[1]);
+	  *cosx = -__kernel_sinl (y[0], y[1], 1);
+	  break;
+	case 2:
+	  *sinx = -__kernel_sinl (y[0], y[1], 1);
+	  *cosx = -__kernel_cosl (y[0], y[1]);
+	  break;
+	default:
+	  *sinx = -__kernel_cosl (y[0], y[1]);
+	  *cosx = __kernel_sinl (y[0], y[1], 1);
+	  break;
+	}
+    }
+}
+weak_alias (__sincosl, sincosl)
diff --git a/sysdeps/ieee754/ldbl-96/s_sinl.c b/sysdeps/ieee754/ldbl-96/s_sinl.c
new file mode 100644
index 0000000000..4fd48805b4
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_sinl.c
@@ -0,0 +1,88 @@
+/* s_sinl.c -- long double version of s_sin.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* sinl(x)
+ * Return sine function of x.
+ *
+ * kernel function:
+ *	__kernel_sinl		... sine function on [-pi/4,pi/4]
+ *	__kernel_cosl		... cose function on [-pi/4,pi/4]
+ *	__ieee754_rem_pio2l	... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *	in [-pi/4 , +pi/4], and let n = k mod 4.
+ *	We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *	    0	       S	   C		 T
+ *	    1	       C	  -S		-1/T
+ *	    2	      -S	  -C		 T
+ *	    3	      -C	   S		-1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *	TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __sinl(long double x)
+#else
+	long double __sinl(x)
+	long double x;
+#endif
+{
+	long double y[2],z=0.0;
+	int32_t n, se, i0, i1;
+
+    /* High word of x. */
+	GET_LDOUBLE_WORDS(se,i0,i1,x);
+
+    /* |x| ~< pi/4 */
+	se &= 0x7fff;
+	if(se < 0x3ffe || (se == 0x3ffe && i0 <= 0xc90fdaa2))
+	  return __kernel_sinl(x,z,0);
+
+    /* sin(Inf or NaN) is NaN */
+	else if (se==0x7fff) return x-x;
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2l(x,y);
+	    switch(n&3) {
+		case 0: return  __kernel_sinl(y[0],y[1],1);
+		case 1: return  __kernel_cosl(y[0],y[1]);
+		case 2: return -__kernel_sinl(y[0],y[1],1);
+		default:
+			return -__kernel_cosl(y[0],y[1]);
+	    }
+	}
+}
+weak_alias (__sinl, sinl)
diff --git a/sysdeps/ieee754/ldbl-96/s_tanhl.c b/sysdeps/ieee754/ldbl-96/s_tanhl.c
new file mode 100644
index 0000000000..1e3dc3b613
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_tanhl.c
@@ -0,0 +1,95 @@
+/* s_tanhl.c -- long double version of s_tanh.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* tanhl(x)
+ * Return the Hyperbolic Tangent of x
+ *
+ * Method :
+ *				        x    -x
+ *				       e  - e
+ *	0. tanhl(x) is defined to be -----------
+ *				        x    -x
+ *				       e  + e
+ *	1. reduce x to non-negative by tanhl(-x) = -tanhl(x).
+ *	2.  0      <= x <= 2**-55 : tanhl(x) := x*(one+x)
+ *					         -t
+ *	    2**-55 <  x <=  1     : tanhl(x) := -----; t = expm1l(-2x)
+ *					        t + 2
+ *						      2
+ *	    1      <= x <=  23.0  : tanhl(x) := 1-  ----- ; t=expm1l(2x)
+ *						    t + 2
+ *	    23.0   <  x <= INF    : tanhl(x) := 1.
+ *
+ * Special cases:
+ *	tanhl(NaN) is NaN;
+ *	only tanhl(0)=0 is exact for finite argument.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double one=1.0, two=2.0, tiny = 1.0e-4900L;
+#else
+static long double one=1.0, two=2.0, tiny = 1.0e-4900L;
+#endif
+
+#ifdef __STDC__
+	long double __tanhl(long double x)
+#else
+	long double __tanhl(x)
+	long double x;
+#endif
+{
+	long double t,z;
+	int32_t se;
+	u_int32_t j0,j1,ix;
+
+    /* High word of |x|. */
+	GET_LDOUBLE_WORDS(se,j0,j1,x);
+	ix = se&0x7fff;
+
+    /* x is INF or NaN */
+	if(ix==0x7fff) {
+	    /* for NaN it's not important which branch: tanhl(NaN) = NaN */
+	    if (se&0x8000) return one/x-one;	/* tanhl(-inf)= -1; */
+	    else           return one/x+one;	/* tanhl(+inf)=+1 */
+	}
+
+    /* |x| < 23 */
+	if (ix < 0x4003 || (ix == 0x4003 && j0 < 0xb8000000u)) {/* |x|<23 */
+	    if ((ix|j0|j1) == 0)
+		return x;		/* x == +- 0 */
+	    if (ix<0x3fc8) 		/* |x|<2**-55 */
+		return x*(one+x);    	/* tanh(small) = small */
+	    if (ix>=0x3fff) {	/* |x|>=1  */
+		t = __expm1l(two*fabsl(x));
+		z = one - two/(t+two);
+	    } else {
+	        t = __expm1l(-two*fabsl(x));
+	        z= -t/(t+two);
+	    }
+    /* |x| > 23, return +-1 */
+	} else {
+	    z = one - tiny;		/* raised inexact flag */
+	}
+	return (se>0x7fff)? -z: z;
+}
+weak_alias (__tanhl, tanhl)
diff --git a/sysdeps/ieee754/ldbl-96/s_tanl.c b/sysdeps/ieee754/ldbl-96/s_tanl.c
new file mode 100644
index 0000000000..97a0b27f32
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_tanl.c
@@ -0,0 +1,81 @@
+/* s_tanl.c -- long double version of s_tan.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/* tanl(x)
+ * Return tangent function of x.
+ *
+ * kernel function:
+ *	__kernel_tanl		... tangent function on [-pi/4,pi/4]
+ *	__ieee754_rem_pio2l	... argument reduction routine
+ *
+ * Method.
+ *      Let S,C and T denote the sin, cos and tan respectively on
+ *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ *	in [-pi/4 , +pi/4], and let n = k mod 4.
+ *	We have
+ *
+ *          n        sin(x)      cos(x)        tan(x)
+ *     ----------------------------------------------------------
+ *	    0	       S	   C		 T
+ *	    1	       C	  -S		-1/T
+ *	    2	      -S	  -C		 T
+ *	    3	      -C	   S		-1/T
+ *     ----------------------------------------------------------
+ *
+ * Special cases:
+ *      Let trig be any of sin, cos, or tan.
+ *      trig(+-INF)  is NaN, with signals;
+ *      trig(NaN)    is that NaN;
+ *
+ * Accuracy:
+ *	TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	long double __tanl(long double x)
+#else
+	long double __tanl(x)
+	long double x;
+#endif
+{
+	long double y[2],z=0.0;
+	int32_t n, se;
+
+    /* High word of x. */
+	GET_LDOUBLE_EXP(se,x);
+
+    /* |x| ~< pi/4 */
+	se &= 0x7fff;
+	if(se <= 0x3ffe) return __kernel_tanl(x,z,1);
+
+    /* tan(Inf or NaN) is NaN */
+	else if (se==0x7fff) return x-x;		/* NaN */
+
+    /* argument reduction needed */
+	else {
+	    n = __ieee754_rem_pio2l(x,y);
+	    return __kernel_tanl(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
+							-1 -- n odd */
+	}
+}
+weak_alias (__tanl, tanl)
diff --git a/sysdeps/ieee754/ldbl-96/s_truncl.c b/sysdeps/ieee754/ldbl-96/s_truncl.c
new file mode 100644
index 0000000000..59c3b9c173
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/s_truncl.c
@@ -0,0 +1,57 @@
+/* Truncate argument to nearest integral value not larger than the argument.
+   Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long double
+__truncl (long double x)
+{
+  int32_t i0, j0;
+  u_int32_t se, i1;
+  int sx;
+
+  GET_LDOUBLE_WORDS (se, i0, i1, x);
+  sx = se & 0x8000;
+  j0 = (se & 0x7fff) - 0x3fff;
+  if (j0 < 31)
+    {
+      if (j0 < 0)
+	/* The magnitude of the number is < 1 so the result is +-0.  */
+	SET_LDOUBLE_WORDS (x, sx, 0, 0);
+      else
+	SET_LDOUBLE_WORDS (x, se, i0 & ~(0x7fffffff >> j0), 0);
+    }
+  else if (j0 > 63)
+    {
+      if (j0 == 0x4000)
+	/* x is inf or NaN.  */
+	return x + x;
+    }
+  else
+    {
+      SET_LDOUBLE_WORDS (x, se, i0, i1 & ~(0xffffffffu >> (j0 - 31)));
+    }
+
+  return x;
+}
+weak_alias (__truncl, truncl)
diff --git a/sysdeps/ieee754/ldbl-96/strtold.c b/sysdeps/ieee754/ldbl-96/strtold.c
new file mode 100644
index 0000000000..cabb787d4e
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/strtold.c
@@ -0,0 +1,42 @@
+/* Copyright (C) 1999 Free Software Foundation, Inc.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Library General Public License as
+   published by the Free Software Foundation; either version 2 of the
+   License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Library General Public License for more details.
+
+   You should have received a copy of the GNU Library General Public
+   License along with the GNU C Library; see the file COPYING.LIB.  If not,
+   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+#include <math.h>
+
+/* The actual implementation for all floating point sizes is in strtod.c.
+   These macros tell it to produce the `long double' version, `strtold'.  */
+
+# define FLOAT		long double
+# define FLT		LDBL
+# ifdef USE_IN_EXTENDED_LOCALE_MODEL
+#  define STRTOF	__strtold_l
+# else
+#  define STRTOF	strtold
+# endif
+# define MPN2FLOAT	__mpn_construct_long_double
+# define FLOAT_HUGE_VAL	HUGE_VALL
+# define SET_MANTISSA(flt, mant) \
+  do { union ieee854_long_double u;					      \
+       u.d = (flt);							      \
+       if ((mant & 0x7fffffffffffffffULL) == 0)				      \
+	 mant = 0x4000000000000000ULL;					      \
+       u.ieee.mantissa0 = (((mant) >> 32) & 0x7fffffff) | 0x80000000;	      \
+       u.ieee.mantissa1 = (mant) & 0xffffffff;				      \
+       (flt) = u.d;							      \
+  } while (0)
+
+# include "strtod.c"
diff --git a/sysdeps/ieee754/ldbl-96/w_expl.c b/sysdeps/ieee754/ldbl-96/w_expl.c
new file mode 100644
index 0000000000..b8152cea65
--- /dev/null
+++ b/sysdeps/ieee754/ldbl-96/w_expl.c
@@ -0,0 +1,60 @@
+/* w_expl.c -- long double version of w_exp.c.
+ * Conversion to long double by Ulrich Drepper,
+ * Cygnus Support, drepper@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: $";
+#endif
+
+/*
+ * wrapper expl(x)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+o_threshold=  1.135652340629414394949193107797076489134e4,
+  /* 0x400C, 0xB17217F7, 0xD1CF79AC */
+u_threshold= -1.140019167866942050398521670162263001513e4;
+  /* 0x400C, 0xB220C447, 0x69C201E8 */
+
+#ifdef __STDC__
+	long double __expl(long double x)	/* wrapper exp */
+#else
+	long double __expl(x)			/* wrapper exp */
+	long double x;
+#endif
+{
+#ifdef _IEEE_LIBM
+	return __ieee754_expl(x);
+#else
+	long double z;
+	z = __ieee754_expl(x);
+	if(_LIB_VERSION == _IEEE_) return z;
+	if(__finitel(x)) {
+	    if(x>o_threshold)
+	        return __kernel_standard(x,x,206); /* exp overflow */
+	    else if(x<u_threshold)
+	        return __kernel_standard(x,x,207); /* exp underflow */
+	}
+	return z;
+#endif
+}
+weak_alias (__expl, expl)
diff --git a/sysdeps/ieee754/s_lib_version.c b/sysdeps/ieee754/s_lib_version.c
new file mode 100644
index 0000000000..121bdaa540
--- /dev/null
+++ b/sysdeps/ieee754/s_lib_version.c
@@ -0,0 +1,40 @@
+/* @(#)s_lib_ver.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_lib_version.c,v 1.6 1995/05/10 20:47:44 jtc Exp $";
+#endif
+
+/*
+ * MACRO for standards
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+/*
+ * define and initialize _LIB_VERSION
+ */
+#ifdef _POSIX_MODE
+_LIB_VERSION_TYPE _LIB_VERSION = _POSIX_;
+#else
+#ifdef _XOPEN_MODE
+_LIB_VERSION_TYPE _LIB_VERSION = _XOPEN_;
+#else
+#ifdef _SVID3_MODE
+_LIB_VERSION_TYPE _LIB_VERSION = _SVID_;
+#else					/* default _IEEE_MODE */
+_LIB_VERSION_TYPE _LIB_VERSION = _IEEE_;
+#endif
+#endif
+#endif
+
diff --git a/sysdeps/ieee754/s_matherr.c b/sysdeps/ieee754/s_matherr.c
new file mode 100644
index 0000000000..1ad3eb3334
--- /dev/null
+++ b/sysdeps/ieee754/s_matherr.c
@@ -0,0 +1,35 @@
+/* @(#)s_matherr.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_matherr.c,v 1.6 1995/05/10 20:47:53 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+	int
+	weak_function
+	 __matherr(struct exception *x)
+#else
+	int
+	weak_function
+	__matherr(x)
+	struct exception *x;
+#endif
+{
+	int n=0;
+	if(x->arg1!=x->arg1) return 0;
+	return n;
+}
+weak_alias (__matherr, matherr)
diff --git a/sysdeps/ieee754/s_signgam.c b/sysdeps/ieee754/s_signgam.c
new file mode 100644
index 0000000000..021b0ffca1
--- /dev/null
+++ b/sysdeps/ieee754/s_signgam.c
@@ -0,0 +1,3 @@
+#include "math.h"
+#include "math_private.h"
+int signgam;