about summary refs log tree commit diff
path: root/sysdeps/ieee754
diff options
context:
space:
mode:
authorSiddhesh Poyarekar <siddhesh@redhat.com>2013-03-26 20:24:04 +0530
committerSiddhesh Poyarekar <siddhesh@redhat.com>2013-03-26 20:24:04 +0530
commit5739f705eed5cf58e7b439e5983542e06d7fc2da (patch)
tree8582d5275ea764cd9304eaac4d4258d7c16b54f5 /sysdeps/ieee754
parente375e83d17f930519f52342aa83c89e8a287fe1d (diff)
downloadglibc-5739f705eed5cf58e7b439e5983542e06d7fc2da.tar.gz
glibc-5739f705eed5cf58e7b439e5983542e06d7fc2da.tar.xz
glibc-5739f705eed5cf58e7b439e5983542e06d7fc2da.zip
Use integral constants
The compiler is smart enough to convert those into double for powerpc,
but if we put them as doubles, it adds overhead by performing those
operations in floating point mode.
Diffstat (limited to 'sysdeps/ieee754')
-rw-r--r--sysdeps/ieee754/dbl-64/mpa.c152
1 files changed, 76 insertions, 76 deletions
diff --git a/sysdeps/ieee754/dbl-64/mpa.c b/sysdeps/ieee754/dbl-64/mpa.c
index c238ccf2af..a3feb175ed 100644
--- a/sysdeps/ieee754/dbl-64/mpa.c
+++ b/sysdeps/ieee754/dbl-64/mpa.c
@@ -80,14 +80,14 @@ __acr (const mp_no *x, const mp_no *y, int p)
 {
   long i;
 
-  if (X[0] == ZERO)
+  if (X[0] == 0)
     {
-      if (Y[0] == ZERO)
+      if (Y[0] == 0)
 	i = 0;
       else
 	i = -1;
     }
-  else if (Y[0] == ZERO)
+  else if (Y[0] == 0)
     i = 1;
   else
     {
@@ -140,10 +140,10 @@ norm (const mp_no *x, double *y, int p)
     }
   else
     {
-      for (a = ONE, z[1] = X[1]; z[1] < TWO23;)
+      for (a = 1, z[1] = X[1]; z[1] < TWO23;)
 	{
-	  a *= TWO;
-	  z[1] *= TWO;
+	  a *= 2;
+	  z[1] *= 2;
 	}
 
       for (i = 2; i < 5; i++)
@@ -160,21 +160,21 @@ norm (const mp_no *x, double *y, int p)
 
       if (v == TWO18)
 	{
-	  if (z[4] == ZERO)
+	  if (z[4] == 0)
 	    {
 	      for (i = 5; i <= p; i++)
 		{
-		  if (X[i] == ZERO)
+		  if (X[i] == 0)
 		    continue;
 		  else
 		    {
-		      z[3] += ONE;
+		      z[3] += 1;
 		      break;
 		    }
 		}
 	    }
 	  else
-	    z[3] += ONE;
+	    z[3] += 1;
 	}
 
       c = (z[1] + R * (z[2] + R * z[3])) / a;
@@ -204,7 +204,7 @@ denorm (const mp_no *x, double *y, int p)
 #define R RADIXI
   if (EX < -44 || (EX == -44 && X[1] < TWO5))
     {
-      *y = ZERO;
+      *y = 0;
       return;
     }
 
@@ -213,21 +213,21 @@ denorm (const mp_no *x, double *y, int p)
       if (EX == -42)
 	{
 	  z[1] = X[1] + TWO10;
-	  z[2] = ZERO;
-	  z[3] = ZERO;
+	  z[2] = 0;
+	  z[3] = 0;
 	  k = 3;
 	}
       else if (EX == -43)
 	{
 	  z[1] = TWO10;
 	  z[2] = X[1];
-	  z[3] = ZERO;
+	  z[3] = 0;
 	  k = 2;
 	}
       else
 	{
 	  z[1] = TWO10;
-	  z[2] = ZERO;
+	  z[2] = 0;
 	  z[3] = X[1];
 	  k = 1;
 	}
@@ -238,7 +238,7 @@ denorm (const mp_no *x, double *y, int p)
 	{
 	  z[1] = X[1] + TWO10;
 	  z[2] = X[2];
-	  z[3] = ZERO;
+	  z[3] = 0;
 	  k = 3;
 	}
       else if (EX == -43)
@@ -251,7 +251,7 @@ denorm (const mp_no *x, double *y, int p)
       else
 	{
 	  z[1] = TWO10;
-	  z[2] = ZERO;
+	  z[2] = 0;
 	  z[3] = X[1];
 	  k = 1;
 	}
@@ -273,7 +273,7 @@ denorm (const mp_no *x, double *y, int p)
       else
 	{
 	  z[1] = TWO10;
-	  z[2] = ZERO;
+	  z[2] = 0;
 	  k = 1;
 	}
       z[3] = X[k];
@@ -285,11 +285,11 @@ denorm (const mp_no *x, double *y, int p)
     {
       for (i = k + 1; i <= p2; i++)
 	{
-	  if (X[i] == ZERO)
+	  if (X[i] == 0)
 	    continue;
 	  else
 	    {
-	      z[3] += ONE;
+	      z[3] += 1;
 	      break;
 	    }
 	}
@@ -306,9 +306,9 @@ denorm (const mp_no *x, double *y, int p)
 void
 __mp_dbl (const mp_no *x, double *y, int p)
 {
-  if (X[0] == ZERO)
+  if (X[0] == 0)
     {
-      *y = ZERO;
+      *y = 0;
       return;
     }
 
@@ -329,23 +329,23 @@ __dbl_mp (double x, mp_no *y, int p)
   long p2 = p;
 
   /* Sign.  */
-  if (x == ZERO)
+  if (x == 0)
     {
-      Y[0] = ZERO;
+      Y[0] = 0;
       return;
     }
-  else if (x > ZERO)
-    Y[0] = ONE;
+  else if (x > 0)
+    Y[0] = 1;
   else
     {
-      Y[0] = MONE;
+      Y[0] = -1;
       x = -x;
     }
 
   /* Exponent.  */
-  for (EY = ONE; x >= RADIX; EY += ONE)
+  for (EY = 1; x >= RADIX; EY += 1)
     x *= RADIXI;
-  for (; x < ONE; EY -= ONE)
+  for (; x < 1; EY -= 1)
     x *= RADIX;
 
   /* Digits.  */
@@ -356,7 +356,7 @@ __dbl_mp (double x, mp_no *y, int p)
       x *= RADIX;
     }
   for (; i <= p2; i++)
-    Y[i] = ZERO;
+    Y[i] = 0;
 }
 
 /* Add magnitudes of *X and *Y assuming that abs (*X) >= abs (*Y) > 0.  The
@@ -383,7 +383,7 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
       return;
     }
 
-  zk = ZERO;
+  zk = 0;
 
   for (; j > 0; i--, j--)
     {
@@ -391,12 +391,12 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
       if (zk >= RADIX)
 	{
 	  Z[k--] = zk - RADIX;
-	  zk = ONE;
+	  zk = 1;
 	}
       else
         {
 	  Z[k--] = zk;
-	  zk = ZERO;
+	  zk = 0;
 	}
     }
 
@@ -406,16 +406,16 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
       if (zk >= RADIX)
 	{
 	  Z[k--] = zk - RADIX;
-	  zk = ONE;
+	  zk = 1;
 	}
       else
         {
 	  Z[k--] = zk;
-	  zk = ZERO;
+	  zk = 0;
 	}
     }
 
-  if (zk == ZERO)
+  if (zk == 0)
     {
       for (i = 1; i <= p2; i++)
 	Z[i] = Z[i + 1];
@@ -423,7 +423,7 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
   else
     {
       Z[1] = zk;
-      EZ += ONE;
+      EZ += 1;
     }
 }
 
@@ -453,27 +453,27 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
 
   /* The relevant least significant digit in Y is non-zero, so we factor it in
      to enhance accuracy.  */
-  if (j < p2 && Y[j + 1] > ZERO)
+  if (j < p2 && Y[j + 1] > 0)
     {
       Z[k + 1] = RADIX - Y[j + 1];
-      zk = MONE;
+      zk = -1;
     }
   else
-    zk = Z[k + 1] = ZERO;
+    zk = Z[k + 1] = 0;
 
   /* Subtract and borrow.  */
   for (; j > 0; i--, j--)
     {
       zk += (X[i] - Y[j]);
-      if (zk < ZERO)
+      if (zk < 0)
 	{
 	  Z[k--] = zk + RADIX;
-	  zk = MONE;
+	  zk = -1;
 	}
       else
         {
 	  Z[k--] = zk;
-	  zk = ZERO;
+	  zk = 0;
 	}
     }
 
@@ -481,25 +481,25 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
   for (; i > 0; i--)
     {
       zk += X[i];
-      if (zk < ZERO)
+      if (zk < 0)
 	{
 	  Z[k--] = zk + RADIX;
-	  zk = MONE;
+	  zk = -1;
 	}
       else
         {
 	  Z[k--] = zk;
-	  zk = ZERO;
+	  zk = 0;
 	}
     }
 
   /* Normalize.  */
-  for (i = 1; Z[i] == ZERO; i++);
+  for (i = 1; Z[i] == 0; i++);
   EZ = EZ - i + 1;
   for (k = 1; i <= p2 + 1;)
     Z[k++] = Z[i++];
   for (; k <= p2;)
-    Z[k++] = ZERO;
+    Z[k++] = 0;
 }
 
 /* Add *X and *Y and store the result in *Z.  X and Y may overlap, but not X
@@ -511,12 +511,12 @@ __add (const mp_no *x, const mp_no *y, mp_no *z, int p)
 {
   int n;
 
-  if (X[0] == ZERO)
+  if (X[0] == 0)
     {
       __cpy (y, z, p);
       return;
     }
-  else if (Y[0] == ZERO)
+  else if (Y[0] == 0)
     {
       __cpy (x, z, p);
       return;
@@ -548,7 +548,7 @@ __add (const mp_no *x, const mp_no *y, mp_no *z, int p)
 	  Z[0] = Y[0];
 	}
       else
-	Z[0] = ZERO;
+	Z[0] = 0;
     }
 }
 
@@ -561,13 +561,13 @@ __sub (const mp_no *x, const mp_no *y, mp_no *z, int p)
 {
   int n;
 
-  if (X[0] == ZERO)
+  if (X[0] == 0)
     {
       __cpy (y, z, p);
       Z[0] = -Z[0];
       return;
     }
-  else if (Y[0] == ZERO)
+  else if (Y[0] == 0)
     {
       __cpy (x, z, p);
       return;
@@ -599,7 +599,7 @@ __sub (const mp_no *x, const mp_no *y, mp_no *z, int p)
 	  Z[0] = -Y[0];
 	}
       else
-	Z[0] = ZERO;
+	Z[0] = 0;
     }
 }
 
@@ -618,23 +618,23 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
   mantissa_store_t *diag;
 
   /* Is z=0?  */
-  if (__glibc_unlikely (X[0] * Y[0] == ZERO))
+  if (__glibc_unlikely (X[0] * Y[0] == 0))
     {
-      Z[0] = ZERO;
+      Z[0] = 0;
       return;
     }
 
   /* We need not iterate through all X's and Y's since it's pointless to
      multiply zeroes.  Here, both are zero...  */
   for (ip2 = p2; ip2 > 0; ip2--)
-    if (X[ip2] != ZERO || Y[ip2] != ZERO)
+    if (X[ip2] != 0 || Y[ip2] != 0)
       break;
 
-  a = X[ip2] != ZERO ? y : x;
+  a = X[ip2] != 0 ? y : x;
 
   /* ... and here, at least one of them is still zero.  */
   for (ip = ip2; ip > 0; ip--)
-    if (a->d[ip] != ZERO)
+    if (a->d[ip] != 0)
       break;
 
   /* The product looks like this for p = 3 (as an example):
@@ -661,19 +661,19 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
      Another thing that becomes evident is that only the most significant
      ip+ip2 digits of the result are non-zero, where ip and ip2 are the
      'internal precision' of the input numbers, i.e. digits after ip and ip2
-     are all ZERO.  */
+     are all 0.  */
 
   k = (__glibc_unlikely (p2 < 3)) ? p2 + p2 : p2 + 3;
 
   while (k > ip + ip2 + 1)
-    Z[k--] = ZERO;
+    Z[k--] = 0;
 
-  zk = ZERO;
+  zk = 0;
 
   /* Precompute sums of diagonal elements so that we can directly use them
      later.  See the next comment to know we why need them.  */
   diag = alloca (k * sizeof (mantissa_store_t));
-  mantissa_store_t d = ZERO;
+  mantissa_store_t d = 0;
   for (i = 1; i <= ip; i++)
     {
       d += X[i] * (mantissa_store_t) Y[i];
@@ -738,7 +738,7 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
   int e = EX + EY;
 
   /* Is there a carry beyond the most significant digit?  */
-  if (__glibc_unlikely (Z[1] == ZERO))
+  if (__glibc_unlikely (Z[1] == 0))
     {
       for (i = 1; i <= p2; i++)
 	Z[i] = Z[i + 1];
@@ -763,24 +763,24 @@ __sqr (const mp_no *x, mp_no *y, int p)
   mantissa_store_t yk;
 
   /* Is z=0?  */
-  if (__glibc_unlikely (X[0] == ZERO))
+  if (__glibc_unlikely (X[0] == 0))
     {
-      Y[0] = ZERO;
+      Y[0] = 0;
       return;
     }
 
   /* We need not iterate through all X's since it's pointless to
      multiply zeroes.  */
   for (ip = p; ip > 0; ip--)
-    if (X[ip] != ZERO)
+    if (X[ip] != 0)
       break;
 
   k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
 
   while (k > 2 * ip + 1)
-    Y[k--] = ZERO;
+    Y[k--] = 0;
 
-  yk = ZERO;
+  yk = 0;
 
   while (k > p)
     {
@@ -802,7 +802,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
       for (i = k - p, j = p; i < j; i++, j--)
 	yk2 += X[i] * (mantissa_store_t) X[j];
 
-      yk += 2.0 * yk2;
+      yk += 2 * yk2;
 
       DIV_RADIX (yk, Y[k]);
       k--;
@@ -820,7 +820,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
       for (i = 1, j = k - 1; i < j; i++, j--)
 	yk2 += X[i] * (mantissa_store_t) X[j];
 
-      yk += 2.0 * yk2;
+      yk += 2 * yk2;
 
       DIV_RADIX (yk, Y[k]);
       k--;
@@ -828,7 +828,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
   Y[k] = yk;
 
   /* Squares are always positive.  */
-  Y[0] = 1.0;
+  Y[0] = 1;
 
   /* Get the exponent sum into an intermediate variable.  This is a subtle
      optimization, where given enough registers, all operations on the exponent
@@ -836,7 +836,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
   int e = EX * 2;
 
   /* Is there a carry beyond the most significant digit?  */
-  if (__glibc_unlikely (Y[1] == ZERO))
+  if (__glibc_unlikely (Y[1] == 0))
     {
       for (i = 1; i <= p; i++)
 	Y[i] = Y[i + 1];
@@ -868,7 +868,7 @@ __inv (const mp_no *x, mp_no *y, int p)
   __cpy (x, &z, p);
   z.e = 0;
   __mp_dbl (&z, &t, p);
-  t = ONE / t;
+  t = 1 / t;
   __dbl_mp (t, y, p);
   EY -= EX;
 
@@ -894,8 +894,8 @@ __dvd (const mp_no *x, const mp_no *y, mp_no *z, int p)
 {
   mp_no w;
 
-  if (X[0] == ZERO)
-    Z[0] = ZERO;
+  if (X[0] == 0)
+    Z[0] = 0;
   else
     {
       __inv (y, &w, p);