diff options
author | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-09-02 11:01:07 -0500 |
---|---|---|
committer | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-09-13 15:33:59 -0500 |
commit | 02bbfb414f367c73196e6f23fa7435a08c92449f (patch) | |
tree | 5f70a6d722dbdb1d716f6cf4b34fd7ca50e62c80 /sysdeps/ieee754/ldbl-128/s_log1pl.c | |
parent | fd37b5a78ab215ea2599250ec345e25545410bce (diff) | |
download | glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.gz glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.xz glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.zip |
ldbl-128: Use L(x) macro for long double constants
This runs the attached sed script against these files using a regex which aggressively matches long double literals when not obviously part of a comment. Likewise, 5 digit or less integral constants are replaced with integer constants, excepting the two cases of 0 used in large tables, which are also the only integral values of the form x.0*E0L encountered within these converted files. Likewise, -L(x) is transformed into L(-x). Naturally, the script has a few minor hiccups which are more clearly remedied via the attached fixup patch. Such hiccups include, context-sensitive promotion to a real type, and munging constants inside harder to detect comment blocks.
Diffstat (limited to 'sysdeps/ieee754/ldbl-128/s_log1pl.c')
-rw-r--r-- | sysdeps/ieee754/ldbl-128/s_log1pl.c | 108 |
1 files changed, 54 insertions, 54 deletions
diff --git a/sysdeps/ieee754/ldbl-128/s_log1pl.c b/sysdeps/ieee754/ldbl-128/s_log1pl.c index ec99efb5e2..b8b2ffeba1 100644 --- a/sysdeps/ieee754/ldbl-128/s_log1pl.c +++ b/sysdeps/ieee754/ldbl-128/s_log1pl.c @@ -63,32 +63,32 @@ * relative peak error spread = 2.3e-14 */ static const _Float128 - P12 = 1.538612243596254322971797716843006400388E-6L, - P11 = 4.998469661968096229986658302195402690910E-1L, - P10 = 2.321125933898420063925789532045674660756E1L, - P9 = 4.114517881637811823002128927449878962058E2L, - P8 = 3.824952356185897735160588078446136783779E3L, - P7 = 2.128857716871515081352991964243375186031E4L, - P6 = 7.594356839258970405033155585486712125861E4L, - P5 = 1.797628303815655343403735250238293741397E5L, - P4 = 2.854829159639697837788887080758954924001E5L, - P3 = 3.007007295140399532324943111654767187848E5L, - P2 = 2.014652742082537582487669938141683759923E5L, - P1 = 7.771154681358524243729929227226708890930E4L, - P0 = 1.313572404063446165910279910527789794488E4L, + P12 = L(1.538612243596254322971797716843006400388E-6), + P11 = L(4.998469661968096229986658302195402690910E-1), + P10 = L(2.321125933898420063925789532045674660756E1), + P9 = L(4.114517881637811823002128927449878962058E2), + P8 = L(3.824952356185897735160588078446136783779E3), + P7 = L(2.128857716871515081352991964243375186031E4), + P6 = L(7.594356839258970405033155585486712125861E4), + P5 = L(1.797628303815655343403735250238293741397E5), + P4 = L(2.854829159639697837788887080758954924001E5), + P3 = L(3.007007295140399532324943111654767187848E5), + P2 = L(2.014652742082537582487669938141683759923E5), + P1 = L(7.771154681358524243729929227226708890930E4), + P0 = L(1.313572404063446165910279910527789794488E4), /* Q12 = 1.000000000000000000000000000000000000000E0L, */ - Q11 = 4.839208193348159620282142911143429644326E1L, - Q10 = 9.104928120962988414618126155557301584078E2L, - Q9 = 9.147150349299596453976674231612674085381E3L, - Q8 = 5.605842085972455027590989944010492125825E4L, - Q7 = 2.248234257620569139969141618556349415120E5L, - Q6 = 6.132189329546557743179177159925690841200E5L, - Q5 = 1.158019977462989115839826904108208787040E6L, - Q4 = 1.514882452993549494932585972882995548426E6L, - Q3 = 1.347518538384329112529391120390701166528E6L, - Q2 = 7.777690340007566932935753241556479363645E5L, - Q1 = 2.626900195321832660448791748036714883242E5L, - Q0 = 3.940717212190338497730839731583397586124E4L; + Q11 = L(4.839208193348159620282142911143429644326E1), + Q10 = L(9.104928120962988414618126155557301584078E2), + Q9 = L(9.147150349299596453976674231612674085381E3), + Q8 = L(5.605842085972455027590989944010492125825E4), + Q7 = L(2.248234257620569139969141618556349415120E5), + Q6 = L(6.132189329546557743179177159925690841200E5), + Q5 = L(1.158019977462989115839826904108208787040E6), + Q4 = L(1.514882452993549494932585972882995548426E6), + Q3 = L(1.347518538384329112529391120390701166528E6), + Q2 = L(7.777690340007566932935753241556479363645E5), + Q1 = L(2.626900195321832660448791748036714883242E5), + Q0 = L(3.940717212190338497730839731583397586124E4); /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), * where z = 2(x-1)/(x+1) @@ -97,27 +97,27 @@ static const _Float128 * relative peak error spread 1.1e-9 */ static const _Float128 - R5 = -8.828896441624934385266096344596648080902E-1L, - R4 = 8.057002716646055371965756206836056074715E1L, - R3 = -2.024301798136027039250415126250455056397E3L, - R2 = 2.048819892795278657810231591630928516206E4L, - R1 = -8.977257995689735303686582344659576526998E4L, - R0 = 1.418134209872192732479751274970992665513E5L, + R5 = L(-8.828896441624934385266096344596648080902E-1), + R4 = L(8.057002716646055371965756206836056074715E1), + R3 = L(-2.024301798136027039250415126250455056397E3), + R2 = L(2.048819892795278657810231591630928516206E4), + R1 = L(-8.977257995689735303686582344659576526998E4), + R0 = L(1.418134209872192732479751274970992665513E5), /* S6 = 1.000000000000000000000000000000000000000E0L, */ - S5 = -1.186359407982897997337150403816839480438E2L, - S4 = 3.998526750980007367835804959888064681098E3L, - S3 = -5.748542087379434595104154610899551484314E4L, - S2 = 4.001557694070773974936904547424676279307E5L, - S1 = -1.332535117259762928288745111081235577029E6L, - S0 = 1.701761051846631278975701529965589676574E6L; + S5 = L(-1.186359407982897997337150403816839480438E2), + S4 = L(3.998526750980007367835804959888064681098E3), + S3 = L(-5.748542087379434595104154610899551484314E4), + S2 = L(4.001557694070773974936904547424676279307E5), + S1 = L(-1.332535117259762928288745111081235577029E6), + S0 = L(1.701761051846631278975701529965589676574E6); /* C1 + C2 = ln 2 */ -static const _Float128 C1 = 6.93145751953125E-1L; -static const _Float128 C2 = 1.428606820309417232121458176568075500134E-6L; +static const _Float128 C1 = L(6.93145751953125E-1); +static const _Float128 C2 = L(1.428606820309417232121458176568075500134E-6); -static const _Float128 sqrth = 0.7071067811865475244008443621048490392848L; +static const _Float128 sqrth = L(0.7071067811865475244008443621048490392848); /* ln (2^16384 * (1 - 2^-113)) */ -static const _Float128 zero = 0.0L; +static const _Float128 zero = 0; _Float128 __log1pl (_Float128 xm1) @@ -145,16 +145,16 @@ __log1pl (_Float128 xm1) return xm1; } - if (xm1 >= 0x1p113L) + if (xm1 >= L(0x1p113)) x = xm1; else - x = xm1 + 1.0L; + x = xm1 + 1; /* log1p(-1) = -inf */ - if (x <= 0.0L) + if (x <= 0) { - if (x == 0.0L) - return (-1.0L / zero); /* log1p(-1) = -inf */ + if (x == 0) + return (-1 / zero); /* log1p(-1) = -inf */ else return (zero / (x - x)); } @@ -171,14 +171,14 @@ __log1pl (_Float128 xm1) if (x < sqrth) { /* 2( 2x-1 )/( 2x+1 ) */ e -= 1; - z = x - 0.5L; - y = 0.5L * z + 0.5L; + z = x - L(0.5); + y = L(0.5) * z + L(0.5); } else { /* 2 (x-1)/(x+1) */ - z = x - 0.5L; - z -= 0.5L; - y = 0.5L * x + 0.5L; + z = x - L(0.5); + z -= L(0.5); + y = L(0.5) * x + L(0.5); } x = z / y; z = x * x; @@ -209,14 +209,14 @@ __log1pl (_Float128 xm1) { e -= 1; if (e != 0) - x = 2.0L * x - 1.0L; /* 2x - 1 */ + x = 2 * x - 1; /* 2x - 1 */ else x = xm1; } else { if (e != 0) - x = x - 1.0L; + x = x - 1; else x = xm1; } @@ -249,7 +249,7 @@ __log1pl (_Float128 xm1) + Q0; y = x * (z * r / s); y = y + e * C2; - z = y - 0.5L * z; + z = y - L(0.5) * z; z = z + x; z = z + e * C1; return (z); |