diff options
author | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-09-02 11:01:07 -0500 |
---|---|---|
committer | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-09-13 15:33:59 -0500 |
commit | 02bbfb414f367c73196e6f23fa7435a08c92449f (patch) | |
tree | 5f70a6d722dbdb1d716f6cf4b34fd7ca50e62c80 /sysdeps/ieee754/ldbl-128/e_asinl.c | |
parent | fd37b5a78ab215ea2599250ec345e25545410bce (diff) | |
download | glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.gz glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.xz glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.zip |
ldbl-128: Use L(x) macro for long double constants
This runs the attached sed script against these files using a regex which aggressively matches long double literals when not obviously part of a comment. Likewise, 5 digit or less integral constants are replaced with integer constants, excepting the two cases of 0 used in large tables, which are also the only integral values of the form x.0*E0L encountered within these converted files. Likewise, -L(x) is transformed into L(-x). Naturally, the script has a few minor hiccups which are more clearly remedied via the attached fixup patch. Such hiccups include, context-sensitive promotion to a real type, and munging constants inside harder to detect comment blocks.
Diffstat (limited to 'sysdeps/ieee754/ldbl-128/e_asinl.c')
-rw-r--r-- | sysdeps/ieee754/ldbl-128/e_asinl.c | 92 |
1 files changed, 46 insertions, 46 deletions
diff --git a/sysdeps/ieee754/ldbl-128/e_asinl.c b/sysdeps/ieee754/ldbl-128/e_asinl.c index cb556c20d1..1edf1c05a1 100644 --- a/sysdeps/ieee754/ldbl-128/e_asinl.c +++ b/sysdeps/ieee754/ldbl-128/e_asinl.c @@ -64,67 +64,67 @@ #include <math_private.h> static const _Float128 - one = 1.0L, - huge = 1.0e+4932L, - pio2_hi = 1.5707963267948966192313216916397514420986L, - pio2_lo = 4.3359050650618905123985220130216759843812E-35L, - pio4_hi = 7.8539816339744830961566084581987569936977E-1L, + one = 1, + huge = L(1.0e+4932), + pio2_hi = L(1.5707963267948966192313216916397514420986), + pio2_lo = L(4.3359050650618905123985220130216759843812E-35), + pio4_hi = L(7.8539816339744830961566084581987569936977E-1), /* coefficient for R(x^2) */ /* asin(x) = x + x^3 pS(x^2) / qS(x^2) 0 <= x <= 0.5 peak relative error 1.9e-35 */ - pS0 = -8.358099012470680544198472400254596543711E2L, - pS1 = 3.674973957689619490312782828051860366493E3L, - pS2 = -6.730729094812979665807581609853656623219E3L, - pS3 = 6.643843795209060298375552684423454077633E3L, - pS4 = -3.817341990928606692235481812252049415993E3L, - pS5 = 1.284635388402653715636722822195716476156E3L, - pS6 = -2.410736125231549204856567737329112037867E2L, - pS7 = 2.219191969382402856557594215833622156220E1L, - pS8 = -7.249056260830627156600112195061001036533E-1L, - pS9 = 1.055923570937755300061509030361395604448E-3L, + pS0 = L(-8.358099012470680544198472400254596543711E2), + pS1 = L(3.674973957689619490312782828051860366493E3), + pS2 = L(-6.730729094812979665807581609853656623219E3), + pS3 = L(6.643843795209060298375552684423454077633E3), + pS4 = L(-3.817341990928606692235481812252049415993E3), + pS5 = L(1.284635388402653715636722822195716476156E3), + pS6 = L(-2.410736125231549204856567737329112037867E2), + pS7 = L(2.219191969382402856557594215833622156220E1), + pS8 = L(-7.249056260830627156600112195061001036533E-1), + pS9 = L(1.055923570937755300061509030361395604448E-3), - qS0 = -5.014859407482408326519083440151745519205E3L, - qS1 = 2.430653047950480068881028451580393430537E4L, - qS2 = -4.997904737193653607449250593976069726962E4L, - qS3 = 5.675712336110456923807959930107347511086E4L, - qS4 = -3.881523118339661268482937768522572588022E4L, - qS5 = 1.634202194895541569749717032234510811216E4L, - qS6 = -4.151452662440709301601820849901296953752E3L, - qS7 = 5.956050864057192019085175976175695342168E2L, - qS8 = -4.175375777334867025769346564600396877176E1L, + qS0 = L(-5.014859407482408326519083440151745519205E3), + qS1 = L(2.430653047950480068881028451580393430537E4), + qS2 = L(-4.997904737193653607449250593976069726962E4), + qS3 = L(5.675712336110456923807959930107347511086E4), + qS4 = L(-3.881523118339661268482937768522572588022E4), + qS5 = L(1.634202194895541569749717032234510811216E4), + qS6 = L(-4.151452662440709301601820849901296953752E3), + qS7 = L(5.956050864057192019085175976175695342168E2), + qS8 = L(-4.175375777334867025769346564600396877176E1), /* 1.000000000000000000000000000000000000000E0 */ /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) -0.0625 <= x <= 0.0625 peak relative error 3.3e-35 */ - rS0 = -5.619049346208901520945464704848780243887E0L, - rS1 = 4.460504162777731472539175700169871920352E1L, - rS2 = -1.317669505315409261479577040530751477488E2L, - rS3 = 1.626532582423661989632442410808596009227E2L, - rS4 = -3.144806644195158614904369445440583873264E1L, - rS5 = -9.806674443470740708765165604769099559553E1L, - rS6 = 5.708468492052010816555762842394927806920E1L, - rS7 = 1.396540499232262112248553357962639431922E1L, - rS8 = -1.126243289311910363001762058295832610344E1L, - rS9 = -4.956179821329901954211277873774472383512E-1L, - rS10 = 3.313227657082367169241333738391762525780E-1L, + rS0 = L(-5.619049346208901520945464704848780243887E0), + rS1 = L(4.460504162777731472539175700169871920352E1), + rS2 = L(-1.317669505315409261479577040530751477488E2), + rS3 = L(1.626532582423661989632442410808596009227E2), + rS4 = L(-3.144806644195158614904369445440583873264E1), + rS5 = L(-9.806674443470740708765165604769099559553E1), + rS6 = L(5.708468492052010816555762842394927806920E1), + rS7 = L(1.396540499232262112248553357962639431922E1), + rS8 = L(-1.126243289311910363001762058295832610344E1), + rS9 = L(-4.956179821329901954211277873774472383512E-1), + rS10 = L(3.313227657082367169241333738391762525780E-1), - sS0 = -4.645814742084009935700221277307007679325E0L, - sS1 = 3.879074822457694323970438316317961918430E1L, - sS2 = -1.221986588013474694623973554726201001066E2L, - sS3 = 1.658821150347718105012079876756201905822E2L, - sS4 = -4.804379630977558197953176474426239748977E1L, - sS5 = -1.004296417397316948114344573811562952793E2L, - sS6 = 7.530281592861320234941101403870010111138E1L, - sS7 = 1.270735595411673647119592092304357226607E1L, - sS8 = -1.815144839646376500705105967064792930282E1L, - sS9 = -7.821597334910963922204235247786840828217E-2L, + sS0 = L(-4.645814742084009935700221277307007679325E0), + sS1 = L(3.879074822457694323970438316317961918430E1), + sS2 = L(-1.221986588013474694623973554726201001066E2), + sS3 = L(1.658821150347718105012079876756201905822E2), + sS4 = L(-4.804379630977558197953176474426239748977E1), + sS5 = L(-1.004296417397316948114344573811562952793E2), + sS6 = L(7.530281592861320234941101403870010111138E1), + sS7 = L(1.270735595411673647119592092304357226607E1), + sS8 = L(-1.815144839646376500705105967064792930282E1), + sS9 = L(-7.821597334910963922204235247786840828217E-2), /* 1.000000000000000000000000000000000000000E0 */ - asinr5625 = 5.9740641664535021430381036628424864397707E-1L; + asinr5625 = L(5.9740641664535021430381036628424864397707E-1); |