about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128/e_asinl.c
diff options
context:
space:
mode:
authorPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-09-02 11:01:07 -0500
committerPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-09-13 15:33:59 -0500
commit02bbfb414f367c73196e6f23fa7435a08c92449f (patch)
tree5f70a6d722dbdb1d716f6cf4b34fd7ca50e62c80 /sysdeps/ieee754/ldbl-128/e_asinl.c
parentfd37b5a78ab215ea2599250ec345e25545410bce (diff)
downloadglibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.gz
glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.tar.xz
glibc-02bbfb414f367c73196e6f23fa7435a08c92449f.zip
ldbl-128: Use L(x) macro for long double constants
This runs the attached sed script against these files using
a regex which aggressively matches long double literals
when not obviously part of a comment.

Likewise, 5 digit or less integral constants are replaced
with integer constants, excepting the two cases of 0 used
in large tables, which are also the only integral values
of the form x.0*E0L encountered within these converted
files.

Likewise, -L(x) is transformed into L(-x).

Naturally, the script has a few minor hiccups which are
more clearly remedied via the attached fixup patch.  Such
hiccups include, context-sensitive promotion to a real
type, and munging constants inside harder to detect
comment blocks.
Diffstat (limited to 'sysdeps/ieee754/ldbl-128/e_asinl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128/e_asinl.c92
1 files changed, 46 insertions, 46 deletions
diff --git a/sysdeps/ieee754/ldbl-128/e_asinl.c b/sysdeps/ieee754/ldbl-128/e_asinl.c
index cb556c20d1..1edf1c05a1 100644
--- a/sysdeps/ieee754/ldbl-128/e_asinl.c
+++ b/sysdeps/ieee754/ldbl-128/e_asinl.c
@@ -64,67 +64,67 @@
 #include <math_private.h>
 
 static const _Float128
-  one = 1.0L,
-  huge = 1.0e+4932L,
-  pio2_hi = 1.5707963267948966192313216916397514420986L,
-  pio2_lo = 4.3359050650618905123985220130216759843812E-35L,
-  pio4_hi = 7.8539816339744830961566084581987569936977E-1L,
+  one = 1,
+  huge = L(1.0e+4932),
+  pio2_hi = L(1.5707963267948966192313216916397514420986),
+  pio2_lo = L(4.3359050650618905123985220130216759843812E-35),
+  pio4_hi = L(7.8539816339744830961566084581987569936977E-1),
 
 	/* coefficient for R(x^2) */
 
   /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
      0 <= x <= 0.5
      peak relative error 1.9e-35  */
-  pS0 = -8.358099012470680544198472400254596543711E2L,
-  pS1 =  3.674973957689619490312782828051860366493E3L,
-  pS2 = -6.730729094812979665807581609853656623219E3L,
-  pS3 =  6.643843795209060298375552684423454077633E3L,
-  pS4 = -3.817341990928606692235481812252049415993E3L,
-  pS5 =  1.284635388402653715636722822195716476156E3L,
-  pS6 = -2.410736125231549204856567737329112037867E2L,
-  pS7 =  2.219191969382402856557594215833622156220E1L,
-  pS8 = -7.249056260830627156600112195061001036533E-1L,
-  pS9 =  1.055923570937755300061509030361395604448E-3L,
+  pS0 = L(-8.358099012470680544198472400254596543711E2),
+  pS1 =  L(3.674973957689619490312782828051860366493E3),
+  pS2 = L(-6.730729094812979665807581609853656623219E3),
+  pS3 =  L(6.643843795209060298375552684423454077633E3),
+  pS4 = L(-3.817341990928606692235481812252049415993E3),
+  pS5 =  L(1.284635388402653715636722822195716476156E3),
+  pS6 = L(-2.410736125231549204856567737329112037867E2),
+  pS7 =  L(2.219191969382402856557594215833622156220E1),
+  pS8 = L(-7.249056260830627156600112195061001036533E-1),
+  pS9 =  L(1.055923570937755300061509030361395604448E-3),
 
-  qS0 = -5.014859407482408326519083440151745519205E3L,
-  qS1 =  2.430653047950480068881028451580393430537E4L,
-  qS2 = -4.997904737193653607449250593976069726962E4L,
-  qS3 =  5.675712336110456923807959930107347511086E4L,
-  qS4 = -3.881523118339661268482937768522572588022E4L,
-  qS5 =  1.634202194895541569749717032234510811216E4L,
-  qS6 = -4.151452662440709301601820849901296953752E3L,
-  qS7 =  5.956050864057192019085175976175695342168E2L,
-  qS8 = -4.175375777334867025769346564600396877176E1L,
+  qS0 = L(-5.014859407482408326519083440151745519205E3),
+  qS1 =  L(2.430653047950480068881028451580393430537E4),
+  qS2 = L(-4.997904737193653607449250593976069726962E4),
+  qS3 =  L(5.675712336110456923807959930107347511086E4),
+  qS4 = L(-3.881523118339661268482937768522572588022E4),
+  qS5 =  L(1.634202194895541569749717032234510811216E4),
+  qS6 = L(-4.151452662440709301601820849901296953752E3),
+  qS7 =  L(5.956050864057192019085175976175695342168E2),
+  qS8 = L(-4.175375777334867025769346564600396877176E1),
   /* 1.000000000000000000000000000000000000000E0 */
 
   /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
      -0.0625 <= x <= 0.0625
      peak relative error 3.3e-35  */
-  rS0 = -5.619049346208901520945464704848780243887E0L,
-  rS1 =  4.460504162777731472539175700169871920352E1L,
-  rS2 = -1.317669505315409261479577040530751477488E2L,
-  rS3 =  1.626532582423661989632442410808596009227E2L,
-  rS4 = -3.144806644195158614904369445440583873264E1L,
-  rS5 = -9.806674443470740708765165604769099559553E1L,
-  rS6 =  5.708468492052010816555762842394927806920E1L,
-  rS7 =  1.396540499232262112248553357962639431922E1L,
-  rS8 = -1.126243289311910363001762058295832610344E1L,
-  rS9 = -4.956179821329901954211277873774472383512E-1L,
-  rS10 =  3.313227657082367169241333738391762525780E-1L,
+  rS0 = L(-5.619049346208901520945464704848780243887E0),
+  rS1 =  L(4.460504162777731472539175700169871920352E1),
+  rS2 = L(-1.317669505315409261479577040530751477488E2),
+  rS3 =  L(1.626532582423661989632442410808596009227E2),
+  rS4 = L(-3.144806644195158614904369445440583873264E1),
+  rS5 = L(-9.806674443470740708765165604769099559553E1),
+  rS6 =  L(5.708468492052010816555762842394927806920E1),
+  rS7 =  L(1.396540499232262112248553357962639431922E1),
+  rS8 = L(-1.126243289311910363001762058295832610344E1),
+  rS9 = L(-4.956179821329901954211277873774472383512E-1),
+  rS10 =  L(3.313227657082367169241333738391762525780E-1),
 
-  sS0 = -4.645814742084009935700221277307007679325E0L,
-  sS1 =  3.879074822457694323970438316317961918430E1L,
-  sS2 = -1.221986588013474694623973554726201001066E2L,
-  sS3 =  1.658821150347718105012079876756201905822E2L,
-  sS4 = -4.804379630977558197953176474426239748977E1L,
-  sS5 = -1.004296417397316948114344573811562952793E2L,
-  sS6 =  7.530281592861320234941101403870010111138E1L,
-  sS7 =  1.270735595411673647119592092304357226607E1L,
-  sS8 = -1.815144839646376500705105967064792930282E1L,
-  sS9 = -7.821597334910963922204235247786840828217E-2L,
+  sS0 = L(-4.645814742084009935700221277307007679325E0),
+  sS1 =  L(3.879074822457694323970438316317961918430E1),
+  sS2 = L(-1.221986588013474694623973554726201001066E2),
+  sS3 =  L(1.658821150347718105012079876756201905822E2),
+  sS4 = L(-4.804379630977558197953176474426239748977E1),
+  sS5 = L(-1.004296417397316948114344573811562952793E2),
+  sS6 =  L(7.530281592861320234941101403870010111138E1),
+  sS7 =  L(1.270735595411673647119592092304357226607E1),
+  sS8 = L(-1.815144839646376500705105967064792930282E1),
+  sS9 = L(-7.821597334910963922204235247786840828217E-2),
   /*  1.000000000000000000000000000000000000000E0 */
 
- asinr5625 =  5.9740641664535021430381036628424864397707E-1L;
+ asinr5625 =  L(5.9740641664535021430381036628424864397707E-1);