diff options
author | Ulrich Drepper <drepper@redhat.com> | 1999-07-14 00:54:57 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 1999-07-14 00:54:57 +0000 |
commit | abfbdde177c3a7155070dda1b2cdc8292054cc26 (patch) | |
tree | e021306b596381fbf8311d2b7eb294e918ff17c8 /sysdeps/ieee754/flt-32/e_j1f.c | |
parent | 86421aa57ecfd70963ae66848bd6a6dd3b8e0fe6 (diff) | |
download | glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.gz glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.xz glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.zip |
Update.
Diffstat (limited to 'sysdeps/ieee754/flt-32/e_j1f.c')
-rw-r--r-- | sysdeps/ieee754/flt-32/e_j1f.c | 444 |
1 files changed, 444 insertions, 0 deletions
diff --git a/sysdeps/ieee754/flt-32/e_j1f.c b/sysdeps/ieee754/flt-32/e_j1f.c new file mode 100644 index 0000000000..e6f14a16ac --- /dev/null +++ b/sysdeps/ieee754/flt-32/e_j1f.c @@ -0,0 +1,444 @@ +/* e_j1f.c -- float version of e_j1.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: e_j1f.c,v 1.4 1995/05/10 20:45:31 jtc Exp $"; +#endif + +#include "math.h" +#include "math_private.h" + +#ifdef __STDC__ +static float ponef(float), qonef(float); +#else +static float ponef(), qonef(); +#endif + +#ifdef __STDC__ +static const float +#else +static float +#endif +huge = 1e30, +one = 1.0, +invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ +tpi = 6.3661974669e-01, /* 0x3f22f983 */ + /* R0/S0 on [0,2] */ +r00 = -6.2500000000e-02, /* 0xbd800000 */ +r01 = 1.4070566976e-03, /* 0x3ab86cfd */ +r02 = -1.5995563444e-05, /* 0xb7862e36 */ +r03 = 4.9672799207e-08, /* 0x335557d2 */ +s01 = 1.9153760746e-02, /* 0x3c9ce859 */ +s02 = 1.8594678841e-04, /* 0x3942fab6 */ +s03 = 1.1771846857e-06, /* 0x359dffc2 */ +s04 = 5.0463624390e-09, /* 0x31ad6446 */ +s05 = 1.2354227016e-11; /* 0x2d59567e */ + +#ifdef __STDC__ +static const float zero = 0.0; +#else +static float zero = 0.0; +#endif + +#ifdef __STDC__ + float __ieee754_j1f(float x) +#else + float __ieee754_j1f(x) + float x; +#endif +{ + float z, s,c,ss,cc,r,u,v,y; + int32_t hx,ix; + + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x7f800000) return one/x; + y = fabsf(x); + if(ix >= 0x40000000) { /* |x| >= 2.0 */ + s = __sinf(y); + c = __cosf(y); + ss = -s-c; + cc = s-c; + if(ix<0x7f000000) { /* make sure y+y not overflow */ + z = __cosf(y+y); + if ((s*c)>zero) cc = z/ss; + else ss = z/cc; + } + /* + * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) + * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) + */ + if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrtf(y); + else { + u = ponef(y); v = qonef(y); + z = invsqrtpi*(u*cc-v*ss)/__sqrtf(y); + } + if(hx<0) return -z; + else return z; + } + if(ix<0x32000000) { /* |x|<2**-27 */ + if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */ + } + z = x*x; + r = z*(r00+z*(r01+z*(r02+z*r03))); + s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); + r *= x; + return(x*(float)0.5+r/s); +} + +#ifdef __STDC__ +static const float U0[5] = { +#else +static float U0[5] = { +#endif + -1.9605709612e-01, /* 0xbe48c331 */ + 5.0443872809e-02, /* 0x3d4e9e3c */ + -1.9125689287e-03, /* 0xbafaaf2a */ + 2.3525259166e-05, /* 0x37c5581c */ + -9.1909917899e-08, /* 0xb3c56003 */ +}; +#ifdef __STDC__ +static const float V0[5] = { +#else +static float V0[5] = { +#endif + 1.9916731864e-02, /* 0x3ca3286a */ + 2.0255257550e-04, /* 0x3954644b */ + 1.3560879779e-06, /* 0x35b602d4 */ + 6.2274145840e-09, /* 0x31d5f8eb */ + 1.6655924903e-11, /* 0x2d9281cf */ +}; + +#ifdef __STDC__ + float __ieee754_y1f(float x) +#else + float __ieee754_y1f(x) + float x; +#endif +{ + float z, s,c,ss,cc,u,v; + int32_t hx,ix; + + GET_FLOAT_WORD(hx,x); + ix = 0x7fffffff&hx; + /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ + if(ix>=0x7f800000) return one/(x+x*x); + if(ix==0) return -one/zero; + if(hx<0) return zero/zero; + if(ix >= 0x40000000) { /* |x| >= 2.0 */ + s = __sinf(x); + c = __cosf(x); + ss = -s-c; + cc = s-c; + if(ix<0x7f000000) { /* make sure x+x not overflow */ + z = __cosf(x+x); + if ((s*c)>zero) cc = z/ss; + else ss = z/cc; + } + /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) + * where x0 = x-3pi/4 + * Better formula: + * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) + * = 1/sqrt(2) * (sin(x) - cos(x)) + * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) + * = -1/sqrt(2) * (cos(x) + sin(x)) + * To avoid cancellation, use + * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) + * to compute the worse one. + */ + if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x); + else { + u = ponef(x); v = qonef(x); + z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x); + } + return z; + } + if(ix<=0x24800000) { /* x < 2**-54 */ + return(-tpi/x); + } + z = x*x; + u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); + v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); + return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x)); +} + +/* For x >= 8, the asymptotic expansions of pone is + * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. + * We approximate pone by + * pone(x) = 1 + (R/S) + * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 + * S = 1 + ps0*s^2 + ... + ps4*s^10 + * and + * | pone(x)-1-R/S | <= 2 ** ( -60.06) + */ + +#ifdef __STDC__ +static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ +#else +static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ +#endif + 0.0000000000e+00, /* 0x00000000 */ + 1.1718750000e-01, /* 0x3df00000 */ + 1.3239480972e+01, /* 0x4153d4ea */ + 4.1205184937e+02, /* 0x43ce06a3 */ + 3.8747453613e+03, /* 0x45722bed */ + 7.9144794922e+03, /* 0x45f753d6 */ +}; +#ifdef __STDC__ +static const float ps8[5] = { +#else +static float ps8[5] = { +#endif + 1.1420736694e+02, /* 0x42e46a2c */ + 3.6509309082e+03, /* 0x45642ee5 */ + 3.6956207031e+04, /* 0x47105c35 */ + 9.7602796875e+04, /* 0x47bea166 */ + 3.0804271484e+04, /* 0x46f0a88b */ +}; + +#ifdef __STDC__ +static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ +#else +static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ +#endif + 1.3199052094e-11, /* 0x2d68333f */ + 1.1718749255e-01, /* 0x3defffff */ + 6.8027510643e+00, /* 0x40d9b023 */ + 1.0830818176e+02, /* 0x42d89dca */ + 5.1763616943e+02, /* 0x440168b7 */ + 5.2871520996e+02, /* 0x44042dc6 */ +}; +#ifdef __STDC__ +static const float ps5[5] = { +#else +static float ps5[5] = { +#endif + 5.9280597687e+01, /* 0x426d1f55 */ + 9.9140142822e+02, /* 0x4477d9b1 */ + 5.3532670898e+03, /* 0x45a74a23 */ + 7.8446904297e+03, /* 0x45f52586 */ + 1.5040468750e+03, /* 0x44bc0180 */ +}; + +#ifdef __STDC__ +static const float pr3[6] = { +#else +static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ +#endif + 3.0250391081e-09, /* 0x314fe10d */ + 1.1718686670e-01, /* 0x3defffab */ + 3.9329774380e+00, /* 0x407bb5e7 */ + 3.5119403839e+01, /* 0x420c7a45 */ + 9.1055007935e+01, /* 0x42b61c2a */ + 4.8559066772e+01, /* 0x42423c7c */ +}; +#ifdef __STDC__ +static const float ps3[5] = { +#else +static float ps3[5] = { +#endif + 3.4791309357e+01, /* 0x420b2a4d */ + 3.3676245117e+02, /* 0x43a86198 */ + 1.0468714600e+03, /* 0x4482dbe3 */ + 8.9081134033e+02, /* 0x445eb3ed */ + 1.0378793335e+02, /* 0x42cf936c */ +}; + +#ifdef __STDC__ +static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ +#else +static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ +#endif + 1.0771083225e-07, /* 0x33e74ea8 */ + 1.1717621982e-01, /* 0x3deffa16 */ + 2.3685150146e+00, /* 0x401795c0 */ + 1.2242610931e+01, /* 0x4143e1bc */ + 1.7693971634e+01, /* 0x418d8d41 */ + 5.0735230446e+00, /* 0x40a25a4d */ +}; +#ifdef __STDC__ +static const float ps2[5] = { +#else +static float ps2[5] = { +#endif + 2.1436485291e+01, /* 0x41ab7dec */ + 1.2529022980e+02, /* 0x42fa9499 */ + 2.3227647400e+02, /* 0x436846c7 */ + 1.1767937469e+02, /* 0x42eb5bd7 */ + 8.3646392822e+00, /* 0x4105d590 */ +}; + +#ifdef __STDC__ + static float ponef(float x) +#else + static float ponef(x) + float x; +#endif +{ +#ifdef __STDC__ + const float *p,*q; +#else + float *p,*q; +#endif + float z,r,s; + int32_t ix; + GET_FLOAT_WORD(ix,x); + ix &= 0x7fffffff; + if(ix>=0x41000000) {p = pr8; q= ps8;} + else if(ix>=0x40f71c58){p = pr5; q= ps5;} + else if(ix>=0x4036db68){p = pr3; q= ps3;} + else if(ix>=0x40000000){p = pr2; q= ps2;} + z = one/(x*x); + r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); + s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); + return one+ r/s; +} + + +/* For x >= 8, the asymptotic expansions of qone is + * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. + * We approximate pone by + * qone(x) = s*(0.375 + (R/S)) + * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 + * S = 1 + qs1*s^2 + ... + qs6*s^12 + * and + * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) + */ + +#ifdef __STDC__ +static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ +#else +static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ +#endif + 0.0000000000e+00, /* 0x00000000 */ + -1.0253906250e-01, /* 0xbdd20000 */ + -1.6271753311e+01, /* 0xc1822c8d */ + -7.5960174561e+02, /* 0xc43de683 */ + -1.1849806641e+04, /* 0xc639273a */ + -4.8438511719e+04, /* 0xc73d3683 */ +}; +#ifdef __STDC__ +static const float qs8[6] = { +#else +static float qs8[6] = { +#endif + 1.6139537048e+02, /* 0x43216537 */ + 7.8253862305e+03, /* 0x45f48b17 */ + 1.3387534375e+05, /* 0x4802bcd6 */ + 7.1965775000e+05, /* 0x492fb29c */ + 6.6660125000e+05, /* 0x4922be94 */ + -2.9449025000e+05, /* 0xc88fcb48 */ +}; + +#ifdef __STDC__ +static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ +#else +static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ +#endif + -2.0897993405e-11, /* 0xadb7d219 */ + -1.0253904760e-01, /* 0xbdd1fffe */ + -8.0564479828e+00, /* 0xc100e736 */ + -1.8366960144e+02, /* 0xc337ab6b */ + -1.3731937256e+03, /* 0xc4aba633 */ + -2.6124443359e+03, /* 0xc523471c */ +}; +#ifdef __STDC__ +static const float qs5[6] = { +#else +static float qs5[6] = { +#endif + 8.1276550293e+01, /* 0x42a28d98 */ + 1.9917987061e+03, /* 0x44f8f98f */ + 1.7468484375e+04, /* 0x468878f8 */ + 4.9851425781e+04, /* 0x4742bb6d */ + 2.7948074219e+04, /* 0x46da5826 */ + -4.7191835938e+03, /* 0xc5937978 */ +}; + +#ifdef __STDC__ +static const float qr3[6] = { +#else +static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ +#endif + -5.0783124372e-09, /* 0xb1ae7d4f */ + -1.0253783315e-01, /* 0xbdd1ff5b */ + -4.6101160049e+00, /* 0xc0938612 */ + -5.7847221375e+01, /* 0xc267638e */ + -2.2824453735e+02, /* 0xc3643e9a */ + -2.1921012878e+02, /* 0xc35b35cb */ +}; +#ifdef __STDC__ +static const float qs3[6] = { +#else +static float qs3[6] = { +#endif + 4.7665153503e+01, /* 0x423ea91e */ + 6.7386511230e+02, /* 0x4428775e */ + 3.3801528320e+03, /* 0x45534272 */ + 5.5477290039e+03, /* 0x45ad5dd5 */ + 1.9031191406e+03, /* 0x44ede3d0 */ + -1.3520118713e+02, /* 0xc3073381 */ +}; + +#ifdef __STDC__ +static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ +#else +static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ +#endif + -1.7838172539e-07, /* 0xb43f8932 */ + -1.0251704603e-01, /* 0xbdd1f475 */ + -2.7522056103e+00, /* 0xc0302423 */ + -1.9663616180e+01, /* 0xc19d4f16 */ + -4.2325313568e+01, /* 0xc2294d1f */ + -2.1371921539e+01, /* 0xc1aaf9b2 */ +}; +#ifdef __STDC__ +static const float qs2[6] = { +#else +static float qs2[6] = { +#endif + 2.9533363342e+01, /* 0x41ec4454 */ + 2.5298155212e+02, /* 0x437cfb47 */ + 7.5750280762e+02, /* 0x443d602e */ + 7.3939318848e+02, /* 0x4438d92a */ + 1.5594900513e+02, /* 0x431bf2f2 */ + -4.9594988823e+00, /* 0xc09eb437 */ +}; + +#ifdef __STDC__ + static float qonef(float x) +#else + static float qonef(x) + float x; +#endif +{ +#ifdef __STDC__ + const float *p,*q; +#else + float *p,*q; +#endif + float s,r,z; + int32_t ix; + GET_FLOAT_WORD(ix,x); + ix &= 0x7fffffff; + if(ix>=0x40200000) {p = qr8; q= qs8;} + else if(ix>=0x40f71c58){p = qr5; q= qs5;} + else if(ix>=0x4036db68){p = qr3; q= qs3;} + else if(ix>=0x40000000){p = qr2; q= qs2;} + z = one/(x*x); + r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); + s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); + return ((float).375 + r/s)/x; +} |