about summary refs log tree commit diff
path: root/sysdeps/ieee754/flt-32/e_j0f.c
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
committerUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
commitabfbdde177c3a7155070dda1b2cdc8292054cc26 (patch)
treee021306b596381fbf8311d2b7eb294e918ff17c8 /sysdeps/ieee754/flt-32/e_j0f.c
parent86421aa57ecfd70963ae66848bd6a6dd3b8e0fe6 (diff)
downloadglibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.gz
glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.xz
glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.zip
Update.
Diffstat (limited to 'sysdeps/ieee754/flt-32/e_j0f.c')
-rw-r--r--sysdeps/ieee754/flt-32/e_j0f.c444
1 files changed, 444 insertions, 0 deletions
diff --git a/sysdeps/ieee754/flt-32/e_j0f.c b/sysdeps/ieee754/flt-32/e_j0f.c
new file mode 100644
index 0000000000..eed171cc90
--- /dev/null
+++ b/sysdeps/ieee754/flt-32/e_j0f.c
@@ -0,0 +1,444 @@
+/* e_j0f.c -- float version of e_j0.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_j0f.c,v 1.4 1995/05/10 20:45:25 jtc Exp $";
+#endif
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static float pzerof(float), qzerof(float);
+#else
+static float pzerof(), qzerof();
+#endif
+
+#ifdef __STDC__
+static const float 
+#else
+static float 
+#endif
+huge 	= 1e30,
+one	= 1.0,
+invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
+tpi      =  6.3661974669e-01, /* 0x3f22f983 */
+ 		/* R0/S0 on [0, 2.00] */
+R02  =  1.5625000000e-02, /* 0x3c800000 */
+R03  = -1.8997929874e-04, /* 0xb947352e */
+R04  =  1.8295404516e-06, /* 0x35f58e88 */
+R05  = -4.6183270541e-09, /* 0xb19eaf3c */
+S01  =  1.5619102865e-02, /* 0x3c7fe744 */
+S02  =  1.1692678527e-04, /* 0x38f53697 */
+S03  =  5.1354652442e-07, /* 0x3509daa6 */
+S04  =  1.1661400734e-09; /* 0x30a045e8 */
+
+#ifdef __STDC__
+static const float zero = 0.0;
+#else
+static float zero = 0.0;
+#endif
+
+#ifdef __STDC__
+	float __ieee754_j0f(float x) 
+#else
+	float __ieee754_j0f(x) 
+	float x;
+#endif
+{
+	float z, s,c,ss,cc,r,u,v;
+	int32_t hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+	ix = hx&0x7fffffff;
+	if(ix>=0x7f800000) return one/(x*x);
+	x = fabsf(x);
+	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
+		s = __sinf(x);
+		c = __cosf(x);
+		ss = s-c;
+		cc = s+c;
+		if(ix<0x7f000000) {  /* make sure x+x not overflow */
+		    z = -__cosf(x+x);
+		    if ((s*c)<zero) cc = z/ss;
+		    else 	    ss = z/cc;
+		}
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+		if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrtf(x);
+		else {
+		    u = pzerof(x); v = qzerof(x);
+		    z = invsqrtpi*(u*cc-v*ss)/__sqrtf(x);
+		}
+		return z;
+	}
+	if(ix<0x39000000) {	/* |x| < 2**-13 */
+	    if(huge+x>one) {	/* raise inexact if x != 0 */
+	        if(ix<0x32000000) return one;	/* |x|<2**-27 */
+	        else 	      return one - (float)0.25*x*x;
+	    }
+	}
+	z = x*x;
+	r =  z*(R02+z*(R03+z*(R04+z*R05)));
+	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
+	if(ix < 0x3F800000) {	/* |x| < 1.00 */
+	    return one + z*((float)-0.25+(r/s));
+	} else {
+	    u = (float)0.5*x;
+	    return((one+u)*(one-u)+z*(r/s));
+	}
+}
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+u00  = -7.3804296553e-02, /* 0xbd9726b5 */
+u01  =  1.7666645348e-01, /* 0x3e34e80d */
+u02  = -1.3818567619e-02, /* 0xbc626746 */
+u03  =  3.4745343146e-04, /* 0x39b62a69 */
+u04  = -3.8140706238e-06, /* 0xb67ff53c */
+u05  =  1.9559013964e-08, /* 0x32a802ba */
+u06  = -3.9820518410e-11, /* 0xae2f21eb */
+v01  =  1.2730483897e-02, /* 0x3c509385 */
+v02  =  7.6006865129e-05, /* 0x389f65e0 */
+v03  =  2.5915085189e-07, /* 0x348b216c */
+v04  =  4.4111031494e-10; /* 0x2ff280c2 */
+
+#ifdef __STDC__
+	float __ieee754_y0f(float x) 
+#else
+	float __ieee754_y0f(x) 
+	float x;
+#endif
+{
+	float z, s,c,ss,cc,u,v;
+	int32_t hx,ix;
+
+	GET_FLOAT_WORD(hx,x);
+        ix = 0x7fffffff&hx;
+    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
+	if(ix>=0x7f800000) return  one/(x+x*x); 
+        if(ix==0) return -one/zero;
+        if(hx<0) return zero/zero;
+        if(ix >= 0x40000000) {  /* |x| >= 2.0 */
+        /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
+         * where x0 = x-pi/4
+         *      Better formula:
+         *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+         *                      =  1/sqrt(2) * (sin(x) + cos(x))
+         *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+         *                      =  1/sqrt(2) * (sin(x) - cos(x))
+         * To avoid cancellation, use
+         *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+         * to compute the worse one.
+         */
+                s = __sinf(x);
+                c = __cosf(x);
+                ss = s-c;
+                cc = s+c;
+	/*
+	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+	 */
+                if(ix<0x7f000000) {  /* make sure x+x not overflow */
+                    z = -__cosf(x+x);
+                    if ((s*c)<zero) cc = z/ss;
+                    else            ss = z/cc;
+                }
+                if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x);
+                else {
+                    u = pzerof(x); v = qzerof(x);
+                    z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
+                }
+                return z;
+	}
+	if(ix<=0x32000000) {	/* x < 2**-27 */
+	    return(u00 + tpi*__ieee754_logf(x));
+	}
+	z = x*x;
+	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
+	return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
+}
+
+/* The asymptotic expansions of pzero is
+ *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * 	pzero(x) = 1 + (R/S)
+ * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
+ */
+#ifdef __STDC__
+static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.0000000000e+00, /* 0x00000000 */
+ -7.0312500000e-02, /* 0xbd900000 */
+ -8.0816707611e+00, /* 0xc1014e86 */
+ -2.5706311035e+02, /* 0xc3808814 */
+ -2.4852163086e+03, /* 0xc51b5376 */
+ -5.2530439453e+03, /* 0xc5a4285a */
+};
+#ifdef __STDC__
+static const float pS8[5] = {
+#else
+static float pS8[5] = {
+#endif
+  1.1653436279e+02, /* 0x42e91198 */
+  3.8337448730e+03, /* 0x456f9beb */
+  4.0597855469e+04, /* 0x471e95db */
+  1.1675296875e+05, /* 0x47e4087c */
+  4.7627726562e+04, /* 0x473a0bba */
+};
+#ifdef __STDC__
+static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ -1.1412546255e-11, /* 0xad48c58a */
+ -7.0312492549e-02, /* 0xbd8fffff */
+ -4.1596107483e+00, /* 0xc0851b88 */
+ -6.7674766541e+01, /* 0xc287597b */
+ -3.3123129272e+02, /* 0xc3a59d9b */
+ -3.4643338013e+02, /* 0xc3ad3779 */
+};
+#ifdef __STDC__
+static const float pS5[5] = {
+#else
+static float pS5[5] = {
+#endif
+  6.0753936768e+01, /* 0x42730408 */
+  1.0512523193e+03, /* 0x44836813 */
+  5.9789707031e+03, /* 0x45bad7c4 */
+  9.6254453125e+03, /* 0x461665c8 */
+  2.4060581055e+03, /* 0x451660ee */
+};
+
+#ifdef __STDC__
+static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#else
+static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ -2.5470459075e-09, /* 0xb12f081b */
+ -7.0311963558e-02, /* 0xbd8fffb8 */
+ -2.4090321064e+00, /* 0xc01a2d95 */
+ -2.1965976715e+01, /* 0xc1afba52 */
+ -5.8079170227e+01, /* 0xc2685112 */
+ -3.1447946548e+01, /* 0xc1fb9565 */
+};
+#ifdef __STDC__
+static const float pS3[5] = {
+#else
+static float pS3[5] = {
+#endif
+  3.5856033325e+01, /* 0x420f6c94 */
+  3.6151397705e+02, /* 0x43b4c1ca */
+  1.1936077881e+03, /* 0x44953373 */
+  1.1279968262e+03, /* 0x448cffe6 */
+  1.7358093262e+02, /* 0x432d94b8 */
+};
+
+#ifdef __STDC__
+static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ -8.8753431271e-08, /* 0xb3be98b7 */
+ -7.0303097367e-02, /* 0xbd8ffb12 */
+ -1.4507384300e+00, /* 0xbfb9b1cc */
+ -7.6356959343e+00, /* 0xc0f4579f */
+ -1.1193166733e+01, /* 0xc1331736 */
+ -3.2336456776e+00, /* 0xc04ef40d */
+};
+#ifdef __STDC__
+static const float pS2[5] = {
+#else
+static float pS2[5] = {
+#endif
+  2.2220300674e+01, /* 0x41b1c32d */
+  1.3620678711e+02, /* 0x430834f0 */
+  2.7047027588e+02, /* 0x43873c32 */
+  1.5387539673e+02, /* 0x4319e01a */
+  1.4657617569e+01, /* 0x416a859a */
+};
+
+#ifdef __STDC__
+	static float pzerof(float x)
+#else
+	static float pzerof(x)
+	float x;
+#endif
+{
+#ifdef __STDC__
+	const float *p,*q;
+#else
+	float *p,*q;
+#endif
+	float z,r,s;
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x41000000)     {p = pR8; q= pS8;}
+	else if(ix>=0x40f71c58){p = pR5; q= pS5;}
+	else if(ix>=0x4036db68){p = pR3; q= pS3;}
+	else if(ix>=0x40000000){p = pR2; q= pS2;}
+	z = one/(x*x);
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+	return one+ r/s;
+}
+		
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * 	qzero(x) = s*(-1.25 + (R/S))
+ * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
+ */
+#ifdef __STDC__
+static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+  0.0000000000e+00, /* 0x00000000 */
+  7.3242187500e-02, /* 0x3d960000 */
+  1.1768206596e+01, /* 0x413c4a93 */
+  5.5767340088e+02, /* 0x440b6b19 */
+  8.8591972656e+03, /* 0x460a6cca */
+  3.7014625000e+04, /* 0x471096a0 */
+};
+#ifdef __STDC__
+static const float qS8[6] = {
+#else
+static float qS8[6] = {
+#endif
+  1.6377603149e+02, /* 0x4323c6aa */
+  8.0983447266e+03, /* 0x45fd12c2 */
+  1.4253829688e+05, /* 0x480b3293 */
+  8.0330925000e+05, /* 0x49441ed4 */
+  8.4050156250e+05, /* 0x494d3359 */
+ -3.4389928125e+05, /* 0xc8a7eb69 */
+};
+
+#ifdef __STDC__
+static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+  1.8408595828e-11, /* 0x2da1ec79 */
+  7.3242180049e-02, /* 0x3d95ffff */
+  5.8356351852e+00, /* 0x40babd86 */
+  1.3511157227e+02, /* 0x43071c90 */
+  1.0272437744e+03, /* 0x448067cd */
+  1.9899779053e+03, /* 0x44f8bf4b */
+};
+#ifdef __STDC__
+static const float qS5[6] = {
+#else
+static float qS5[6] = {
+#endif
+  8.2776611328e+01, /* 0x42a58da0 */
+  2.0778142090e+03, /* 0x4501dd07 */
+  1.8847289062e+04, /* 0x46933e94 */
+  5.6751113281e+04, /* 0x475daf1d */
+  3.5976753906e+04, /* 0x470c88c1 */
+ -5.3543427734e+03, /* 0xc5a752be */
+};
+
+#ifdef __STDC__
+static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#else
+static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+  4.3774099900e-09, /* 0x3196681b */
+  7.3241114616e-02, /* 0x3d95ff70 */
+  3.3442313671e+00, /* 0x405607e3 */
+  4.2621845245e+01, /* 0x422a7cc5 */
+  1.7080809021e+02, /* 0x432acedf */
+  1.6673394775e+02, /* 0x4326bbe4 */
+};
+#ifdef __STDC__
+static const float qS3[6] = {
+#else
+static float qS3[6] = {
+#endif
+  4.8758872986e+01, /* 0x42430916 */
+  7.0968920898e+02, /* 0x44316c1c */
+  3.7041481934e+03, /* 0x4567825f */
+  6.4604252930e+03, /* 0x45c9e367 */
+  2.5163337402e+03, /* 0x451d4557 */
+ -1.4924745178e+02, /* 0xc3153f59 */
+};
+
+#ifdef __STDC__
+static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+  1.5044444979e-07, /* 0x342189db */
+  7.3223426938e-02, /* 0x3d95f62a */
+  1.9981917143e+00, /* 0x3fffc4bf */
+  1.4495602608e+01, /* 0x4167edfd */
+  3.1666231155e+01, /* 0x41fd5471 */
+  1.6252708435e+01, /* 0x4182058c */
+};
+#ifdef __STDC__
+static const float qS2[6] = {
+#else
+static float qS2[6] = {
+#endif
+  3.0365585327e+01, /* 0x41f2ecb8 */
+  2.6934811401e+02, /* 0x4386ac8f */
+  8.4478375244e+02, /* 0x44533229 */
+  8.8293585205e+02, /* 0x445cbbe5 */
+  2.1266638184e+02, /* 0x4354aa98 */
+ -5.3109550476e+00, /* 0xc0a9f358 */
+};
+
+#ifdef __STDC__
+	static float qzerof(float x)
+#else
+	static float qzerof(x)
+	float x;
+#endif
+{
+#ifdef __STDC__
+	const float *p,*q;
+#else
+	float *p,*q;
+#endif
+	float s,r,z;
+	int32_t ix;
+	GET_FLOAT_WORD(ix,x);
+	ix &= 0x7fffffff;
+	if(ix>=0x41000000)     {p = qR8; q= qS8;}
+	else if(ix>=0x40f71c58){p = qR5; q= qS5;}
+	else if(ix>=0x4036db68){p = qR3; q= qS3;}
+	else if(ix>=0x40000000){p = qR2; q= qS2;}
+	z = one/(x*x);
+	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+	return (-(float).125 + r/s)/x;
+}